| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opprsubrngg | GIF version | ||
| Description: Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.) |
| Ref | Expression |
|---|---|
| opprsubrng.o | ⊢ 𝑂 = (oppr‘𝑅) |
| Ref | Expression |
|---|---|
| opprsubrngg | ⊢ (𝑅 ∈ 𝑉 → (SubRng‘𝑅) = (SubRng‘𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrngrcl 14080 | . . . 4 ⊢ (𝑥 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑥 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)) |
| 3 | subrngrcl 14080 | . . . 4 ⊢ (𝑥 ∈ (SubRng‘𝑂) → 𝑂 ∈ Rng) | |
| 4 | opprsubrng.o | . . . . 5 ⊢ 𝑂 = (oppr‘𝑅) | |
| 5 | 4 | opprrngbg 13955 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng)) |
| 6 | 3, 5 | imbitrrid 156 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑥 ∈ (SubRng‘𝑂) → 𝑅 ∈ Rng)) |
| 7 | 4 | opprsubgg 13961 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → (SubGrp‘𝑅) = (SubGrp‘𝑂)) |
| 8 | 7 | eleq2d 2277 | . . . . . 6 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂))) |
| 9 | ralcom 2671 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥) | |
| 10 | vex 2779 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
| 11 | vex 2779 | . . . . . . . . . 10 ⊢ 𝑧 ∈ V | |
| 12 | eqid 2207 | . . . . . . . . . . 11 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 13 | eqid 2207 | . . . . . . . . . . 11 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 14 | eqid 2207 | . . . . . . . . . . 11 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
| 15 | 12, 13, 4, 14 | opprmulg 13948 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Rng ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑦)) |
| 16 | 10, 11, 15 | mp3an23 1342 | . . . . . . . . 9 ⊢ (𝑅 ∈ Rng → (𝑦(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑦)) |
| 17 | 16 | eleq1d 2276 | . . . . . . . 8 ⊢ (𝑅 ∈ Rng → ((𝑦(.r‘𝑂)𝑧) ∈ 𝑥 ↔ (𝑧(.r‘𝑅)𝑦) ∈ 𝑥)) |
| 18 | 17 | 2ralbidv 2532 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → (∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥)) |
| 19 | 9, 18 | bitr4id 199 | . . . . . 6 ⊢ (𝑅 ∈ Rng → (∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥)) |
| 20 | 8, 19 | anbi12d 473 | . . . . 5 ⊢ (𝑅 ∈ Rng → ((𝑥 ∈ (SubGrp‘𝑅) ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥))) |
| 21 | 12, 13 | issubrng2 14087 | . . . . 5 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ (𝑥 ∈ (SubGrp‘𝑅) ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥))) |
| 22 | 4 | opprrng 13954 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 𝑂 ∈ Rng) |
| 23 | eqid 2207 | . . . . . . 7 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
| 24 | 23, 14 | issubrng2 14087 | . . . . . 6 ⊢ (𝑂 ∈ Rng → (𝑥 ∈ (SubRng‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥))) |
| 25 | 22, 24 | syl 14 | . . . . 5 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥))) |
| 26 | 20, 21, 25 | 3bitr4d 220 | . . . 4 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂))) |
| 27 | 26 | a1i 9 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂)))) |
| 28 | 2, 6, 27 | pm5.21ndd 707 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂))) |
| 29 | 28 | eqrdv 2205 | 1 ⊢ (𝑅 ∈ 𝑉 → (SubRng‘𝑅) = (SubRng‘𝑂)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 ∀wral 2486 Vcvv 2776 ‘cfv 5290 (class class class)co 5967 Basecbs 12947 .rcmulr 13025 SubGrpcsubg 13618 Rngcrng 13809 opprcoppr 13944 SubRngcsubrng 14074 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-tpos 6354 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-iress 12955 df-plusg 13037 df-mulr 13038 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-grp 13450 df-subg 13621 df-cmn 13737 df-abl 13738 df-mgp 13798 df-rng 13810 df-oppr 13945 df-subrng 14075 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |