![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opprsubrngg | GIF version |
Description: Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.) |
Ref | Expression |
---|---|
opprsubrng.o | ⊢ 𝑂 = (oppr‘𝑅) |
Ref | Expression |
---|---|
opprsubrngg | ⊢ (𝑅 ∈ 𝑉 → (SubRng‘𝑅) = (SubRng‘𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrngrcl 13550 | . . . 4 ⊢ (𝑥 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) | |
2 | 1 | a1i 9 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑥 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)) |
3 | subrngrcl 13550 | . . . 4 ⊢ (𝑥 ∈ (SubRng‘𝑂) → 𝑂 ∈ Rng) | |
4 | opprsubrng.o | . . . . 5 ⊢ 𝑂 = (oppr‘𝑅) | |
5 | 4 | opprrngbg 13428 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng)) |
6 | 3, 5 | imbitrrid 156 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑥 ∈ (SubRng‘𝑂) → 𝑅 ∈ Rng)) |
7 | 4 | opprsubgg 13434 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → (SubGrp‘𝑅) = (SubGrp‘𝑂)) |
8 | 7 | eleq2d 2259 | . . . . . 6 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂))) |
9 | ralcom 2653 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥) | |
10 | vex 2755 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
11 | vex 2755 | . . . . . . . . . 10 ⊢ 𝑧 ∈ V | |
12 | eqid 2189 | . . . . . . . . . . 11 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
13 | eqid 2189 | . . . . . . . . . . 11 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
14 | eqid 2189 | . . . . . . . . . . 11 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
15 | 12, 13, 4, 14 | opprmulg 13421 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Rng ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑦)) |
16 | 10, 11, 15 | mp3an23 1340 | . . . . . . . . 9 ⊢ (𝑅 ∈ Rng → (𝑦(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑦)) |
17 | 16 | eleq1d 2258 | . . . . . . . 8 ⊢ (𝑅 ∈ Rng → ((𝑦(.r‘𝑂)𝑧) ∈ 𝑥 ↔ (𝑧(.r‘𝑅)𝑦) ∈ 𝑥)) |
18 | 17 | 2ralbidv 2514 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → (∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥)) |
19 | 9, 18 | bitr4id 199 | . . . . . 6 ⊢ (𝑅 ∈ Rng → (∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥)) |
20 | 8, 19 | anbi12d 473 | . . . . 5 ⊢ (𝑅 ∈ Rng → ((𝑥 ∈ (SubGrp‘𝑅) ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥))) |
21 | 12, 13 | issubrng2 13557 | . . . . 5 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ (𝑥 ∈ (SubGrp‘𝑅) ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥))) |
22 | 4 | opprrng 13427 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 𝑂 ∈ Rng) |
23 | eqid 2189 | . . . . . . 7 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
24 | 23, 14 | issubrng2 13557 | . . . . . 6 ⊢ (𝑂 ∈ Rng → (𝑥 ∈ (SubRng‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥))) |
25 | 22, 24 | syl 14 | . . . . 5 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥))) |
26 | 20, 21, 25 | 3bitr4d 220 | . . . 4 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂))) |
27 | 26 | a1i 9 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂)))) |
28 | 2, 6, 27 | pm5.21ndd 706 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂))) |
29 | 28 | eqrdv 2187 | 1 ⊢ (𝑅 ∈ 𝑉 → (SubRng‘𝑅) = (SubRng‘𝑂)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 ∀wral 2468 Vcvv 2752 ‘cfv 5235 (class class class)co 5896 Basecbs 12512 .rcmulr 12590 SubGrpcsubg 13106 Rngcrng 13286 opprcoppr 13417 SubRngcsubrng 13544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7932 ax-resscn 7933 ax-1cn 7934 ax-1re 7935 ax-icn 7936 ax-addcl 7937 ax-addrcl 7938 ax-mulcl 7939 ax-addcom 7941 ax-addass 7943 ax-i2m1 7946 ax-0lt1 7947 ax-0id 7949 ax-rnegex 7950 ax-pre-ltirr 7953 ax-pre-lttrn 7955 ax-pre-ltadd 7957 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-fv 5243 df-riota 5852 df-ov 5899 df-oprab 5900 df-mpo 5901 df-tpos 6270 df-pnf 8024 df-mnf 8025 df-ltxr 8027 df-inn 8950 df-2 9008 df-3 9009 df-ndx 12515 df-slot 12516 df-base 12518 df-sets 12519 df-iress 12520 df-plusg 12602 df-mulr 12603 df-0g 12763 df-mgm 12832 df-sgrp 12865 df-mnd 12878 df-grp 12948 df-subg 13109 df-cmn 13225 df-abl 13226 df-mgp 13275 df-rng 13287 df-oppr 13418 df-subrng 13545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |