ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprsubrngg GIF version

Theorem opprsubrngg 14088
Description: Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
opprsubrng.o 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprsubrngg (𝑅𝑉 → (SubRng‘𝑅) = (SubRng‘𝑂))

Proof of Theorem opprsubrngg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngrcl 14080 . . . 4 (𝑥 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
21a1i 9 . . 3 (𝑅𝑉 → (𝑥 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng))
3 subrngrcl 14080 . . . 4 (𝑥 ∈ (SubRng‘𝑂) → 𝑂 ∈ Rng)
4 opprsubrng.o . . . . 5 𝑂 = (oppr𝑅)
54opprrngbg 13955 . . . 4 (𝑅𝑉 → (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng))
63, 5imbitrrid 156 . . 3 (𝑅𝑉 → (𝑥 ∈ (SubRng‘𝑂) → 𝑅 ∈ Rng))
74opprsubgg 13961 . . . . . . 7 (𝑅 ∈ Rng → (SubGrp‘𝑅) = (SubGrp‘𝑂))
87eleq2d 2277 . . . . . 6 (𝑅 ∈ Rng → (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂)))
9 ralcom 2671 . . . . . . 7 (∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦𝑥𝑧𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥)
10 vex 2779 . . . . . . . . . 10 𝑦 ∈ V
11 vex 2779 . . . . . . . . . 10 𝑧 ∈ V
12 eqid 2207 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
13 eqid 2207 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
14 eqid 2207 . . . . . . . . . . 11 (.r𝑂) = (.r𝑂)
1512, 13, 4, 14opprmulg 13948 . . . . . . . . . 10 ((𝑅 ∈ Rng ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦(.r𝑂)𝑧) = (𝑧(.r𝑅)𝑦))
1610, 11, 15mp3an23 1342 . . . . . . . . 9 (𝑅 ∈ Rng → (𝑦(.r𝑂)𝑧) = (𝑧(.r𝑅)𝑦))
1716eleq1d 2276 . . . . . . . 8 (𝑅 ∈ Rng → ((𝑦(.r𝑂)𝑧) ∈ 𝑥 ↔ (𝑧(.r𝑅)𝑦) ∈ 𝑥))
18172ralbidv 2532 . . . . . . 7 (𝑅 ∈ Rng → (∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥 ↔ ∀𝑦𝑥𝑧𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥))
199, 18bitr4id 199 . . . . . 6 (𝑅 ∈ Rng → (∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥))
208, 19anbi12d 473 . . . . 5 (𝑅 ∈ Rng → ((𝑥 ∈ (SubGrp‘𝑅) ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥)))
2112, 13issubrng2 14087 . . . . 5 (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ (𝑥 ∈ (SubGrp‘𝑅) ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥)))
224opprrng 13954 . . . . . 6 (𝑅 ∈ Rng → 𝑂 ∈ Rng)
23 eqid 2207 . . . . . . 7 (Base‘𝑂) = (Base‘𝑂)
2423, 14issubrng2 14087 . . . . . 6 (𝑂 ∈ Rng → (𝑥 ∈ (SubRng‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥)))
2522, 24syl 14 . . . . 5 (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥)))
2620, 21, 253bitr4d 220 . . . 4 (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂)))
2726a1i 9 . . 3 (𝑅𝑉 → (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂))))
282, 6, 27pm5.21ndd 707 . 2 (𝑅𝑉 → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂)))
2928eqrdv 2205 1 (𝑅𝑉 → (SubRng‘𝑅) = (SubRng‘𝑂))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  wral 2486  Vcvv 2776  cfv 5290  (class class class)co 5967  Basecbs 12947  .rcmulr 13025  SubGrpcsubg 13618  Rngcrng 13809  opprcoppr 13944  SubRngcsubrng 14074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-tpos 6354  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-subg 13621  df-cmn 13737  df-abl 13738  df-mgp 13798  df-rng 13810  df-oppr 13945  df-subrng 14075
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator