| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opprsubrngg | GIF version | ||
| Description: Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.) |
| Ref | Expression |
|---|---|
| opprsubrng.o | ⊢ 𝑂 = (oppr‘𝑅) |
| Ref | Expression |
|---|---|
| opprsubrngg | ⊢ (𝑅 ∈ 𝑉 → (SubRng‘𝑅) = (SubRng‘𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrngrcl 14167 | . . . 4 ⊢ (𝑥 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑥 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)) |
| 3 | subrngrcl 14167 | . . . 4 ⊢ (𝑥 ∈ (SubRng‘𝑂) → 𝑂 ∈ Rng) | |
| 4 | opprsubrng.o | . . . . 5 ⊢ 𝑂 = (oppr‘𝑅) | |
| 5 | 4 | opprrngbg 14041 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng)) |
| 6 | 3, 5 | imbitrrid 156 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑥 ∈ (SubRng‘𝑂) → 𝑅 ∈ Rng)) |
| 7 | 4 | opprsubgg 14047 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → (SubGrp‘𝑅) = (SubGrp‘𝑂)) |
| 8 | 7 | eleq2d 2299 | . . . . . 6 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂))) |
| 9 | ralcom 2694 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥) | |
| 10 | vex 2802 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
| 11 | vex 2802 | . . . . . . . . . 10 ⊢ 𝑧 ∈ V | |
| 12 | eqid 2229 | . . . . . . . . . . 11 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 13 | eqid 2229 | . . . . . . . . . . 11 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 14 | eqid 2229 | . . . . . . . . . . 11 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
| 15 | 12, 13, 4, 14 | opprmulg 14034 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Rng ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑦)) |
| 16 | 10, 11, 15 | mp3an23 1363 | . . . . . . . . 9 ⊢ (𝑅 ∈ Rng → (𝑦(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑦)) |
| 17 | 16 | eleq1d 2298 | . . . . . . . 8 ⊢ (𝑅 ∈ Rng → ((𝑦(.r‘𝑂)𝑧) ∈ 𝑥 ↔ (𝑧(.r‘𝑅)𝑦) ∈ 𝑥)) |
| 18 | 17 | 2ralbidv 2554 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → (∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥)) |
| 19 | 9, 18 | bitr4id 199 | . . . . . 6 ⊢ (𝑅 ∈ Rng → (∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥)) |
| 20 | 8, 19 | anbi12d 473 | . . . . 5 ⊢ (𝑅 ∈ Rng → ((𝑥 ∈ (SubGrp‘𝑅) ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥))) |
| 21 | 12, 13 | issubrng2 14174 | . . . . 5 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ (𝑥 ∈ (SubGrp‘𝑅) ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥))) |
| 22 | 4 | opprrng 14040 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 𝑂 ∈ Rng) |
| 23 | eqid 2229 | . . . . . . 7 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
| 24 | 23, 14 | issubrng2 14174 | . . . . . 6 ⊢ (𝑂 ∈ Rng → (𝑥 ∈ (SubRng‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥))) |
| 25 | 22, 24 | syl 14 | . . . . 5 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥))) |
| 26 | 20, 21, 25 | 3bitr4d 220 | . . . 4 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂))) |
| 27 | 26 | a1i 9 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂)))) |
| 28 | 2, 6, 27 | pm5.21ndd 710 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂))) |
| 29 | 28 | eqrdv 2227 | 1 ⊢ (𝑅 ∈ 𝑉 → (SubRng‘𝑅) = (SubRng‘𝑂)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∀wral 2508 Vcvv 2799 ‘cfv 5318 (class class class)co 6001 Basecbs 13032 .rcmulr 13111 SubGrpcsubg 13704 Rngcrng 13895 opprcoppr 14030 SubRngcsubrng 14161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-tpos 6391 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-inn 9111 df-2 9169 df-3 9170 df-ndx 13035 df-slot 13036 df-base 13038 df-sets 13039 df-iress 13040 df-plusg 13123 df-mulr 13124 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 df-subg 13707 df-cmn 13823 df-abl 13824 df-mgp 13884 df-rng 13896 df-oppr 14031 df-subrng 14162 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |