ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprsubrngg GIF version

Theorem opprsubrngg 13843
Description: Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
opprsubrng.o 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprsubrngg (𝑅𝑉 → (SubRng‘𝑅) = (SubRng‘𝑂))

Proof of Theorem opprsubrngg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngrcl 13835 . . . 4 (𝑥 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
21a1i 9 . . 3 (𝑅𝑉 → (𝑥 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng))
3 subrngrcl 13835 . . . 4 (𝑥 ∈ (SubRng‘𝑂) → 𝑂 ∈ Rng)
4 opprsubrng.o . . . . 5 𝑂 = (oppr𝑅)
54opprrngbg 13710 . . . 4 (𝑅𝑉 → (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng))
63, 5imbitrrid 156 . . 3 (𝑅𝑉 → (𝑥 ∈ (SubRng‘𝑂) → 𝑅 ∈ Rng))
74opprsubgg 13716 . . . . . . 7 (𝑅 ∈ Rng → (SubGrp‘𝑅) = (SubGrp‘𝑂))
87eleq2d 2266 . . . . . 6 (𝑅 ∈ Rng → (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂)))
9 ralcom 2660 . . . . . . 7 (∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦𝑥𝑧𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥)
10 vex 2766 . . . . . . . . . 10 𝑦 ∈ V
11 vex 2766 . . . . . . . . . 10 𝑧 ∈ V
12 eqid 2196 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
13 eqid 2196 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
14 eqid 2196 . . . . . . . . . . 11 (.r𝑂) = (.r𝑂)
1512, 13, 4, 14opprmulg 13703 . . . . . . . . . 10 ((𝑅 ∈ Rng ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦(.r𝑂)𝑧) = (𝑧(.r𝑅)𝑦))
1610, 11, 15mp3an23 1340 . . . . . . . . 9 (𝑅 ∈ Rng → (𝑦(.r𝑂)𝑧) = (𝑧(.r𝑅)𝑦))
1716eleq1d 2265 . . . . . . . 8 (𝑅 ∈ Rng → ((𝑦(.r𝑂)𝑧) ∈ 𝑥 ↔ (𝑧(.r𝑅)𝑦) ∈ 𝑥))
18172ralbidv 2521 . . . . . . 7 (𝑅 ∈ Rng → (∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥 ↔ ∀𝑦𝑥𝑧𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥))
199, 18bitr4id 199 . . . . . 6 (𝑅 ∈ Rng → (∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥))
208, 19anbi12d 473 . . . . 5 (𝑅 ∈ Rng → ((𝑥 ∈ (SubGrp‘𝑅) ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥)))
2112, 13issubrng2 13842 . . . . 5 (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ (𝑥 ∈ (SubGrp‘𝑅) ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥)))
224opprrng 13709 . . . . . 6 (𝑅 ∈ Rng → 𝑂 ∈ Rng)
23 eqid 2196 . . . . . . 7 (Base‘𝑂) = (Base‘𝑂)
2423, 14issubrng2 13842 . . . . . 6 (𝑂 ∈ Rng → (𝑥 ∈ (SubRng‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥)))
2522, 24syl 14 . . . . 5 (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥)))
2620, 21, 253bitr4d 220 . . . 4 (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂)))
2726a1i 9 . . 3 (𝑅𝑉 → (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂))))
282, 6, 27pm5.21ndd 706 . 2 (𝑅𝑉 → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂)))
2928eqrdv 2194 1 (𝑅𝑉 → (SubRng‘𝑅) = (SubRng‘𝑂))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  cfv 5259  (class class class)co 5925  Basecbs 12703  .rcmulr 12781  SubGrpcsubg 13373  Rngcrng 13564  opprcoppr 13699  SubRngcsubrng 13829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-tpos 6312  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-subg 13376  df-cmn 13492  df-abl 13493  df-mgp 13553  df-rng 13565  df-oppr 13700  df-subrng 13830
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator