ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprsubrngg GIF version

Theorem opprsubrngg 14006
Description: Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
opprsubrng.o 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprsubrngg (𝑅𝑉 → (SubRng‘𝑅) = (SubRng‘𝑂))

Proof of Theorem opprsubrngg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngrcl 13998 . . . 4 (𝑥 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
21a1i 9 . . 3 (𝑅𝑉 → (𝑥 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng))
3 subrngrcl 13998 . . . 4 (𝑥 ∈ (SubRng‘𝑂) → 𝑂 ∈ Rng)
4 opprsubrng.o . . . . 5 𝑂 = (oppr𝑅)
54opprrngbg 13873 . . . 4 (𝑅𝑉 → (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng))
63, 5imbitrrid 156 . . 3 (𝑅𝑉 → (𝑥 ∈ (SubRng‘𝑂) → 𝑅 ∈ Rng))
74opprsubgg 13879 . . . . . . 7 (𝑅 ∈ Rng → (SubGrp‘𝑅) = (SubGrp‘𝑂))
87eleq2d 2275 . . . . . 6 (𝑅 ∈ Rng → (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂)))
9 ralcom 2669 . . . . . . 7 (∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦𝑥𝑧𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥)
10 vex 2775 . . . . . . . . . 10 𝑦 ∈ V
11 vex 2775 . . . . . . . . . 10 𝑧 ∈ V
12 eqid 2205 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
13 eqid 2205 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
14 eqid 2205 . . . . . . . . . . 11 (.r𝑂) = (.r𝑂)
1512, 13, 4, 14opprmulg 13866 . . . . . . . . . 10 ((𝑅 ∈ Rng ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦(.r𝑂)𝑧) = (𝑧(.r𝑅)𝑦))
1610, 11, 15mp3an23 1342 . . . . . . . . 9 (𝑅 ∈ Rng → (𝑦(.r𝑂)𝑧) = (𝑧(.r𝑅)𝑦))
1716eleq1d 2274 . . . . . . . 8 (𝑅 ∈ Rng → ((𝑦(.r𝑂)𝑧) ∈ 𝑥 ↔ (𝑧(.r𝑅)𝑦) ∈ 𝑥))
18172ralbidv 2530 . . . . . . 7 (𝑅 ∈ Rng → (∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥 ↔ ∀𝑦𝑥𝑧𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥))
199, 18bitr4id 199 . . . . . 6 (𝑅 ∈ Rng → (∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥))
208, 19anbi12d 473 . . . . 5 (𝑅 ∈ Rng → ((𝑥 ∈ (SubGrp‘𝑅) ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥)))
2112, 13issubrng2 14005 . . . . 5 (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ (𝑥 ∈ (SubGrp‘𝑅) ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥)))
224opprrng 13872 . . . . . 6 (𝑅 ∈ Rng → 𝑂 ∈ Rng)
23 eqid 2205 . . . . . . 7 (Base‘𝑂) = (Base‘𝑂)
2423, 14issubrng2 14005 . . . . . 6 (𝑂 ∈ Rng → (𝑥 ∈ (SubRng‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥)))
2522, 24syl 14 . . . . 5 (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥)))
2620, 21, 253bitr4d 220 . . . 4 (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂)))
2726a1i 9 . . 3 (𝑅𝑉 → (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂))))
282, 6, 27pm5.21ndd 707 . 2 (𝑅𝑉 → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂)))
2928eqrdv 2203 1 (𝑅𝑉 → (SubRng‘𝑅) = (SubRng‘𝑂))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  wral 2484  Vcvv 2772  cfv 5272  (class class class)co 5946  Basecbs 12865  .rcmulr 12943  SubGrpcsubg 13536  Rngcrng 13727  opprcoppr 13862  SubRngcsubrng 13992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-pre-ltirr 8039  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-tpos 6333  df-pnf 8111  df-mnf 8112  df-ltxr 8114  df-inn 9039  df-2 9097  df-3 9098  df-ndx 12868  df-slot 12869  df-base 12871  df-sets 12872  df-iress 12873  df-plusg 12955  df-mulr 12956  df-0g 13123  df-mgm 13221  df-sgrp 13267  df-mnd 13282  df-grp 13368  df-subg 13539  df-cmn 13655  df-abl 13656  df-mgp 13716  df-rng 13728  df-oppr 13863  df-subrng 13993
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator