| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opprsubrngg | GIF version | ||
| Description: Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.) |
| Ref | Expression |
|---|---|
| opprsubrng.o | ⊢ 𝑂 = (oppr‘𝑅) |
| Ref | Expression |
|---|---|
| opprsubrngg | ⊢ (𝑅 ∈ 𝑉 → (SubRng‘𝑅) = (SubRng‘𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrngrcl 13998 | . . . 4 ⊢ (𝑥 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑥 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)) |
| 3 | subrngrcl 13998 | . . . 4 ⊢ (𝑥 ∈ (SubRng‘𝑂) → 𝑂 ∈ Rng) | |
| 4 | opprsubrng.o | . . . . 5 ⊢ 𝑂 = (oppr‘𝑅) | |
| 5 | 4 | opprrngbg 13873 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng)) |
| 6 | 3, 5 | imbitrrid 156 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑥 ∈ (SubRng‘𝑂) → 𝑅 ∈ Rng)) |
| 7 | 4 | opprsubgg 13879 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → (SubGrp‘𝑅) = (SubGrp‘𝑂)) |
| 8 | 7 | eleq2d 2275 | . . . . . 6 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂))) |
| 9 | ralcom 2669 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥) | |
| 10 | vex 2775 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
| 11 | vex 2775 | . . . . . . . . . 10 ⊢ 𝑧 ∈ V | |
| 12 | eqid 2205 | . . . . . . . . . . 11 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 13 | eqid 2205 | . . . . . . . . . . 11 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 14 | eqid 2205 | . . . . . . . . . . 11 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
| 15 | 12, 13, 4, 14 | opprmulg 13866 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Rng ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑦)) |
| 16 | 10, 11, 15 | mp3an23 1342 | . . . . . . . . 9 ⊢ (𝑅 ∈ Rng → (𝑦(.r‘𝑂)𝑧) = (𝑧(.r‘𝑅)𝑦)) |
| 17 | 16 | eleq1d 2274 | . . . . . . . 8 ⊢ (𝑅 ∈ Rng → ((𝑦(.r‘𝑂)𝑧) ∈ 𝑥 ↔ (𝑧(.r‘𝑅)𝑦) ∈ 𝑥)) |
| 18 | 17 | 2ralbidv 2530 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → (∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥)) |
| 19 | 9, 18 | bitr4id 199 | . . . . . 6 ⊢ (𝑅 ∈ Rng → (∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥)) |
| 20 | 8, 19 | anbi12d 473 | . . . . 5 ⊢ (𝑅 ∈ Rng → ((𝑥 ∈ (SubGrp‘𝑅) ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥))) |
| 21 | 12, 13 | issubrng2 14005 | . . . . 5 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ (𝑥 ∈ (SubGrp‘𝑅) ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑅)𝑦) ∈ 𝑥))) |
| 22 | 4 | opprrng 13872 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 𝑂 ∈ Rng) |
| 23 | eqid 2205 | . . . . . . 7 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
| 24 | 23, 14 | issubrng2 14005 | . . . . . 6 ⊢ (𝑂 ∈ Rng → (𝑥 ∈ (SubRng‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥))) |
| 25 | 22, 24 | syl 14 | . . . . 5 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑂)𝑧) ∈ 𝑥))) |
| 26 | 20, 21, 25 | 3bitr4d 220 | . . . 4 ⊢ (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂))) |
| 27 | 26 | a1i 9 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂)))) |
| 28 | 2, 6, 27 | pm5.21ndd 707 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂))) |
| 29 | 28 | eqrdv 2203 | 1 ⊢ (𝑅 ∈ 𝑉 → (SubRng‘𝑅) = (SubRng‘𝑂)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 ∀wral 2484 Vcvv 2772 ‘cfv 5272 (class class class)co 5946 Basecbs 12865 .rcmulr 12943 SubGrpcsubg 13536 Rngcrng 13727 opprcoppr 13862 SubRngcsubrng 13992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-pre-ltirr 8039 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-tpos 6333 df-pnf 8111 df-mnf 8112 df-ltxr 8114 df-inn 9039 df-2 9097 df-3 9098 df-ndx 12868 df-slot 12869 df-base 12871 df-sets 12872 df-iress 12873 df-plusg 12955 df-mulr 12956 df-0g 13123 df-mgm 13221 df-sgrp 13267 df-mnd 13282 df-grp 13368 df-subg 13539 df-cmn 13655 df-abl 13656 df-mgp 13716 df-rng 13728 df-oppr 13863 df-subrng 13993 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |