ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprsubrngg GIF version

Theorem opprsubrngg 14175
Description: Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
opprsubrng.o 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprsubrngg (𝑅𝑉 → (SubRng‘𝑅) = (SubRng‘𝑂))

Proof of Theorem opprsubrngg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngrcl 14167 . . . 4 (𝑥 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
21a1i 9 . . 3 (𝑅𝑉 → (𝑥 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng))
3 subrngrcl 14167 . . . 4 (𝑥 ∈ (SubRng‘𝑂) → 𝑂 ∈ Rng)
4 opprsubrng.o . . . . 5 𝑂 = (oppr𝑅)
54opprrngbg 14041 . . . 4 (𝑅𝑉 → (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng))
63, 5imbitrrid 156 . . 3 (𝑅𝑉 → (𝑥 ∈ (SubRng‘𝑂) → 𝑅 ∈ Rng))
74opprsubgg 14047 . . . . . . 7 (𝑅 ∈ Rng → (SubGrp‘𝑅) = (SubGrp‘𝑂))
87eleq2d 2299 . . . . . 6 (𝑅 ∈ Rng → (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂)))
9 ralcom 2694 . . . . . . 7 (∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦𝑥𝑧𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥)
10 vex 2802 . . . . . . . . . 10 𝑦 ∈ V
11 vex 2802 . . . . . . . . . 10 𝑧 ∈ V
12 eqid 2229 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
13 eqid 2229 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
14 eqid 2229 . . . . . . . . . . 11 (.r𝑂) = (.r𝑂)
1512, 13, 4, 14opprmulg 14034 . . . . . . . . . 10 ((𝑅 ∈ Rng ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦(.r𝑂)𝑧) = (𝑧(.r𝑅)𝑦))
1610, 11, 15mp3an23 1363 . . . . . . . . 9 (𝑅 ∈ Rng → (𝑦(.r𝑂)𝑧) = (𝑧(.r𝑅)𝑦))
1716eleq1d 2298 . . . . . . . 8 (𝑅 ∈ Rng → ((𝑦(.r𝑂)𝑧) ∈ 𝑥 ↔ (𝑧(.r𝑅)𝑦) ∈ 𝑥))
18172ralbidv 2554 . . . . . . 7 (𝑅 ∈ Rng → (∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥 ↔ ∀𝑦𝑥𝑧𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥))
199, 18bitr4id 199 . . . . . 6 (𝑅 ∈ Rng → (∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥 ↔ ∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥))
208, 19anbi12d 473 . . . . 5 (𝑅 ∈ Rng → ((𝑥 ∈ (SubGrp‘𝑅) ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥)))
2112, 13issubrng2 14174 . . . . 5 (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ (𝑥 ∈ (SubGrp‘𝑅) ∧ ∀𝑧𝑥𝑦𝑥 (𝑧(.r𝑅)𝑦) ∈ 𝑥)))
224opprrng 14040 . . . . . 6 (𝑅 ∈ Rng → 𝑂 ∈ Rng)
23 eqid 2229 . . . . . . 7 (Base‘𝑂) = (Base‘𝑂)
2423, 14issubrng2 14174 . . . . . 6 (𝑂 ∈ Rng → (𝑥 ∈ (SubRng‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥)))
2522, 24syl 14 . . . . 5 (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ ∀𝑦𝑥𝑧𝑥 (𝑦(.r𝑂)𝑧) ∈ 𝑥)))
2620, 21, 253bitr4d 220 . . . 4 (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂)))
2726a1i 9 . . 3 (𝑅𝑉 → (𝑅 ∈ Rng → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂))))
282, 6, 27pm5.21ndd 710 . 2 (𝑅𝑉 → (𝑥 ∈ (SubRng‘𝑅) ↔ 𝑥 ∈ (SubRng‘𝑂)))
2928eqrdv 2227 1 (𝑅𝑉 → (SubRng‘𝑅) = (SubRng‘𝑂))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799  cfv 5318  (class class class)co 6001  Basecbs 13032  .rcmulr 13111  SubGrpcsubg 13704  Rngcrng 13895  opprcoppr 14030  SubRngcsubrng 14161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-tpos 6391  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-mulr 13124  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-subg 13707  df-cmn 13823  df-abl 13824  df-mgp 13884  df-rng 13896  df-oppr 14031  df-subrng 14162
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator