| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > txunii | GIF version | ||
| Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 15-Jun-2010.) |
| Ref | Expression |
|---|---|
| txunii.1 | ⊢ 𝑅 ∈ Top |
| txunii.2 | ⊢ 𝑆 ∈ Top |
| txunii.3 | ⊢ 𝑋 = ∪ 𝑅 |
| txunii.4 | ⊢ 𝑌 = ∪ 𝑆 |
| Ref | Expression |
|---|---|
| txunii | ⊢ (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txunii.1 | . 2 ⊢ 𝑅 ∈ Top | |
| 2 | txunii.2 | . 2 ⊢ 𝑆 ∈ Top | |
| 3 | txunii.3 | . . 3 ⊢ 𝑋 = ∪ 𝑅 | |
| 4 | txunii.4 | . . 3 ⊢ 𝑌 = ∪ 𝑆 | |
| 5 | 3, 4 | txuni 14768 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
| 6 | 1, 2, 5 | mp2an 426 | 1 ⊢ (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2176 ∪ cuni 3850 × cxp 4674 (class class class)co 5946 Topctop 14502 ×t ctx 14757 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-topgen 13125 df-top 14503 df-topon 14516 df-bases 14548 df-tx 14758 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |