ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txunii GIF version

Theorem txunii 13023
Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 15-Jun-2010.)
Hypotheses
Ref Expression
txunii.1 𝑅 ∈ Top
txunii.2 𝑆 ∈ Top
txunii.3 𝑋 = 𝑅
txunii.4 𝑌 = 𝑆
Assertion
Ref Expression
txunii (𝑋 × 𝑌) = (𝑅 ×t 𝑆)

Proof of Theorem txunii
StepHypRef Expression
1 txunii.1 . 2 𝑅 ∈ Top
2 txunii.2 . 2 𝑆 ∈ Top
3 txunii.3 . . 3 𝑋 = 𝑅
4 txunii.4 . . 3 𝑌 = 𝑆
53, 4txuni 13022 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
61, 2, 5mp2an 424 1 (𝑋 × 𝑌) = (𝑅 ×t 𝑆)
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wcel 2141   cuni 3794   × cxp 4607  (class class class)co 5851  Topctop 12754   ×t ctx 13011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-topgen 12593  df-top 12755  df-topon 12768  df-bases 12800  df-tx 13012
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator