ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrlelttrd GIF version

Theorem xrlelttrd 9336
Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
xrlttrd.1 (𝜑𝐴 ∈ ℝ*)
xrlttrd.2 (𝜑𝐵 ∈ ℝ*)
xrlttrd.3 (𝜑𝐶 ∈ ℝ*)
xrlelttrd.4 (𝜑𝐴𝐵)
xrlelttrd.5 (𝜑𝐵 < 𝐶)
Assertion
Ref Expression
xrlelttrd (𝜑𝐴 < 𝐶)

Proof of Theorem xrlelttrd
StepHypRef Expression
1 xrlelttrd.4 . 2 (𝜑𝐴𝐵)
2 xrlelttrd.5 . 2 (𝜑𝐵 < 𝐶)
3 xrlttrd.1 . . 3 (𝜑𝐴 ∈ ℝ*)
4 xrlttrd.2 . . 3 (𝜑𝐵 ∈ ℝ*)
5 xrlttrd.3 . . 3 (𝜑𝐶 ∈ ℝ*)
6 xrlelttr 9332 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
73, 4, 5, 6syl3anc 1175 . 2 (𝜑 → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
81, 2, 7mp2and 425 1 (𝜑𝐴 < 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1439   class class class wbr 3851  *cxr 7582   < clt 7583  cle 7584
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7497  ax-resscn 7498  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-po 4132  df-iso 4133  df-xp 4458  df-cnv 4460  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589
This theorem is referenced by:  elioc2  9415  elicc2  9417
  Copyright terms: Public domain W3C validator