ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elioc2 GIF version

Theorem elioc2 10028
Description: Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007.) (Revised by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
elioc2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))

Proof of Theorem elioc2
StepHypRef Expression
1 rexr 8089 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
2 elioc1 10014 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
31, 2sylan2 286 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
4 mnfxr 8100 . . . . . . . 8 -∞ ∈ ℝ*
54a1i 9 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → -∞ ∈ ℝ*)
6 simpll 527 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐴 ∈ ℝ*)
7 simpr1 1005 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐶 ∈ ℝ*)
8 mnfle 9884 . . . . . . . 8 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
98ad2antrr 488 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → -∞ ≤ 𝐴)
10 simpr2 1006 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐴 < 𝐶)
115, 6, 7, 9, 10xrlelttrd 9902 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → -∞ < 𝐶)
121ad2antlr 489 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐵 ∈ ℝ*)
13 pnfxr 8096 . . . . . . . 8 +∞ ∈ ℝ*
1413a1i 9 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → +∞ ∈ ℝ*)
15 simpr3 1007 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐶𝐵)
16 ltpnf 9872 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 < +∞)
1716ad2antlr 489 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐵 < +∞)
187, 12, 14, 15, 17xrlelttrd 9902 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐶 < +∞)
19 xrrebnd 9911 . . . . . . 7 (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
207, 19syl 14 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
2111, 18, 20mpbir2and 946 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐶 ∈ ℝ)
2221, 10, 153jca 1179 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵))
2322ex 115 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵) → (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
24 rexr 8089 . . . 4 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
25243anim1i 1187 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵) → (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵))
2623, 25impbid1 142 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
273, 26bitrd 188 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wcel 2167   class class class wbr 4034  (class class class)co 5925  cr 7895  +∞cpnf 8075  -∞cmnf 8076  *cxr 8077   < clt 8078  cle 8079  (,]cioc 9981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-ioc 9985
This theorem is referenced by:  iocssre  10045  ef01bndlem  11938  sin01bnd  11939  cos01bnd  11940  cos1bnd  11941  sinltxirr  11943  sin01gt0  11944  cos01gt0  11945  sin02gt0  11946  sincos1sgn  11947  sincos2sgn  11948  cos12dec  11950  sin0pilem1  15101  sin0pilem2  15102  sinhalfpilem  15111  sincosq1lem  15145  coseq0negpitopi  15156  tangtx  15158  sincos4thpi  15160  pigt3  15164
  Copyright terms: Public domain W3C validator