| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qus1 | Structured version Visualization version GIF version | ||
| Description: The multiplicative identity of the quotient ring. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| qusring.u | ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) |
| qusring.i | ⊢ 𝐼 = (2Ideal‘𝑅) |
| qus1.o | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| qus1 | ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝑈 ∈ Ring ∧ [ 1 ](𝑅 ~QG 𝑆) = (1r‘𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusring.u | . . 3 ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))) |
| 3 | eqid 2729 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | 3 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (Base‘𝑅) = (Base‘𝑅)) |
| 5 | eqid 2729 | . 2 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 6 | eqid 2729 | . 2 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 7 | qus1.o | . 2 ⊢ 1 = (1r‘𝑅) | |
| 8 | eqid 2729 | . . . . . . 7 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 9 | eqid 2729 | . . . . . . 7 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 10 | eqid 2729 | . . . . . . 7 ⊢ (LIdeal‘(oppr‘𝑅)) = (LIdeal‘(oppr‘𝑅)) | |
| 11 | qusring.i | . . . . . . 7 ⊢ 𝐼 = (2Ideal‘𝑅) | |
| 12 | 8, 9, 10, 11 | 2idlval 21137 | . . . . . 6 ⊢ 𝐼 = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr‘𝑅))) |
| 13 | 12 | elin2 4162 | . . . . 5 ⊢ (𝑆 ∈ 𝐼 ↔ (𝑆 ∈ (LIdeal‘𝑅) ∧ 𝑆 ∈ (LIdeal‘(oppr‘𝑅)))) |
| 14 | 13 | simplbi 497 | . . . 4 ⊢ (𝑆 ∈ 𝐼 → 𝑆 ∈ (LIdeal‘𝑅)) |
| 15 | 8 | lidlsubg 21109 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅)) |
| 16 | 14, 15 | sylan2 593 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (SubGrp‘𝑅)) |
| 17 | eqid 2729 | . . . 4 ⊢ (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆) | |
| 18 | 3, 17 | eqger 19086 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er (Base‘𝑅)) |
| 19 | 16, 18 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝑅 ~QG 𝑆) Er (Base‘𝑅)) |
| 20 | ringabl 20166 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Abel) | |
| 21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑅 ∈ Abel) |
| 22 | ablnsg 19753 | . . . . 5 ⊢ (𝑅 ∈ Abel → (NrmSGrp‘𝑅) = (SubGrp‘𝑅)) | |
| 23 | 21, 22 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (NrmSGrp‘𝑅) = (SubGrp‘𝑅)) |
| 24 | 16, 23 | eleqtrrd 2831 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (NrmSGrp‘𝑅)) |
| 25 | 3, 17, 5 | eqgcpbl 19090 | . . 3 ⊢ (𝑆 ∈ (NrmSGrp‘𝑅) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(+g‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(+g‘𝑅)𝑑))) |
| 26 | 24, 25 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(+g‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(+g‘𝑅)𝑑))) |
| 27 | 3, 17, 11, 6 | 2idlcpbl 21158 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r‘𝑅)𝑑))) |
| 28 | simpl 482 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑅 ∈ Ring) | |
| 29 | 2, 4, 5, 6, 7, 19, 26, 27, 28 | qusring2 20219 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝑈 ∈ Ring ∧ [ 1 ](𝑅 ~QG 𝑆) = (1r‘𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Er wer 8645 [cec 8646 Basecbs 17155 +gcplusg 17196 .rcmulr 17197 /s cqus 17444 SubGrpcsubg 19028 NrmSGrpcnsg 19029 ~QG cqg 19030 Abelcabl 19687 1rcur 20066 Ringcrg 20118 opprcoppr 20221 LIdealclidl 21092 2Idealc2idl 21135 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-ec 8650 df-qs 8654 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-0g 17380 df-imas 17447 df-qus 17448 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-nsg 19032 df-eqg 19033 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-subrg 20455 df-lmod 20744 df-lss 20814 df-sra 21056 df-rgmod 21057 df-lidl 21094 df-2idl 21136 |
| This theorem is referenced by: qusring 21161 qusrhm 21162 rhmqusnsg 21171 rhmquskerlem 33369 qsnzr 33399 qsdrngilem 33438 qsdrnglem2 33440 |
| Copyright terms: Public domain | W3C validator |