MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2halves Structured version   Visualization version   GIF version

Theorem 2halves 12212
Description: Two halves make a whole. (Contributed by NM, 11-Apr-2005.)
Assertion
Ref Expression
2halves (𝐴 ∈ ℂ → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴)

Proof of Theorem 2halves
StepHypRef Expression
1 2times 12120 . . 3 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
21oveq1d 7287 . 2 (𝐴 ∈ ℂ → ((2 · 𝐴) / 2) = ((𝐴 + 𝐴) / 2))
3 2cn 12059 . . 3 2 ∈ ℂ
4 2ne0 12088 . . 3 2 ≠ 0
5 divcan3 11670 . . 3 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝐴) / 2) = 𝐴)
63, 4, 5mp3an23 1452 . 2 (𝐴 ∈ ℂ → ((2 · 𝐴) / 2) = 𝐴)
7 2cnne0 12194 . . . 4 (2 ∈ ℂ ∧ 2 ≠ 0)
8 divdir 11669 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝐴 + 𝐴) / 2) = ((𝐴 / 2) + (𝐴 / 2)))
97, 8mp3an3 1449 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐴) / 2) = ((𝐴 / 2) + (𝐴 / 2)))
109anidms 567 . 2 (𝐴 ∈ ℂ → ((𝐴 + 𝐴) / 2) = ((𝐴 / 2) + (𝐴 / 2)))
112, 6, 103eqtr3rd 2789 1 (𝐴 ∈ ℂ → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wne 2945  (class class class)co 7272  cc 10880  0cc0 10882   + caddc 10885   · cmul 10887   / cdiv 11643  2c2 12039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-po 5504  df-so 5505  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-er 8490  df-en 8726  df-dom 8727  df-sdom 8728  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-div 11644  df-2 12047
This theorem is referenced by:  halfpos  12214  lt2halves  12219  2halvesd  12230  pcoass  24198  pidiv2halves  25635  sincos4thpi  25681  efeq1  25695  cxpsqrt  25869  dvsqrt  25906  dvcnsqrt  25908  subfacval3  33160  dnibndlem5  34671  dnibndlem10  34676  infleinflem1  42891  smflimlem4  44288
  Copyright terms: Public domain W3C validator