![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sinmul | Structured version Visualization version GIF version |
Description: Product of sines can be rewritten as half the difference of certain cosines. This follows from cosadd 16149 and cossub 16153. (Contributed by David A. Wheeler, 26-May-2015.) |
Ref | Expression |
---|---|
sinmul | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) = (((cos‘(𝐴 − 𝐵)) − (cos‘(𝐴 + 𝐵))) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossub 16153 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 − 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵)))) | |
2 | cosadd 16149 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))) | |
3 | 1, 2 | oveq12d 7444 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘(𝐴 − 𝐵)) − (cos‘(𝐴 + 𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵))) − (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))) |
4 | coscl 16111 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
5 | coscl 16111 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (cos‘𝐵) ∈ ℂ) | |
6 | mulcl 11230 | . . . . . 6 ⊢ (((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐵) ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ) | |
7 | 4, 5, 6 | syl2an 594 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ) |
8 | sincl 16110 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
9 | sincl 16110 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (sin‘𝐵) ∈ ℂ) | |
10 | mulcl 11230 | . . . . . 6 ⊢ (((sin‘𝐴) ∈ ℂ ∧ (sin‘𝐵) ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ) | |
11 | 8, 9, 10 | syl2an 594 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ) |
12 | pnncan 11539 | . . . . . . 7 ⊢ ((((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ ∧ ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ ∧ ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ) → ((((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵))) − (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))) = (((sin‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵)))) | |
13 | 12 | 3anidm23 1418 | . . . . . 6 ⊢ ((((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ ∧ ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ) → ((((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵))) − (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))) = (((sin‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵)))) |
14 | 2times 12386 | . . . . . . 7 ⊢ (((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ → (2 · ((sin‘𝐴) · (sin‘𝐵))) = (((sin‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵)))) | |
15 | 14 | adantl 480 | . . . . . 6 ⊢ ((((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ ∧ ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ) → (2 · ((sin‘𝐴) · (sin‘𝐵))) = (((sin‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵)))) |
16 | 13, 15 | eqtr4d 2771 | . . . . 5 ⊢ ((((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ ∧ ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ) → ((((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵))) − (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))) = (2 · ((sin‘𝐴) · (sin‘𝐵)))) |
17 | 7, 11, 16 | syl2anc 582 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵))) − (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))) = (2 · ((sin‘𝐴) · (sin‘𝐵)))) |
18 | 2cn 12325 | . . . . 5 ⊢ 2 ∈ ℂ | |
19 | mulcom 11232 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ) → (2 · ((sin‘𝐴) · (sin‘𝐵))) = (((sin‘𝐴) · (sin‘𝐵)) · 2)) | |
20 | 18, 11, 19 | sylancr 585 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((sin‘𝐴) · (sin‘𝐵))) = (((sin‘𝐴) · (sin‘𝐵)) · 2)) |
21 | 3, 17, 20 | 3eqtrd 2772 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘(𝐴 − 𝐵)) − (cos‘(𝐴 + 𝐵))) = (((sin‘𝐴) · (sin‘𝐵)) · 2)) |
22 | 21 | oveq1d 7441 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘(𝐴 − 𝐵)) − (cos‘(𝐴 + 𝐵))) / 2) = ((((sin‘𝐴) · (sin‘𝐵)) · 2) / 2)) |
23 | 2ne0 12354 | . . . 4 ⊢ 2 ≠ 0 | |
24 | divcan4 11937 | . . . 4 ⊢ ((((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((((sin‘𝐴) · (sin‘𝐵)) · 2) / 2) = ((sin‘𝐴) · (sin‘𝐵))) | |
25 | 18, 23, 24 | mp3an23 1449 | . . 3 ⊢ (((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ → ((((sin‘𝐴) · (sin‘𝐵)) · 2) / 2) = ((sin‘𝐴) · (sin‘𝐵))) |
26 | 11, 25 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((sin‘𝐴) · (sin‘𝐵)) · 2) / 2) = ((sin‘𝐴) · (sin‘𝐵))) |
27 | 22, 26 | eqtr2d 2769 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) = (((cos‘(𝐴 − 𝐵)) − (cos‘(𝐴 + 𝐵))) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 ‘cfv 6553 (class class class)co 7426 ℂcc 11144 0cc0 11146 + caddc 11149 · cmul 11151 − cmin 11482 / cdiv 11909 2c2 12305 sincsin 16047 cosccos 16048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9672 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-pm 8854 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-sup 9473 df-inf 9474 df-oi 9541 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-z 12597 df-uz 12861 df-rp 13015 df-ico 13370 df-fz 13525 df-fzo 13668 df-fl 13797 df-seq 14007 df-exp 14067 df-fac 14273 df-bc 14302 df-hash 14330 df-shft 15054 df-cj 15086 df-re 15087 df-im 15088 df-sqrt 15222 df-abs 15223 df-limsup 15455 df-clim 15472 df-rlim 15473 df-sum 15673 df-ef 16051 df-sin 16053 df-cos 16054 |
This theorem is referenced by: ptolemy 26451 |
Copyright terms: Public domain | W3C validator |