![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sinmul | Structured version Visualization version GIF version |
Description: Product of sines can be rewritten as half the difference of certain cosines. This follows from cosadd 16052 and cossub 16056. (Contributed by David A. Wheeler, 26-May-2015.) |
Ref | Expression |
---|---|
sinmul | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) = (((cos‘(𝐴 − 𝐵)) − (cos‘(𝐴 + 𝐵))) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossub 16056 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 − 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵)))) | |
2 | cosadd 16052 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))) | |
3 | 1, 2 | oveq12d 7376 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘(𝐴 − 𝐵)) − (cos‘(𝐴 + 𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵))) − (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))) |
4 | coscl 16014 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
5 | coscl 16014 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (cos‘𝐵) ∈ ℂ) | |
6 | mulcl 11140 | . . . . . 6 ⊢ (((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐵) ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ) | |
7 | 4, 5, 6 | syl2an 597 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ) |
8 | sincl 16013 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
9 | sincl 16013 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (sin‘𝐵) ∈ ℂ) | |
10 | mulcl 11140 | . . . . . 6 ⊢ (((sin‘𝐴) ∈ ℂ ∧ (sin‘𝐵) ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ) | |
11 | 8, 9, 10 | syl2an 597 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ) |
12 | pnncan 11447 | . . . . . . 7 ⊢ ((((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ ∧ ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ ∧ ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ) → ((((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵))) − (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))) = (((sin‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵)))) | |
13 | 12 | 3anidm23 1422 | . . . . . 6 ⊢ ((((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ ∧ ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ) → ((((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵))) − (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))) = (((sin‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵)))) |
14 | 2times 12294 | . . . . . . 7 ⊢ (((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ → (2 · ((sin‘𝐴) · (sin‘𝐵))) = (((sin‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵)))) | |
15 | 14 | adantl 483 | . . . . . 6 ⊢ ((((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ ∧ ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ) → (2 · ((sin‘𝐴) · (sin‘𝐵))) = (((sin‘𝐴) · (sin‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵)))) |
16 | 13, 15 | eqtr4d 2776 | . . . . 5 ⊢ ((((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ ∧ ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ) → ((((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵))) − (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))) = (2 · ((sin‘𝐴) · (sin‘𝐵)))) |
17 | 7, 11, 16 | syl2anc 585 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵))) − (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))) = (2 · ((sin‘𝐴) · (sin‘𝐵)))) |
18 | 2cn 12233 | . . . . 5 ⊢ 2 ∈ ℂ | |
19 | mulcom 11142 | . . . . 5 ⊢ ((2 ∈ ℂ ∧ ((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ) → (2 · ((sin‘𝐴) · (sin‘𝐵))) = (((sin‘𝐴) · (sin‘𝐵)) · 2)) | |
20 | 18, 11, 19 | sylancr 588 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((sin‘𝐴) · (sin‘𝐵))) = (((sin‘𝐴) · (sin‘𝐵)) · 2)) |
21 | 3, 17, 20 | 3eqtrd 2777 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘(𝐴 − 𝐵)) − (cos‘(𝐴 + 𝐵))) = (((sin‘𝐴) · (sin‘𝐵)) · 2)) |
22 | 21 | oveq1d 7373 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((cos‘(𝐴 − 𝐵)) − (cos‘(𝐴 + 𝐵))) / 2) = ((((sin‘𝐴) · (sin‘𝐵)) · 2) / 2)) |
23 | 2ne0 12262 | . . . 4 ⊢ 2 ≠ 0 | |
24 | divcan4 11845 | . . . 4 ⊢ ((((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((((sin‘𝐴) · (sin‘𝐵)) · 2) / 2) = ((sin‘𝐴) · (sin‘𝐵))) | |
25 | 18, 23, 24 | mp3an23 1454 | . . 3 ⊢ (((sin‘𝐴) · (sin‘𝐵)) ∈ ℂ → ((((sin‘𝐴) · (sin‘𝐵)) · 2) / 2) = ((sin‘𝐴) · (sin‘𝐵))) |
26 | 11, 25 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((sin‘𝐴) · (sin‘𝐵)) · 2) / 2) = ((sin‘𝐴) · (sin‘𝐵))) |
27 | 22, 26 | eqtr2d 2774 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) = (((cos‘(𝐴 − 𝐵)) − (cos‘(𝐴 + 𝐵))) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2940 ‘cfv 6497 (class class class)co 7358 ℂcc 11054 0cc0 11056 + caddc 11059 · cmul 11061 − cmin 11390 / cdiv 11817 2c2 12213 sincsin 15951 cosccos 15952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-inf2 9582 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 ax-pre-sup 11134 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-se 5590 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-isom 6506 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8651 df-pm 8771 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-sup 9383 df-inf 9384 df-oi 9451 df-card 9880 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-div 11818 df-nn 12159 df-2 12221 df-3 12222 df-n0 12419 df-z 12505 df-uz 12769 df-rp 12921 df-ico 13276 df-fz 13431 df-fzo 13574 df-fl 13703 df-seq 13913 df-exp 13974 df-fac 14180 df-bc 14209 df-hash 14237 df-shft 14958 df-cj 14990 df-re 14991 df-im 14992 df-sqrt 15126 df-abs 15127 df-limsup 15359 df-clim 15376 df-rlim 15377 df-sum 15577 df-ef 15955 df-sin 15957 df-cos 15958 |
This theorem is referenced by: ptolemy 25869 |
Copyright terms: Public domain | W3C validator |