Proof of Theorem pythagtriplem16
Step | Hyp | Ref
| Expression |
1 | | pythagtriplem15.1 |
. . . . 5
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) |
2 | | pythagtriplem15.2 |
. . . . 5
⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) |
3 | 1, 2 | oveq12i 7267 |
. . . 4
⊢ (𝑀 · 𝑁) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2)) |
4 | | nncn 11911 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℂ) |
5 | | nncn 11911 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℂ) |
6 | | addcl 10884 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 + 𝐵) ∈ ℂ) |
7 | 4, 5, 6 | syl2anr 596 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℂ) |
8 | 7 | sqrtcld 15077 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
(√‘(𝐶 + 𝐵)) ∈
ℂ) |
9 | | subcl 11150 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 − 𝐵) ∈ ℂ) |
10 | 4, 5, 9 | syl2anr 596 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℂ) |
11 | 10 | sqrtcld 15077 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
(√‘(𝐶 −
𝐵)) ∈
ℂ) |
12 | | addcl 10884 |
. . . . . . . . . 10
⊢
(((√‘(𝐶
+ 𝐵)) ∈ ℂ ∧
(√‘(𝐶 −
𝐵)) ∈ ℂ) →
((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) ∈ ℂ) |
13 | 8, 11, 12 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) ∈ ℂ) |
14 | 13 | 3adant1 1128 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) ∈ ℂ) |
15 | 14 | 3ad2ant1 1131 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) ∈ ℂ) |
16 | | subcl 11150 |
. . . . . . . . . 10
⊢
(((√‘(𝐶
+ 𝐵)) ∈ ℂ ∧
(√‘(𝐶 −
𝐵)) ∈ ℂ) →
((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ∈ ℂ) |
17 | 8, 11, 16 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ∈ ℂ) |
18 | 17 | 3adant1 1128 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ∈ ℂ) |
19 | 18 | 3ad2ant1 1131 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ∈ ℂ) |
20 | | 2cnne0 12113 |
. . . . . . . 8
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) |
21 | | divmuldiv 11605 |
. . . . . . . 8
⊢
(((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) ∈ ℂ ∧
((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ∈ ℂ) ∧ ((2 ∈ ℂ
∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0))) →
((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2)) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / (2 · 2))) |
22 | 20, 20, 21 | mpanr12 701 |
. . . . . . 7
⊢
((((√‘(𝐶
+ 𝐵)) +
(√‘(𝐶 −
𝐵))) ∈ ℂ ∧
((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ∈ ℂ) →
((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2)) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / (2 · 2))) |
23 | 15, 19, 22 | syl2anc 583 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2)) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / (2 · 2))) |
24 | 13, 17 | mulcld 10926 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
(((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) ∈ ℂ) |
25 | 24 | 3adant1 1128 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
(((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) ∈ ℂ) |
26 | 25 | 3ad2ant1 1131 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) ∈ ℂ) |
27 | | divdiv1 11616 |
. . . . . . . 8
⊢
(((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) ∈ ℂ ∧ (2 ∈ ℂ
∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) →
(((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / 2) / 2) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / (2 · 2))) |
28 | 20, 20, 27 | mp3an23 1451 |
. . . . . . 7
⊢
((((√‘(𝐶
+ 𝐵)) +
(√‘(𝐶 −
𝐵))) ·
((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) ∈ ℂ →
(((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / 2) / 2) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / (2 · 2))) |
29 | 26, 28 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / 2) / 2) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / (2 · 2))) |
30 | 23, 29 | eqtr4d 2781 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2)) = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / 2) / 2)) |
31 | | nnre 11910 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℝ) |
32 | | nnre 11910 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℝ) |
33 | | readdcl 10885 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ) |
34 | 31, 32, 33 | syl2anr 596 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ) |
35 | 34 | 3adant1 1128 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ) |
36 | 35 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℝ) |
37 | 31 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈
ℝ) |
38 | 32 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈
ℝ) |
39 | | nngt0 11934 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 ∈ ℕ → 0 <
𝐶) |
40 | 39 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
𝐶) |
41 | | nngt0 11934 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ ℕ → 0 <
𝐵) |
42 | 41 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
𝐵) |
43 | 37, 38, 40, 42 | addgt0d 11480 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
(𝐶 + 𝐵)) |
44 | | 0re 10908 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ |
45 | | ltle 10994 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ ∧ (𝐶 +
𝐵) ∈ ℝ) →
(0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵))) |
46 | 44, 45 | mpan 686 |
. . . . . . . . . . . . 13
⊢ ((𝐶 + 𝐵) ∈ ℝ → (0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵))) |
47 | 34, 43, 46 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤
(𝐶 + 𝐵)) |
48 | 47 | 3adant1 1128 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤
(𝐶 + 𝐵)) |
49 | 48 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶 + 𝐵)) |
50 | | resqrtth 14895 |
. . . . . . . . . 10
⊢ (((𝐶 + 𝐵) ∈ ℝ ∧ 0 ≤ (𝐶 + 𝐵)) → ((√‘(𝐶 + 𝐵))↑2) = (𝐶 + 𝐵)) |
51 | 36, 49, 50 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵))↑2) = (𝐶 + 𝐵)) |
52 | | resubcl 11215 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) |
53 | 31, 32, 52 | syl2anr 596 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℝ) |
54 | 53 | 3adant1 1128 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℝ) |
55 | 54 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐵) ∈ ℝ) |
56 | | pythagtriplem10 16449 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 0 < (𝐶 − 𝐵)) |
57 | 56 | 3adant3 1130 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < (𝐶 − 𝐵)) |
58 | | ltle 10994 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ (𝐶
− 𝐵) ∈ ℝ)
→ (0 < (𝐶 −
𝐵) → 0 ≤ (𝐶 − 𝐵))) |
59 | 44, 58 | mpan 686 |
. . . . . . . . . . 11
⊢ ((𝐶 − 𝐵) ∈ ℝ → (0 < (𝐶 − 𝐵) → 0 ≤ (𝐶 − 𝐵))) |
60 | 55, 57, 59 | sylc 65 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶 − 𝐵)) |
61 | | resqrtth 14895 |
. . . . . . . . . 10
⊢ (((𝐶 − 𝐵) ∈ ℝ ∧ 0 ≤ (𝐶 − 𝐵)) → ((√‘(𝐶 − 𝐵))↑2) = (𝐶 − 𝐵)) |
62 | 55, 60, 61 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 − 𝐵))↑2) = (𝐶 − 𝐵)) |
63 | 51, 62 | oveq12d 7273 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵))↑2) −
((√‘(𝐶 −
𝐵))↑2)) = ((𝐶 + 𝐵) − (𝐶 − 𝐵))) |
64 | 63 | oveq1d 7270 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵))↑2) −
((√‘(𝐶 −
𝐵))↑2)) / 2) =
(((𝐶 + 𝐵) − (𝐶 − 𝐵)) / 2)) |
65 | | simp12 1202 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℕ) |
66 | | simp13 1203 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℕ) |
67 | 65, 66, 8 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℂ) |
68 | 65, 66, 11 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) ∈ ℂ) |
69 | | subsq 13854 |
. . . . . . . . 9
⊢
(((√‘(𝐶
+ 𝐵)) ∈ ℂ ∧
(√‘(𝐶 −
𝐵)) ∈ ℂ) →
(((√‘(𝐶 + 𝐵))↑2) −
((√‘(𝐶 −
𝐵))↑2)) =
(((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))))) |
70 | 67, 68, 69 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵))↑2) −
((√‘(𝐶 −
𝐵))↑2)) =
(((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))))) |
71 | 70 | oveq1d 7270 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵))↑2) −
((√‘(𝐶 −
𝐵))↑2)) / 2) =
((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / 2)) |
72 | | pnncan 11192 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) − (𝐶 − 𝐵)) = (𝐵 + 𝐵)) |
73 | 72 | 3anidm23 1419 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) − (𝐶 − 𝐵)) = (𝐵 + 𝐵)) |
74 | | 2times 12039 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ ℂ → (2
· 𝐵) = (𝐵 + 𝐵)) |
75 | 74 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2
· 𝐵) = (𝐵 + 𝐵)) |
76 | 73, 75 | eqtr4d 2781 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) − (𝐶 − 𝐵)) = (2 · 𝐵)) |
77 | 4, 5, 76 | syl2anr 596 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 + 𝐵) − (𝐶 − 𝐵)) = (2 · 𝐵)) |
78 | 77 | 3adant1 1128 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 + 𝐵) − (𝐶 − 𝐵)) = (2 · 𝐵)) |
79 | 78 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐵) − (𝐶 − 𝐵)) = (2 · 𝐵)) |
80 | 79 | oveq1d 7270 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐵) − (𝐶 − 𝐵)) / 2) = ((2 · 𝐵) / 2)) |
81 | | 2cn 11978 |
. . . . . . . . . 10
⊢ 2 ∈
ℂ |
82 | | 2ne0 12007 |
. . . . . . . . . 10
⊢ 2 ≠
0 |
83 | | divcan3 11589 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 ≠ 0) → ((2 · 𝐵) / 2) = 𝐵) |
84 | 81, 82, 83 | mp3an23 1451 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℂ → ((2
· 𝐵) / 2) = 𝐵) |
85 | 65, 5, 84 | 3syl 18 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 · 𝐵) / 2) = 𝐵) |
86 | 80, 85 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐵) − (𝐶 − 𝐵)) / 2) = 𝐵) |
87 | 64, 71, 86 | 3eqtr3d 2786 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / 2) = 𝐵) |
88 | 87 | oveq1d 7270 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / 2) / 2) = (𝐵 / 2)) |
89 | 30, 88 | eqtrd 2778 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2)) = (𝐵 / 2)) |
90 | 3, 89 | eqtrid 2790 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑀 · 𝑁) = (𝐵 / 2)) |
91 | 90 | oveq2d 7271 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝑀 · 𝑁)) = (2 · (𝐵 / 2))) |
92 | | divcan2 11571 |
. . . . . 6
⊢ ((𝐵 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 ≠ 0) → (2 · (𝐵 / 2)) = 𝐵) |
93 | 81, 82, 92 | mp3an23 1451 |
. . . . 5
⊢ (𝐵 ∈ ℂ → (2
· (𝐵 / 2)) = 𝐵) |
94 | 5, 93 | syl 17 |
. . . 4
⊢ (𝐵 ∈ ℕ → (2
· (𝐵 / 2)) = 𝐵) |
95 | 94 | 3ad2ant2 1132 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (2
· (𝐵 / 2)) = 𝐵) |
96 | 95 | 3ad2ant1 1131 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐵 / 2)) = 𝐵) |
97 | 91, 96 | eqtr2d 2779 |
1
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 = (2 · (𝑀 · 𝑁))) |