Proof of Theorem pythagtriplem16
| Step | Hyp | Ref
| Expression |
| 1 | | pythagtriplem15.1 |
. . . . 5
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) |
| 2 | | pythagtriplem15.2 |
. . . . 5
⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) |
| 3 | 1, 2 | oveq12i 7422 |
. . . 4
⊢ (𝑀 · 𝑁) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2)) |
| 4 | | nncn 12253 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℂ) |
| 5 | | nncn 12253 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℂ) |
| 6 | | addcl 11216 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 + 𝐵) ∈ ℂ) |
| 7 | 4, 5, 6 | syl2anr 597 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℂ) |
| 8 | 7 | sqrtcld 15461 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
(√‘(𝐶 + 𝐵)) ∈
ℂ) |
| 9 | | subcl 11486 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 − 𝐵) ∈ ℂ) |
| 10 | 4, 5, 9 | syl2anr 597 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℂ) |
| 11 | 10 | sqrtcld 15461 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
(√‘(𝐶 −
𝐵)) ∈
ℂ) |
| 12 | | addcl 11216 |
. . . . . . . . . 10
⊢
(((√‘(𝐶
+ 𝐵)) ∈ ℂ ∧
(√‘(𝐶 −
𝐵)) ∈ ℂ) →
((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) ∈ ℂ) |
| 13 | 8, 11, 12 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) ∈ ℂ) |
| 14 | 13 | 3adant1 1130 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) ∈ ℂ) |
| 15 | 14 | 3ad2ant1 1133 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) ∈ ℂ) |
| 16 | | subcl 11486 |
. . . . . . . . . 10
⊢
(((√‘(𝐶
+ 𝐵)) ∈ ℂ ∧
(√‘(𝐶 −
𝐵)) ∈ ℂ) →
((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ∈ ℂ) |
| 17 | 8, 11, 16 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ∈ ℂ) |
| 18 | 17 | 3adant1 1130 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ∈ ℂ) |
| 19 | 18 | 3ad2ant1 1133 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ∈ ℂ) |
| 20 | | 2cnne0 12455 |
. . . . . . . 8
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) |
| 21 | | divmuldiv 11946 |
. . . . . . . 8
⊢
(((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) ∈ ℂ ∧
((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ∈ ℂ) ∧ ((2 ∈ ℂ
∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0))) →
((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2)) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / (2 · 2))) |
| 22 | 20, 20, 21 | mpanr12 705 |
. . . . . . 7
⊢
((((√‘(𝐶
+ 𝐵)) +
(√‘(𝐶 −
𝐵))) ∈ ℂ ∧
((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ∈ ℂ) →
((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2)) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / (2 · 2))) |
| 23 | 15, 19, 22 | syl2anc 584 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2)) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / (2 · 2))) |
| 24 | 13, 17 | mulcld 11260 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
(((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) ∈ ℂ) |
| 25 | 24 | 3adant1 1130 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
(((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) ∈ ℂ) |
| 26 | 25 | 3ad2ant1 1133 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) ∈ ℂ) |
| 27 | | divdiv1 11957 |
. . . . . . . 8
⊢
(((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) ∈ ℂ ∧ (2 ∈ ℂ
∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) →
(((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / 2) / 2) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / (2 · 2))) |
| 28 | 20, 20, 27 | mp3an23 1455 |
. . . . . . 7
⊢
((((√‘(𝐶
+ 𝐵)) +
(√‘(𝐶 −
𝐵))) ·
((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) ∈ ℂ →
(((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / 2) / 2) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / (2 · 2))) |
| 29 | 26, 28 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / 2) / 2) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / (2 · 2))) |
| 30 | 23, 29 | eqtr4d 2774 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2)) = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / 2) / 2)) |
| 31 | | nnre 12252 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℝ) |
| 32 | | nnre 12252 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℝ) |
| 33 | | readdcl 11217 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ) |
| 34 | 31, 32, 33 | syl2anr 597 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ) |
| 35 | 34 | 3adant1 1130 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ) |
| 36 | 35 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℝ) |
| 37 | 31 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈
ℝ) |
| 38 | 32 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈
ℝ) |
| 39 | | nngt0 12276 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 ∈ ℕ → 0 <
𝐶) |
| 40 | 39 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
𝐶) |
| 41 | | nngt0 12276 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ ℕ → 0 <
𝐵) |
| 42 | 41 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
𝐵) |
| 43 | 37, 38, 40, 42 | addgt0d 11817 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
(𝐶 + 𝐵)) |
| 44 | | 0re 11242 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ |
| 45 | | ltle 11328 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ ∧ (𝐶 +
𝐵) ∈ ℝ) →
(0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵))) |
| 46 | 44, 45 | mpan 690 |
. . . . . . . . . . . . 13
⊢ ((𝐶 + 𝐵) ∈ ℝ → (0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵))) |
| 47 | 34, 43, 46 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤
(𝐶 + 𝐵)) |
| 48 | 47 | 3adant1 1130 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤
(𝐶 + 𝐵)) |
| 49 | 48 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶 + 𝐵)) |
| 50 | | resqrtth 15279 |
. . . . . . . . . 10
⊢ (((𝐶 + 𝐵) ∈ ℝ ∧ 0 ≤ (𝐶 + 𝐵)) → ((√‘(𝐶 + 𝐵))↑2) = (𝐶 + 𝐵)) |
| 51 | 36, 49, 50 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵))↑2) = (𝐶 + 𝐵)) |
| 52 | | resubcl 11552 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) |
| 53 | 31, 32, 52 | syl2anr 597 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℝ) |
| 54 | 53 | 3adant1 1130 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℝ) |
| 55 | 54 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐵) ∈ ℝ) |
| 56 | | pythagtriplem10 16845 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 0 < (𝐶 − 𝐵)) |
| 57 | 56 | 3adant3 1132 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < (𝐶 − 𝐵)) |
| 58 | | ltle 11328 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ (𝐶
− 𝐵) ∈ ℝ)
→ (0 < (𝐶 −
𝐵) → 0 ≤ (𝐶 − 𝐵))) |
| 59 | 44, 58 | mpan 690 |
. . . . . . . . . . 11
⊢ ((𝐶 − 𝐵) ∈ ℝ → (0 < (𝐶 − 𝐵) → 0 ≤ (𝐶 − 𝐵))) |
| 60 | 55, 57, 59 | sylc 65 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶 − 𝐵)) |
| 61 | | resqrtth 15279 |
. . . . . . . . . 10
⊢ (((𝐶 − 𝐵) ∈ ℝ ∧ 0 ≤ (𝐶 − 𝐵)) → ((√‘(𝐶 − 𝐵))↑2) = (𝐶 − 𝐵)) |
| 62 | 55, 60, 61 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 − 𝐵))↑2) = (𝐶 − 𝐵)) |
| 63 | 51, 62 | oveq12d 7428 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵))↑2) −
((√‘(𝐶 −
𝐵))↑2)) = ((𝐶 + 𝐵) − (𝐶 − 𝐵))) |
| 64 | 63 | oveq1d 7425 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵))↑2) −
((√‘(𝐶 −
𝐵))↑2)) / 2) =
(((𝐶 + 𝐵) − (𝐶 − 𝐵)) / 2)) |
| 65 | | simp12 1205 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℕ) |
| 66 | | simp13 1206 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℕ) |
| 67 | 65, 66, 8 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℂ) |
| 68 | 65, 66, 11 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) ∈ ℂ) |
| 69 | | subsq 14233 |
. . . . . . . . 9
⊢
(((√‘(𝐶
+ 𝐵)) ∈ ℂ ∧
(√‘(𝐶 −
𝐵)) ∈ ℂ) →
(((√‘(𝐶 + 𝐵))↑2) −
((√‘(𝐶 −
𝐵))↑2)) =
(((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))))) |
| 70 | 67, 68, 69 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵))↑2) −
((√‘(𝐶 −
𝐵))↑2)) =
(((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))))) |
| 71 | 70 | oveq1d 7425 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵))↑2) −
((√‘(𝐶 −
𝐵))↑2)) / 2) =
((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / 2)) |
| 72 | | pnncan 11529 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) − (𝐶 − 𝐵)) = (𝐵 + 𝐵)) |
| 73 | 72 | 3anidm23 1423 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) − (𝐶 − 𝐵)) = (𝐵 + 𝐵)) |
| 74 | | 2times 12381 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ ℂ → (2
· 𝐵) = (𝐵 + 𝐵)) |
| 75 | 74 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2
· 𝐵) = (𝐵 + 𝐵)) |
| 76 | 73, 75 | eqtr4d 2774 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) − (𝐶 − 𝐵)) = (2 · 𝐵)) |
| 77 | 4, 5, 76 | syl2anr 597 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 + 𝐵) − (𝐶 − 𝐵)) = (2 · 𝐵)) |
| 78 | 77 | 3adant1 1130 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 + 𝐵) − (𝐶 − 𝐵)) = (2 · 𝐵)) |
| 79 | 78 | 3ad2ant1 1133 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐵) − (𝐶 − 𝐵)) = (2 · 𝐵)) |
| 80 | 79 | oveq1d 7425 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐵) − (𝐶 − 𝐵)) / 2) = ((2 · 𝐵) / 2)) |
| 81 | | 2cn 12320 |
. . . . . . . . . 10
⊢ 2 ∈
ℂ |
| 82 | | 2ne0 12349 |
. . . . . . . . . 10
⊢ 2 ≠
0 |
| 83 | | divcan3 11927 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 ≠ 0) → ((2 · 𝐵) / 2) = 𝐵) |
| 84 | 81, 82, 83 | mp3an23 1455 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℂ → ((2
· 𝐵) / 2) = 𝐵) |
| 85 | 65, 5, 84 | 3syl 18 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 · 𝐵) / 2) = 𝐵) |
| 86 | 80, 85 | eqtrd 2771 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐵) − (𝐶 − 𝐵)) / 2) = 𝐵) |
| 87 | 64, 71, 86 | 3eqtr3d 2779 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / 2) = 𝐵) |
| 88 | 87 | oveq1d 7425 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))) / 2) / 2) = (𝐵 / 2)) |
| 89 | 30, 88 | eqtrd 2771 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) + (√‘(𝐶 − 𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2)) = (𝐵 / 2)) |
| 90 | 3, 89 | eqtrid 2783 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑀 · 𝑁) = (𝐵 / 2)) |
| 91 | 90 | oveq2d 7426 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝑀 · 𝑁)) = (2 · (𝐵 / 2))) |
| 92 | | divcan2 11909 |
. . . . . 6
⊢ ((𝐵 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 ≠ 0) → (2 · (𝐵 / 2)) = 𝐵) |
| 93 | 81, 82, 92 | mp3an23 1455 |
. . . . 5
⊢ (𝐵 ∈ ℂ → (2
· (𝐵 / 2)) = 𝐵) |
| 94 | 5, 93 | syl 17 |
. . . 4
⊢ (𝐵 ∈ ℕ → (2
· (𝐵 / 2)) = 𝐵) |
| 95 | 94 | 3ad2ant2 1134 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (2
· (𝐵 / 2)) = 𝐵) |
| 96 | 95 | 3ad2ant1 1133 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐵 / 2)) = 𝐵) |
| 97 | 91, 96 | eqtr2d 2772 |
1
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 = (2 · (𝑀 · 𝑁))) |