MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem16 Structured version   Visualization version   GIF version

Theorem pythagtriplem16 16144
Description: Lemma for pythagtrip 16148. Show the relationship between 𝑀, 𝑁, and 𝐵. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
pythagtriplem15.1 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)
pythagtriplem15.2 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)
Assertion
Ref Expression
pythagtriplem16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 = (2 · (𝑀 · 𝑁)))

Proof of Theorem pythagtriplem16
StepHypRef Expression
1 pythagtriplem15.1 . . . . 5 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)
2 pythagtriplem15.2 . . . . 5 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)
31, 2oveq12i 7142 . . . 4 (𝑀 · 𝑁) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))
4 nncn 11623 . . . . . . . . . . . 12 (𝐶 ∈ ℕ → 𝐶 ∈ ℂ)
5 nncn 11623 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
6 addcl 10596 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 + 𝐵) ∈ ℂ)
74, 5, 6syl2anr 599 . . . . . . . . . . 11 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℂ)
87sqrtcld 14776 . . . . . . . . . 10 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (√‘(𝐶 + 𝐵)) ∈ ℂ)
9 subcl 10862 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶𝐵) ∈ ℂ)
104, 5, 9syl2anr 599 . . . . . . . . . . 11 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵) ∈ ℂ)
1110sqrtcld 14776 . . . . . . . . . 10 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (√‘(𝐶𝐵)) ∈ ℂ)
12 addcl 10596 . . . . . . . . . 10 (((√‘(𝐶 + 𝐵)) ∈ ℂ ∧ (√‘(𝐶𝐵)) ∈ ℂ) → ((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) ∈ ℂ)
138, 11, 12syl2anc 587 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) ∈ ℂ)
14133adant1 1127 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) ∈ ℂ)
15143ad2ant1 1130 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) ∈ ℂ)
16 subcl 10862 . . . . . . . . . 10 (((√‘(𝐶 + 𝐵)) ∈ ℂ ∧ (√‘(𝐶𝐵)) ∈ ℂ) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ)
178, 11, 16syl2anc 587 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ)
18173adant1 1127 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ)
19183ad2ant1 1130 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ)
20 2cnne0 11825 . . . . . . . 8 (2 ∈ ℂ ∧ 2 ≠ 0)
21 divmuldiv 11317 . . . . . . . 8 (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) ∈ ℂ ∧ ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ) ∧ ((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0))) → ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / (2 · 2)))
2220, 20, 21mpanr12 704 . . . . . . 7 ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) ∈ ℂ ∧ ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℂ) → ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / (2 · 2)))
2315, 19, 22syl2anc 587 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / (2 · 2)))
2413, 17mulcld 10638 . . . . . . . . 9 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) ∈ ℂ)
25243adant1 1127 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) ∈ ℂ)
26253ad2ant1 1130 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) ∈ ℂ)
27 divdiv1 11328 . . . . . . . 8 (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / 2) / 2) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / (2 · 2)))
2820, 20, 27mp3an23 1450 . . . . . . 7 ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) ∈ ℂ → (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / 2) / 2) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / (2 · 2)))
2926, 28syl 17 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / 2) / 2) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / (2 · 2)))
3023, 29eqtr4d 2859 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)) = (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / 2) / 2))
31 nnre 11622 . . . . . . . . . . . . 13 (𝐶 ∈ ℕ → 𝐶 ∈ ℝ)
32 nnre 11622 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
33 readdcl 10597 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ)
3431, 32, 33syl2anr 599 . . . . . . . . . . . 12 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ)
35343adant1 1127 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ)
36353ad2ant1 1130 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℝ)
3731adantl 485 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℝ)
3832adantr 484 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℝ)
39 nngt0 11646 . . . . . . . . . . . . . . 15 (𝐶 ∈ ℕ → 0 < 𝐶)
4039adantl 485 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 < 𝐶)
41 nngt0 11646 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 0 < 𝐵)
4241adantr 484 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 < 𝐵)
4337, 38, 40, 42addgt0d 11192 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 < (𝐶 + 𝐵))
44 0re 10620 . . . . . . . . . . . . . 14 0 ∈ ℝ
45 ltle 10706 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (𝐶 + 𝐵) ∈ ℝ) → (0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵)))
4644, 45mpan 689 . . . . . . . . . . . . 13 ((𝐶 + 𝐵) ∈ ℝ → (0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵)))
4734, 43, 46sylc 65 . . . . . . . . . . . 12 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤ (𝐶 + 𝐵))
48473adant1 1127 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤ (𝐶 + 𝐵))
49483ad2ant1 1130 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶 + 𝐵))
50 resqrtth 14594 . . . . . . . . . 10 (((𝐶 + 𝐵) ∈ ℝ ∧ 0 ≤ (𝐶 + 𝐵)) → ((√‘(𝐶 + 𝐵))↑2) = (𝐶 + 𝐵))
5136, 49, 50syl2anc 587 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵))↑2) = (𝐶 + 𝐵))
52 resubcl 10927 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶𝐵) ∈ ℝ)
5331, 32, 52syl2anr 599 . . . . . . . . . . . 12 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵) ∈ ℝ)
54533adant1 1127 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵) ∈ ℝ)
55543ad2ant1 1130 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶𝐵) ∈ ℝ)
56 pythagtriplem10 16134 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 0 < (𝐶𝐵))
57563adant3 1129 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < (𝐶𝐵))
58 ltle 10706 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ (𝐶𝐵) ∈ ℝ) → (0 < (𝐶𝐵) → 0 ≤ (𝐶𝐵)))
5944, 58mpan 689 . . . . . . . . . . 11 ((𝐶𝐵) ∈ ℝ → (0 < (𝐶𝐵) → 0 ≤ (𝐶𝐵)))
6055, 57, 59sylc 65 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶𝐵))
61 resqrtth 14594 . . . . . . . . . 10 (((𝐶𝐵) ∈ ℝ ∧ 0 ≤ (𝐶𝐵)) → ((√‘(𝐶𝐵))↑2) = (𝐶𝐵))
6255, 60, 61syl2anc 587 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶𝐵))↑2) = (𝐶𝐵))
6351, 62oveq12d 7148 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵))↑2) − ((√‘(𝐶𝐵))↑2)) = ((𝐶 + 𝐵) − (𝐶𝐵)))
6463oveq1d 7145 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵))↑2) − ((√‘(𝐶𝐵))↑2)) / 2) = (((𝐶 + 𝐵) − (𝐶𝐵)) / 2))
65 simp12 1201 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℕ)
66 simp13 1202 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℕ)
6765, 66, 8syl2anc 587 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℂ)
6865, 66, 11syl2anc 587 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶𝐵)) ∈ ℂ)
69 subsq 13556 . . . . . . . . 9 (((√‘(𝐶 + 𝐵)) ∈ ℂ ∧ (√‘(𝐶𝐵)) ∈ ℂ) → (((√‘(𝐶 + 𝐵))↑2) − ((√‘(𝐶𝐵))↑2)) = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))))
7067, 68, 69syl2anc 587 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵))↑2) − ((√‘(𝐶𝐵))↑2)) = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))))
7170oveq1d 7145 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵))↑2) − ((√‘(𝐶𝐵))↑2)) / 2) = ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / 2))
72 pnncan 10904 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) − (𝐶𝐵)) = (𝐵 + 𝐵))
73723anidm23 1418 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) − (𝐶𝐵)) = (𝐵 + 𝐵))
74 2times 11751 . . . . . . . . . . . . . 14 (𝐵 ∈ ℂ → (2 · 𝐵) = (𝐵 + 𝐵))
7574adantl 485 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) = (𝐵 + 𝐵))
7673, 75eqtr4d 2859 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) − (𝐶𝐵)) = (2 · 𝐵))
774, 5, 76syl2anr 599 . . . . . . . . . . 11 ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 + 𝐵) − (𝐶𝐵)) = (2 · 𝐵))
78773adant1 1127 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 + 𝐵) − (𝐶𝐵)) = (2 · 𝐵))
79783ad2ant1 1130 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐵) − (𝐶𝐵)) = (2 · 𝐵))
8079oveq1d 7145 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐵) − (𝐶𝐵)) / 2) = ((2 · 𝐵) / 2))
81 2cn 11690 . . . . . . . . . 10 2 ∈ ℂ
82 2ne0 11719 . . . . . . . . . 10 2 ≠ 0
83 divcan3 11301 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝐵) / 2) = 𝐵)
8481, 82, 83mp3an23 1450 . . . . . . . . 9 (𝐵 ∈ ℂ → ((2 · 𝐵) / 2) = 𝐵)
8565, 5, 843syl 18 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 · 𝐵) / 2) = 𝐵)
8680, 85eqtrd 2856 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐵) − (𝐶𝐵)) / 2) = 𝐵)
8764, 71, 863eqtr3d 2864 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / 2) = 𝐵)
8887oveq1d 7145 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) · ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵)))) / 2) / 2) = (𝐵 / 2))
8930, 88eqtrd 2856 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) · (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)) = (𝐵 / 2))
903, 89syl5eq 2868 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑀 · 𝑁) = (𝐵 / 2))
9190oveq2d 7146 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝑀 · 𝑁)) = (2 · (𝐵 / 2)))
92 divcan2 11283 . . . . . 6 ((𝐵 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝐵 / 2)) = 𝐵)
9381, 82, 92mp3an23 1450 . . . . 5 (𝐵 ∈ ℂ → (2 · (𝐵 / 2)) = 𝐵)
945, 93syl 17 . . . 4 (𝐵 ∈ ℕ → (2 · (𝐵 / 2)) = 𝐵)
95943ad2ant2 1131 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (2 · (𝐵 / 2)) = 𝐵)
96953ad2ant1 1130 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐵 / 2)) = 𝐵)
9791, 96eqtr2d 2857 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 = (2 · (𝑀 · 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3007   class class class wbr 5039  cfv 6328  (class class class)co 7130  cc 10512  cr 10513  0cc0 10514  1c1 10515   + caddc 10517   · cmul 10519   < clt 10652  cle 10653  cmin 10847   / cdiv 11274  cn 11615  2c2 11670  cexp 13413  csqrt 14571  cdvds 15586   gcd cgcd 15820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-sup 8882  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-n0 11876  df-z 11960  df-uz 12222  df-rp 12368  df-seq 13353  df-exp 13414  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574
This theorem is referenced by:  pythagtriplem18  16146
  Copyright terms: Public domain W3C validator