MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expubnd Structured version   Visualization version   GIF version

Theorem expubnd 13544
Description: An upper bound on 𝐴𝑁 when 2 ≤ 𝐴. (Contributed by NM, 19-Dec-2005.)
Assertion
Ref Expression
expubnd ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (𝐴𝑁) ≤ ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))

Proof of Theorem expubnd
StepHypRef Expression
1 simp1 1132 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → 𝐴 ∈ ℝ)
2 2re 11714 . . . . 5 2 ∈ ℝ
3 peano2rem 10956 . . . . 5 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
4 remulcl 10625 . . . . 5 ((2 ∈ ℝ ∧ (𝐴 − 1) ∈ ℝ) → (2 · (𝐴 − 1)) ∈ ℝ)
52, 3, 4sylancr 589 . . . 4 (𝐴 ∈ ℝ → (2 · (𝐴 − 1)) ∈ ℝ)
653ad2ant1 1129 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (2 · (𝐴 − 1)) ∈ ℝ)
7 simp2 1133 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → 𝑁 ∈ ℕ0)
8 0le2 11742 . . . . . . 7 0 ≤ 2
9 0re 10646 . . . . . . . 8 0 ∈ ℝ
10 letr 10737 . . . . . . . 8 ((0 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 ≤ 2 ∧ 2 ≤ 𝐴) → 0 ≤ 𝐴))
119, 2, 10mp3an12 1447 . . . . . . 7 (𝐴 ∈ ℝ → ((0 ≤ 2 ∧ 2 ≤ 𝐴) → 0 ≤ 𝐴))
128, 11mpani 694 . . . . . 6 (𝐴 ∈ ℝ → (2 ≤ 𝐴 → 0 ≤ 𝐴))
1312imp 409 . . . . 5 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → 0 ≤ 𝐴)
14 resubcl 10953 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 2 ∈ ℝ) → (𝐴 − 2) ∈ ℝ)
152, 14mpan2 689 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − 2) ∈ ℝ)
16 leadd2 11112 . . . . . . . . 9 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 − 2) ∈ ℝ) → (2 ≤ 𝐴 ↔ ((𝐴 − 2) + 2) ≤ ((𝐴 − 2) + 𝐴)))
172, 16mp3an1 1444 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐴 − 2) ∈ ℝ) → (2 ≤ 𝐴 ↔ ((𝐴 − 2) + 2) ≤ ((𝐴 − 2) + 𝐴)))
1815, 17mpdan 685 . . . . . . 7 (𝐴 ∈ ℝ → (2 ≤ 𝐴 ↔ ((𝐴 − 2) + 2) ≤ ((𝐴 − 2) + 𝐴)))
1918biimpa 479 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → ((𝐴 − 2) + 2) ≤ ((𝐴 − 2) + 𝐴))
20 recn 10630 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
21 2cn 11715 . . . . . . . 8 2 ∈ ℂ
22 npcan 10898 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝐴 − 2) + 2) = 𝐴)
2320, 21, 22sylancl 588 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 − 2) + 2) = 𝐴)
2423adantr 483 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → ((𝐴 − 2) + 2) = 𝐴)
25 ax-1cn 10598 . . . . . . . . . 10 1 ∈ ℂ
26 subdi 11076 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝐴 − 1)) = ((2 · 𝐴) − (2 · 1)))
2721, 25, 26mp3an13 1448 . . . . . . . . 9 (𝐴 ∈ ℂ → (2 · (𝐴 − 1)) = ((2 · 𝐴) − (2 · 1)))
28 2times 11776 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
29 2t1e2 11803 . . . . . . . . . . 11 (2 · 1) = 2
3029a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · 1) = 2)
3128, 30oveq12d 7177 . . . . . . . . 9 (𝐴 ∈ ℂ → ((2 · 𝐴) − (2 · 1)) = ((𝐴 + 𝐴) − 2))
32 addsub 10900 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝐴 + 𝐴) − 2) = ((𝐴 − 2) + 𝐴))
3321, 32mp3an3 1446 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐴) − 2) = ((𝐴 − 2) + 𝐴))
3433anidms 569 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴 + 𝐴) − 2) = ((𝐴 − 2) + 𝐴))
3527, 31, 343eqtrrd 2864 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝐴 − 2) + 𝐴) = (2 · (𝐴 − 1)))
3620, 35syl 17 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 − 2) + 𝐴) = (2 · (𝐴 − 1)))
3736adantr 483 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → ((𝐴 − 2) + 𝐴) = (2 · (𝐴 − 1)))
3819, 24, 373brtr3d 5100 . . . . 5 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → 𝐴 ≤ (2 · (𝐴 − 1)))
3913, 38jca 514 . . . 4 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (0 ≤ 𝐴𝐴 ≤ (2 · (𝐴 − 1))))
40393adant2 1127 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (0 ≤ 𝐴𝐴 ≤ (2 · (𝐴 − 1))))
41 leexp1a 13542 . . 3 (((𝐴 ∈ ℝ ∧ (2 · (𝐴 − 1)) ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ (2 · (𝐴 − 1)))) → (𝐴𝑁) ≤ ((2 · (𝐴 − 1))↑𝑁))
421, 6, 7, 40, 41syl31anc 1369 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (𝐴𝑁) ≤ ((2 · (𝐴 − 1))↑𝑁))
433recnd 10672 . . . 4 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℂ)
44 mulexp 13471 . . . . 5 ((2 ∈ ℂ ∧ (𝐴 − 1) ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((2 · (𝐴 − 1))↑𝑁) = ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))
4521, 44mp3an1 1444 . . . 4 (((𝐴 − 1) ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((2 · (𝐴 − 1))↑𝑁) = ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))
4643, 45sylan 582 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → ((2 · (𝐴 − 1))↑𝑁) = ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))
47463adant3 1128 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → ((2 · (𝐴 − 1))↑𝑁) = ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))
4842, 47breqtrd 5095 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (𝐴𝑁) ≤ ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113   class class class wbr 5069  (class class class)co 7159  cc 10538  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545  cle 10679  cmin 10873  2c2 11695  0cn0 11900  cexp 13432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-seq 13373  df-exp 13433
This theorem is referenced by:  faclbnd4lem1  13656
  Copyright terms: Public domain W3C validator