MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expubnd Structured version   Visualization version   GIF version

Theorem expubnd 14217
Description: An upper bound on 𝐴𝑁 when 2 ≤ 𝐴. (Contributed by NM, 19-Dec-2005.)
Assertion
Ref Expression
expubnd ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (𝐴𝑁) ≤ ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))

Proof of Theorem expubnd
StepHypRef Expression
1 simp1 1137 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → 𝐴 ∈ ℝ)
2 2re 12340 . . . . 5 2 ∈ ℝ
3 peano2rem 11576 . . . . 5 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
4 remulcl 11240 . . . . 5 ((2 ∈ ℝ ∧ (𝐴 − 1) ∈ ℝ) → (2 · (𝐴 − 1)) ∈ ℝ)
52, 3, 4sylancr 587 . . . 4 (𝐴 ∈ ℝ → (2 · (𝐴 − 1)) ∈ ℝ)
653ad2ant1 1134 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (2 · (𝐴 − 1)) ∈ ℝ)
7 simp2 1138 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → 𝑁 ∈ ℕ0)
8 0le2 12368 . . . . . . 7 0 ≤ 2
9 0re 11263 . . . . . . . 8 0 ∈ ℝ
10 letr 11355 . . . . . . . 8 ((0 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 ≤ 2 ∧ 2 ≤ 𝐴) → 0 ≤ 𝐴))
119, 2, 10mp3an12 1453 . . . . . . 7 (𝐴 ∈ ℝ → ((0 ≤ 2 ∧ 2 ≤ 𝐴) → 0 ≤ 𝐴))
128, 11mpani 696 . . . . . 6 (𝐴 ∈ ℝ → (2 ≤ 𝐴 → 0 ≤ 𝐴))
1312imp 406 . . . . 5 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → 0 ≤ 𝐴)
14 resubcl 11573 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 2 ∈ ℝ) → (𝐴 − 2) ∈ ℝ)
152, 14mpan2 691 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − 2) ∈ ℝ)
16 leadd2 11732 . . . . . . . . 9 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 − 2) ∈ ℝ) → (2 ≤ 𝐴 ↔ ((𝐴 − 2) + 2) ≤ ((𝐴 − 2) + 𝐴)))
172, 16mp3an1 1450 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐴 − 2) ∈ ℝ) → (2 ≤ 𝐴 ↔ ((𝐴 − 2) + 2) ≤ ((𝐴 − 2) + 𝐴)))
1815, 17mpdan 687 . . . . . . 7 (𝐴 ∈ ℝ → (2 ≤ 𝐴 ↔ ((𝐴 − 2) + 2) ≤ ((𝐴 − 2) + 𝐴)))
1918biimpa 476 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → ((𝐴 − 2) + 2) ≤ ((𝐴 − 2) + 𝐴))
20 recn 11245 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
21 2cn 12341 . . . . . . . 8 2 ∈ ℂ
22 npcan 11517 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝐴 − 2) + 2) = 𝐴)
2320, 21, 22sylancl 586 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 − 2) + 2) = 𝐴)
2423adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → ((𝐴 − 2) + 2) = 𝐴)
25 ax-1cn 11213 . . . . . . . . . 10 1 ∈ ℂ
26 subdi 11696 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝐴 − 1)) = ((2 · 𝐴) − (2 · 1)))
2721, 25, 26mp3an13 1454 . . . . . . . . 9 (𝐴 ∈ ℂ → (2 · (𝐴 − 1)) = ((2 · 𝐴) − (2 · 1)))
28 2times 12402 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
29 2t1e2 12429 . . . . . . . . . . 11 (2 · 1) = 2
3029a1i 11 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · 1) = 2)
3128, 30oveq12d 7449 . . . . . . . . 9 (𝐴 ∈ ℂ → ((2 · 𝐴) − (2 · 1)) = ((𝐴 + 𝐴) − 2))
32 addsub 11519 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝐴 + 𝐴) − 2) = ((𝐴 − 2) + 𝐴))
3321, 32mp3an3 1452 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐴) − 2) = ((𝐴 − 2) + 𝐴))
3433anidms 566 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴 + 𝐴) − 2) = ((𝐴 − 2) + 𝐴))
3527, 31, 343eqtrrd 2782 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝐴 − 2) + 𝐴) = (2 · (𝐴 − 1)))
3620, 35syl 17 . . . . . . 7 (𝐴 ∈ ℝ → ((𝐴 − 2) + 𝐴) = (2 · (𝐴 − 1)))
3736adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → ((𝐴 − 2) + 𝐴) = (2 · (𝐴 − 1)))
3819, 24, 373brtr3d 5174 . . . . 5 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → 𝐴 ≤ (2 · (𝐴 − 1)))
3913, 38jca 511 . . . 4 ((𝐴 ∈ ℝ ∧ 2 ≤ 𝐴) → (0 ≤ 𝐴𝐴 ≤ (2 · (𝐴 − 1))))
40393adant2 1132 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (0 ≤ 𝐴𝐴 ≤ (2 · (𝐴 − 1))))
41 leexp1a 14215 . . 3 (((𝐴 ∈ ℝ ∧ (2 · (𝐴 − 1)) ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ (0 ≤ 𝐴𝐴 ≤ (2 · (𝐴 − 1)))) → (𝐴𝑁) ≤ ((2 · (𝐴 − 1))↑𝑁))
421, 6, 7, 40, 41syl31anc 1375 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (𝐴𝑁) ≤ ((2 · (𝐴 − 1))↑𝑁))
433recnd 11289 . . . 4 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℂ)
44 mulexp 14142 . . . . 5 ((2 ∈ ℂ ∧ (𝐴 − 1) ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((2 · (𝐴 − 1))↑𝑁) = ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))
4521, 44mp3an1 1450 . . . 4 (((𝐴 − 1) ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((2 · (𝐴 − 1))↑𝑁) = ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))
4643, 45sylan 580 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → ((2 · (𝐴 − 1))↑𝑁) = ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))
47463adant3 1133 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → ((2 · (𝐴 − 1))↑𝑁) = ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))
4842, 47breqtrd 5169 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝐴) → (𝐴𝑁) ≤ ((2↑𝑁) · ((𝐴 − 1)↑𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cle 11296  cmin 11492  2c2 12321  0cn0 12526  cexp 14102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-exp 14103
This theorem is referenced by:  faclbnd4lem1  14332
  Copyright terms: Public domain W3C validator