Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem2 Structured version   Visualization version   GIF version

Theorem pellexlem2 40652
Description: Lemma for pellex 40657. Arithmetical core of pellexlem3, norm upper bound. (Contributed by Stefan O'Rear, 14-Sep-2014.)
Assertion
Ref Expression
pellexlem2 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) < (1 + (2 · (√‘𝐷))))

Proof of Theorem pellexlem2
StepHypRef Expression
1 simpl3 1192 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐵 ∈ ℕ)
21nnred 11988 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐵 ∈ ℝ)
32resqcld 13965 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑2) ∈ ℝ)
42sqge0d 13966 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 ≤ (𝐵↑2))
53, 4absidd 15134 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(𝐵↑2)) = (𝐵↑2))
65eqcomd 2744 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑2) = (abs‘(𝐵↑2)))
76oveq2d 7291 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (𝐵↑2)) = ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (abs‘(𝐵↑2))))
8 simpl2 1191 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐴 ∈ ℕ)
98nncnd 11989 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐴 ∈ ℂ)
109sqcld 13862 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐴↑2) ∈ ℂ)
11 simpl1 1190 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐷 ∈ ℕ)
1211nncnd 11989 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐷 ∈ ℂ)
131nncnd 11989 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐵 ∈ ℂ)
1413sqcld 13862 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑2) ∈ ℂ)
1512, 14mulcld 10995 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐷 · (𝐵↑2)) ∈ ℂ)
1610, 15subcld 11332 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) ∈ ℂ)
171nnne0d 12023 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐵 ≠ 0)
18 sqne0 13843 . . . . . . . 8 (𝐵 ∈ ℂ → ((𝐵↑2) ≠ 0 ↔ 𝐵 ≠ 0))
1918biimpar 478 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵↑2) ≠ 0)
2013, 17, 19syl2anc 584 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑2) ≠ 0)
2116, 14, 20absdivd 15167 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2))) = ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (abs‘(𝐵↑2))))
227, 21eqtr4d 2781 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (𝐵↑2)) = (abs‘(((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2))))
2322oveq2d 7291 . . 3 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (𝐵↑2))) = ((𝐵↑2) · (abs‘(((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2)))))
2416abscld 15148 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) ∈ ℝ)
2524recnd 11003 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) ∈ ℂ)
2625, 14, 20divcan2d 11753 . . 3 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (𝐵↑2))) = (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))))
2710, 15, 14, 20divsubdird 11790 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2)) = (((𝐴↑2) / (𝐵↑2)) − ((𝐷 · (𝐵↑2)) / (𝐵↑2))))
289, 13, 17sqdivd 13877 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)))
2928eqcomd 2744 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴↑2) / (𝐵↑2)) = ((𝐴 / 𝐵)↑2))
3011nnred 11988 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐷 ∈ ℝ)
3111nnnn0d 12293 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐷 ∈ ℕ0)
3231nn0ge0d 12296 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 ≤ 𝐷)
33 remsqsqrt 14968 . . . . . . . . 9 ((𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) → ((√‘𝐷) · (√‘𝐷)) = 𝐷)
3430, 32, 33syl2anc 584 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((√‘𝐷) · (√‘𝐷)) = 𝐷)
3530, 32resqrtcld 15129 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (√‘𝐷) ∈ ℝ)
3635recnd 11003 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (√‘𝐷) ∈ ℂ)
3736sqvald 13861 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((√‘𝐷)↑2) = ((√‘𝐷) · (√‘𝐷)))
3812, 14, 20divcan4d 11757 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐷 · (𝐵↑2)) / (𝐵↑2)) = 𝐷)
3934, 37, 383eqtr4rd 2789 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐷 · (𝐵↑2)) / (𝐵↑2)) = ((√‘𝐷)↑2))
4029, 39oveq12d 7293 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴↑2) / (𝐵↑2)) − ((𝐷 · (𝐵↑2)) / (𝐵↑2))) = (((𝐴 / 𝐵)↑2) − ((√‘𝐷)↑2)))
419, 13, 17divcld 11751 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐴 / 𝐵) ∈ ℂ)
42 subsq 13926 . . . . . . . 8 (((𝐴 / 𝐵) ∈ ℂ ∧ (√‘𝐷) ∈ ℂ) → (((𝐴 / 𝐵)↑2) − ((√‘𝐷)↑2)) = (((𝐴 / 𝐵) + (√‘𝐷)) · ((𝐴 / 𝐵) − (√‘𝐷))))
4341, 36, 42syl2anc 584 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵)↑2) − ((√‘𝐷)↑2)) = (((𝐴 / 𝐵) + (√‘𝐷)) · ((𝐴 / 𝐵) − (√‘𝐷))))
4441, 36addcld 10994 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) + (√‘𝐷)) ∈ ℂ)
458nnred 11988 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐴 ∈ ℝ)
4645, 1nndivred 12027 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐴 / 𝐵) ∈ ℝ)
4746, 35resubcld 11403 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) − (√‘𝐷)) ∈ ℝ)
4847recnd 11003 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) − (√‘𝐷)) ∈ ℂ)
4944, 48mulcomd 10996 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵) + (√‘𝐷)) · ((𝐴 / 𝐵) − (√‘𝐷))) = (((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))
5043, 49eqtrd 2778 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵)↑2) − ((√‘𝐷)↑2)) = (((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))
5127, 40, 503eqtrd 2782 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2)) = (((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))
5251fveq2d 6778 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2))) = (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷)))))
5352oveq2d 7291 . . 3 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (abs‘(((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2)))) = ((𝐵↑2) · (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))))
5423, 26, 533eqtr3d 2786 . 2 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) = ((𝐵↑2) · (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))))
5548, 44absmuld 15166 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷)))) = ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))
5655oveq2d 7291 . . 3 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))) = ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))))
5748abscld 15148 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) − (√‘𝐷))) ∈ ℝ)
5844abscld 15148 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) + (√‘𝐷))) ∈ ℝ)
5957, 58remulcld 11005 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ∈ ℝ)
603, 59remulcld 11005 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) ∈ ℝ)
61 2nn0 12250 . . . . . . . . 9 2 ∈ ℕ0
6261nn0negzi 12359 . . . . . . . 8 -2 ∈ ℤ
6362a1i 11 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → -2 ∈ ℤ)
642, 17, 63reexpclzd 13964 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑-2) ∈ ℝ)
6564, 58remulcld 11005 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ∈ ℝ)
663, 65remulcld 11005 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) ∈ ℝ)
67 1red 10976 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 1 ∈ ℝ)
68 2re 12047 . . . . . . 7 2 ∈ ℝ
6968a1i 11 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 2 ∈ ℝ)
7069, 35remulcld 11005 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (2 · (√‘𝐷)) ∈ ℝ)
7167, 70readdcld 11004 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (1 + (2 · (√‘𝐷))) ∈ ℝ)
72 simpr 485 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2))
738nngt0d 12022 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < 𝐴)
741nngt0d 12022 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < 𝐵)
7545, 2, 73, 74divgt0d 11910 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < (𝐴 / 𝐵))
7611nngt0d 12022 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < 𝐷)
77 sqrtgt0 14970 . . . . . . . . . . 11 ((𝐷 ∈ ℝ ∧ 0 < 𝐷) → 0 < (√‘𝐷))
7830, 76, 77syl2anc 584 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < (√‘𝐷))
7946, 35, 75, 78addgt0d 11550 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < ((𝐴 / 𝐵) + (√‘𝐷)))
8079gt0ne0d 11539 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) + (√‘𝐷)) ≠ 0)
81 absgt0 15036 . . . . . . . . 9 (((𝐴 / 𝐵) + (√‘𝐷)) ∈ ℂ → (((𝐴 / 𝐵) + (√‘𝐷)) ≠ 0 ↔ 0 < (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))
8281biimpa 477 . . . . . . . 8 ((((𝐴 / 𝐵) + (√‘𝐷)) ∈ ℂ ∧ ((𝐴 / 𝐵) + (√‘𝐷)) ≠ 0) → 0 < (abs‘((𝐴 / 𝐵) + (√‘𝐷))))
8344, 80, 82syl2anc 584 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < (abs‘((𝐴 / 𝐵) + (√‘𝐷))))
84 ltmul1 11825 . . . . . . 7 (((abs‘((𝐴 / 𝐵) − (√‘𝐷))) ∈ ℝ ∧ (𝐵↑-2) ∈ ℝ ∧ ((abs‘((𝐴 / 𝐵) + (√‘𝐷))) ∈ ℝ ∧ 0 < (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2) ↔ ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) < ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))))
8557, 64, 58, 83, 84syl112anc 1373 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2) ↔ ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) < ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))))
8672, 85mpbid 231 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) < ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))
872, 17sqgt0d 13967 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < (𝐵↑2))
88 ltmul2 11826 . . . . . 6 ((((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ∈ ℝ ∧ ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ∈ ℝ ∧ ((𝐵↑2) ∈ ℝ ∧ 0 < (𝐵↑2))) → (((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) < ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ↔ ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) < ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))))
8959, 65, 3, 87, 88syl112anc 1373 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) < ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ↔ ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) < ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))))
9086, 89mpbid 231 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) < ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))))
9113, 17, 63expclzd 13869 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑-2) ∈ ℂ)
9258recnd 11003 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) + (√‘𝐷))) ∈ ℂ)
93 mulass 10959 . . . . . . . 8 (((𝐵↑2) ∈ ℂ ∧ (𝐵↑-2) ∈ ℂ ∧ (abs‘((𝐴 / 𝐵) + (√‘𝐷))) ∈ ℂ) → (((𝐵↑2) · (𝐵↑-2)) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) = ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))))
9493eqcomd 2744 . . . . . . 7 (((𝐵↑2) ∈ ℂ ∧ (𝐵↑-2) ∈ ℂ ∧ (abs‘((𝐴 / 𝐵) + (√‘𝐷))) ∈ ℂ) → ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) = (((𝐵↑2) · (𝐵↑-2)) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))
9514, 91, 92, 94syl3anc 1370 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) = (((𝐵↑2) · (𝐵↑-2)) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))
96 expneg 13790 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝐵↑-2) = (1 / (𝐵↑2)))
9713, 61, 96sylancl 586 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑-2) = (1 / (𝐵↑2)))
9897oveq2d 7291 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (𝐵↑-2)) = ((𝐵↑2) · (1 / (𝐵↑2))))
9914, 20recidd 11746 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (1 / (𝐵↑2))) = 1)
10098, 99eqtrd 2778 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (𝐵↑-2)) = 1)
101100oveq1d 7290 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐵↑2) · (𝐵↑-2)) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) = (1 · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))
10292mulid2d 10993 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (1 · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) = (abs‘((𝐴 / 𝐵) + (√‘𝐷))))
10395, 101, 1023eqtrd 2782 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) = (abs‘((𝐴 / 𝐵) + (√‘𝐷))))
10441, 36addcomd 11177 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) + (√‘𝐷)) = ((√‘𝐷) + (𝐴 / 𝐵)))
105 ppncan 11263 . . . . . . . . . 10 (((√‘𝐷) ∈ ℂ ∧ (√‘𝐷) ∈ ℂ ∧ (𝐴 / 𝐵) ∈ ℂ) → (((√‘𝐷) + (√‘𝐷)) + ((𝐴 / 𝐵) − (√‘𝐷))) = ((√‘𝐷) + (𝐴 / 𝐵)))
106105eqcomd 2744 . . . . . . . . 9 (((√‘𝐷) ∈ ℂ ∧ (√‘𝐷) ∈ ℂ ∧ (𝐴 / 𝐵) ∈ ℂ) → ((√‘𝐷) + (𝐴 / 𝐵)) = (((√‘𝐷) + (√‘𝐷)) + ((𝐴 / 𝐵) − (√‘𝐷))))
10736, 36, 41, 106syl3anc 1370 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((√‘𝐷) + (𝐴 / 𝐵)) = (((√‘𝐷) + (√‘𝐷)) + ((𝐴 / 𝐵) − (√‘𝐷))))
10836, 36addcld 10994 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((√‘𝐷) + (√‘𝐷)) ∈ ℂ)
109108, 48addcomd 11177 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((√‘𝐷) + (√‘𝐷)) + ((𝐴 / 𝐵) − (√‘𝐷))) = (((𝐴 / 𝐵) − (√‘𝐷)) + ((√‘𝐷) + (√‘𝐷))))
110 2times 12109 . . . . . . . . . . . 12 ((√‘𝐷) ∈ ℂ → (2 · (√‘𝐷)) = ((√‘𝐷) + (√‘𝐷)))
111110eqcomd 2744 . . . . . . . . . . 11 ((√‘𝐷) ∈ ℂ → ((√‘𝐷) + (√‘𝐷)) = (2 · (√‘𝐷)))
11236, 111syl 17 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((√‘𝐷) + (√‘𝐷)) = (2 · (√‘𝐷)))
113112oveq2d 7291 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵) − (√‘𝐷)) + ((√‘𝐷) + (√‘𝐷))) = (((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷))))
114109, 113eqtrd 2778 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((√‘𝐷) + (√‘𝐷)) + ((𝐴 / 𝐵) − (√‘𝐷))) = (((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷))))
115104, 107, 1143eqtrd 2782 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) + (√‘𝐷)) = (((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷))))
116115fveq2d 6778 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) + (√‘𝐷))) = (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷)))))
11747, 70readdcld 11004 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷))) ∈ ℝ)
118117recnd 11003 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷))) ∈ ℂ)
119118abscld 15148 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷)))) ∈ ℝ)
12070recnd 11003 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (2 · (√‘𝐷)) ∈ ℂ)
121120abscld 15148 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(2 · (√‘𝐷))) ∈ ℝ)
12257, 121readdcld 11004 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (abs‘(2 · (√‘𝐷)))) ∈ ℝ)
12348, 120abstrid 15168 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷)))) ≤ ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (abs‘(2 · (√‘𝐷)))))
124 0le2 12075 . . . . . . . . . . . 12 0 ≤ 2
125124a1i 11 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 ≤ 2)
12630, 32sqrtge0d 15132 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 ≤ (√‘𝐷))
12769, 35, 125, 126mulge0d 11552 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 ≤ (2 · (√‘𝐷)))
12870, 127absidd 15134 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(2 · (√‘𝐷))) = (2 · (√‘𝐷)))
129128oveq2d 7291 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (abs‘(2 · (√‘𝐷)))) = ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (2 · (√‘𝐷))))
1301nnsqcld 13959 . . . . . . . . . . . . . . 15 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑2) ∈ ℕ)
131130nnge1d 12021 . . . . . . . . . . . . . 14 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 1 ≤ (𝐵↑2))
132 0lt1 11497 . . . . . . . . . . . . . . . 16 0 < 1
133132a1i 11 . . . . . . . . . . . . . . 15 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < 1)
134 lerec 11858 . . . . . . . . . . . . . . 15 (((1 ∈ ℝ ∧ 0 < 1) ∧ ((𝐵↑2) ∈ ℝ ∧ 0 < (𝐵↑2))) → (1 ≤ (𝐵↑2) ↔ (1 / (𝐵↑2)) ≤ (1 / 1)))
13567, 133, 3, 87, 134syl22anc 836 . . . . . . . . . . . . . 14 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (1 ≤ (𝐵↑2) ↔ (1 / (𝐵↑2)) ≤ (1 / 1)))
136131, 135mpbid 231 . . . . . . . . . . . . 13 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (1 / (𝐵↑2)) ≤ (1 / 1))
137 1div1e1 11665 . . . . . . . . . . . . 13 (1 / 1) = 1
138136, 137breqtrdi 5115 . . . . . . . . . . . 12 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (1 / (𝐵↑2)) ≤ 1)
13997, 138eqbrtrd 5096 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑-2) ≤ 1)
14057, 64, 67, 72, 139ltletrd 11135 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < 1)
14157, 67, 140ltled 11123 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) − (√‘𝐷))) ≤ 1)
14257, 67, 70, 141leadd1dd 11589 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (2 · (√‘𝐷))) ≤ (1 + (2 · (√‘𝐷))))
143129, 142eqbrtrd 5096 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (abs‘(2 · (√‘𝐷)))) ≤ (1 + (2 · (√‘𝐷))))
144119, 122, 71, 123, 143letrd 11132 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷)))) ≤ (1 + (2 · (√‘𝐷))))
145116, 144eqbrtrd 5096 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) + (√‘𝐷))) ≤ (1 + (2 · (√‘𝐷))))
146103, 145eqbrtrd 5096 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) ≤ (1 + (2 · (√‘𝐷))))
14760, 66, 71, 90, 146ltletrd 11135 . . 3 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) < (1 + (2 · (√‘𝐷))))
14856, 147eqbrtrd 5096 . 2 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))) < (1 + (2 · (√‘𝐷))))
14954, 148eqbrtrd 5096 1 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) < (1 + (2 · (√‘𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  cexp 13782  csqrt 14944  abscabs 14945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947
This theorem is referenced by:  pellexlem3  40653
  Copyright terms: Public domain W3C validator