Proof of Theorem pellexlem2
Step | Hyp | Ref
| Expression |
1 | | simpl3 1190 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐵 ∈ ℕ) |
2 | 1 | nnred 11694 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐵 ∈ ℝ) |
3 | 2 | resqcld 13666 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑2) ∈ ℝ) |
4 | 2 | sqge0d 13667 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 ≤ (𝐵↑2)) |
5 | 3, 4 | absidd 14835 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(𝐵↑2)) = (𝐵↑2)) |
6 | 5 | eqcomd 2764 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑2) = (abs‘(𝐵↑2))) |
7 | 6 | oveq2d 7171 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (𝐵↑2)) = ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (abs‘(𝐵↑2)))) |
8 | | simpl2 1189 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐴 ∈ ℕ) |
9 | 8 | nncnd 11695 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐴 ∈ ℂ) |
10 | 9 | sqcld 13563 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐴↑2) ∈ ℂ) |
11 | | simpl1 1188 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐷 ∈ ℕ) |
12 | 11 | nncnd 11695 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐷 ∈ ℂ) |
13 | 1 | nncnd 11695 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐵 ∈ ℂ) |
14 | 13 | sqcld 13563 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑2) ∈ ℂ) |
15 | 12, 14 | mulcld 10704 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐷 · (𝐵↑2)) ∈ ℂ) |
16 | 10, 15 | subcld 11040 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) ∈ ℂ) |
17 | 1 | nnne0d 11729 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐵 ≠ 0) |
18 | | sqne0 13544 |
. . . . . . . 8
⊢ (𝐵 ∈ ℂ → ((𝐵↑2) ≠ 0 ↔ 𝐵 ≠ 0)) |
19 | 18 | biimpar 481 |
. . . . . . 7
⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵↑2) ≠
0) |
20 | 13, 17, 19 | syl2anc 587 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑2) ≠ 0) |
21 | 16, 14, 20 | absdivd 14868 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2))) = ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (abs‘(𝐵↑2)))) |
22 | 7, 21 | eqtr4d 2796 |
. . . 4
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (𝐵↑2)) = (abs‘(((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2)))) |
23 | 22 | oveq2d 7171 |
. . 3
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (𝐵↑2))) = ((𝐵↑2) · (abs‘(((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2))))) |
24 | 16 | abscld 14849 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) ∈ ℝ) |
25 | 24 | recnd 10712 |
. . . 4
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) ∈ ℂ) |
26 | 25, 14, 20 | divcan2d 11461 |
. . 3
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (𝐵↑2))) = (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2))))) |
27 | 10, 15, 14, 20 | divsubdird 11498 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2)) = (((𝐴↑2) / (𝐵↑2)) − ((𝐷 · (𝐵↑2)) / (𝐵↑2)))) |
28 | 9, 13, 17 | sqdivd 13578 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) |
29 | 28 | eqcomd 2764 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴↑2) / (𝐵↑2)) = ((𝐴 / 𝐵)↑2)) |
30 | 11 | nnred 11694 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐷 ∈ ℝ) |
31 | 11 | nnnn0d 11999 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐷 ∈
ℕ0) |
32 | 31 | nn0ge0d 12002 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 ≤ 𝐷) |
33 | | remsqsqrt 14669 |
. . . . . . . . 9
⊢ ((𝐷 ∈ ℝ ∧ 0 ≤
𝐷) →
((√‘𝐷) ·
(√‘𝐷)) = 𝐷) |
34 | 30, 32, 33 | syl2anc 587 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((√‘𝐷) · (√‘𝐷)) = 𝐷) |
35 | 30, 32 | resqrtcld 14830 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (√‘𝐷) ∈
ℝ) |
36 | 35 | recnd 10712 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (√‘𝐷) ∈
ℂ) |
37 | 36 | sqvald 13562 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((√‘𝐷)↑2) =
((√‘𝐷) ·
(√‘𝐷))) |
38 | 12, 14, 20 | divcan4d 11465 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐷 · (𝐵↑2)) / (𝐵↑2)) = 𝐷) |
39 | 34, 37, 38 | 3eqtr4rd 2804 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐷 · (𝐵↑2)) / (𝐵↑2)) = ((√‘𝐷)↑2)) |
40 | 29, 39 | oveq12d 7173 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴↑2) / (𝐵↑2)) − ((𝐷 · (𝐵↑2)) / (𝐵↑2))) = (((𝐴 / 𝐵)↑2) − ((√‘𝐷)↑2))) |
41 | 9, 13, 17 | divcld 11459 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐴 / 𝐵) ∈ ℂ) |
42 | | subsq 13627 |
. . . . . . . 8
⊢ (((𝐴 / 𝐵) ∈ ℂ ∧ (√‘𝐷) ∈ ℂ) →
(((𝐴 / 𝐵)↑2) − ((√‘𝐷)↑2)) = (((𝐴 / 𝐵) + (√‘𝐷)) · ((𝐴 / 𝐵) − (√‘𝐷)))) |
43 | 41, 36, 42 | syl2anc 587 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵)↑2) − ((√‘𝐷)↑2)) = (((𝐴 / 𝐵) + (√‘𝐷)) · ((𝐴 / 𝐵) − (√‘𝐷)))) |
44 | 41, 36 | addcld 10703 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) + (√‘𝐷)) ∈ ℂ) |
45 | 8 | nnred 11694 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐴 ∈ ℝ) |
46 | 45, 1 | nndivred 11733 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐴 / 𝐵) ∈ ℝ) |
47 | 46, 35 | resubcld 11111 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) − (√‘𝐷)) ∈ ℝ) |
48 | 47 | recnd 10712 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) − (√‘𝐷)) ∈ ℂ) |
49 | 44, 48 | mulcomd 10705 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵) + (√‘𝐷)) · ((𝐴 / 𝐵) − (√‘𝐷))) = (((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷)))) |
50 | 43, 49 | eqtrd 2793 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵)↑2) − ((√‘𝐷)↑2)) = (((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷)))) |
51 | 27, 40, 50 | 3eqtrd 2797 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2)) = (((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷)))) |
52 | 51 | fveq2d 6666 |
. . . 4
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2))) = (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))) |
53 | 52 | oveq2d 7171 |
. . 3
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (abs‘(((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2)))) = ((𝐵↑2) · (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷)))))) |
54 | 23, 26, 53 | 3eqtr3d 2801 |
. 2
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) = ((𝐵↑2) · (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷)))))) |
55 | 48, 44 | absmuld 14867 |
. . . 4
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷)))) = ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) |
56 | 55 | oveq2d 7171 |
. . 3
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))) = ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))) |
57 | 48 | abscld 14849 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) − (√‘𝐷))) ∈ ℝ) |
58 | 44 | abscld 14849 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) + (√‘𝐷))) ∈ ℝ) |
59 | 57, 58 | remulcld 10714 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ∈ ℝ) |
60 | 3, 59 | remulcld 10714 |
. . . 4
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) ∈ ℝ) |
61 | | 2nn0 11956 |
. . . . . . . . 9
⊢ 2 ∈
ℕ0 |
62 | 61 | nn0negzi 12065 |
. . . . . . . 8
⊢ -2 ∈
ℤ |
63 | 62 | a1i 11 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → -2 ∈
ℤ) |
64 | 2, 17, 63 | reexpclzd 13665 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑-2) ∈ ℝ) |
65 | 64, 58 | remulcld 10714 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ∈ ℝ) |
66 | 3, 65 | remulcld 10714 |
. . . 4
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) ∈ ℝ) |
67 | | 1red 10685 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 1 ∈
ℝ) |
68 | | 2re 11753 |
. . . . . . 7
⊢ 2 ∈
ℝ |
69 | 68 | a1i 11 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 2 ∈
ℝ) |
70 | 69, 35 | remulcld 10714 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (2 ·
(√‘𝐷)) ∈
ℝ) |
71 | 67, 70 | readdcld 10713 |
. . . 4
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (1 + (2 ·
(√‘𝐷))) ∈
ℝ) |
72 | | simpr 488 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) |
73 | 8 | nngt0d 11728 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < 𝐴) |
74 | 1 | nngt0d 11728 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < 𝐵) |
75 | 45, 2, 73, 74 | divgt0d 11618 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < (𝐴 / 𝐵)) |
76 | 11 | nngt0d 11728 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < 𝐷) |
77 | | sqrtgt0 14671 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ ℝ ∧ 0 <
𝐷) → 0 <
(√‘𝐷)) |
78 | 30, 76, 77 | syl2anc 587 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 <
(√‘𝐷)) |
79 | 46, 35, 75, 78 | addgt0d 11258 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < ((𝐴 / 𝐵) + (√‘𝐷))) |
80 | 79 | gt0ne0d 11247 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) + (√‘𝐷)) ≠ 0) |
81 | | absgt0 14737 |
. . . . . . . . 9
⊢ (((𝐴 / 𝐵) + (√‘𝐷)) ∈ ℂ → (((𝐴 / 𝐵) + (√‘𝐷)) ≠ 0 ↔ 0 < (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) |
82 | 81 | biimpa 480 |
. . . . . . . 8
⊢ ((((𝐴 / 𝐵) + (√‘𝐷)) ∈ ℂ ∧ ((𝐴 / 𝐵) + (√‘𝐷)) ≠ 0) → 0 < (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) |
83 | 44, 80, 82 | syl2anc 587 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) |
84 | | ltmul1 11533 |
. . . . . . 7
⊢
(((abs‘((𝐴 /
𝐵) −
(√‘𝐷))) ∈
ℝ ∧ (𝐵↑-2)
∈ ℝ ∧ ((abs‘((𝐴 / 𝐵) + (√‘𝐷))) ∈ ℝ ∧ 0 <
(abs‘((𝐴 / 𝐵) + (√‘𝐷))))) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2) ↔ ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) < ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))) |
85 | 57, 64, 58, 83, 84 | syl112anc 1371 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2) ↔ ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) < ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))) |
86 | 72, 85 | mpbid 235 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) < ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) |
87 | 2, 17 | sqgt0d 13668 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < (𝐵↑2)) |
88 | | ltmul2 11534 |
. . . . . 6
⊢
((((abs‘((𝐴 /
𝐵) −
(√‘𝐷)))
· (abs‘((𝐴 /
𝐵) + (√‘𝐷)))) ∈ ℝ ∧
((𝐵↑-2) ·
(abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ∈ ℝ ∧
((𝐵↑2) ∈ ℝ
∧ 0 < (𝐵↑2)))
→ (((abs‘((𝐴 /
𝐵) −
(√‘𝐷)))
· (abs‘((𝐴 /
𝐵) + (√‘𝐷)))) < ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ↔ ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) < ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))))) |
89 | 59, 65, 3, 87, 88 | syl112anc 1371 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) < ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ↔ ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) < ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))))) |
90 | 86, 89 | mpbid 235 |
. . . 4
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) < ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))) |
91 | 13, 17, 63 | expclzd 13570 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑-2) ∈ ℂ) |
92 | 58 | recnd 10712 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) + (√‘𝐷))) ∈ ℂ) |
93 | | mulass 10668 |
. . . . . . . 8
⊢ (((𝐵↑2) ∈ ℂ ∧
(𝐵↑-2) ∈ ℂ
∧ (abs‘((𝐴 /
𝐵) + (√‘𝐷))) ∈ ℂ) →
(((𝐵↑2) ·
(𝐵↑-2)) ·
(abs‘((𝐴 / 𝐵) + (√‘𝐷)))) = ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))) |
94 | 93 | eqcomd 2764 |
. . . . . . 7
⊢ (((𝐵↑2) ∈ ℂ ∧
(𝐵↑-2) ∈ ℂ
∧ (abs‘((𝐴 /
𝐵) + (√‘𝐷))) ∈ ℂ) →
((𝐵↑2) ·
((𝐵↑-2) ·
(abs‘((𝐴 / 𝐵) + (√‘𝐷))))) = (((𝐵↑2) · (𝐵↑-2)) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) |
95 | 14, 91, 92, 94 | syl3anc 1368 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) = (((𝐵↑2) · (𝐵↑-2)) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) |
96 | | expneg 13492 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℂ ∧ 2 ∈
ℕ0) → (𝐵↑-2) = (1 / (𝐵↑2))) |
97 | 13, 61, 96 | sylancl 589 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑-2) = (1 / (𝐵↑2))) |
98 | 97 | oveq2d 7171 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (𝐵↑-2)) = ((𝐵↑2) · (1 / (𝐵↑2)))) |
99 | 14, 20 | recidd 11454 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (1 / (𝐵↑2))) = 1) |
100 | 98, 99 | eqtrd 2793 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (𝐵↑-2)) = 1) |
101 | 100 | oveq1d 7170 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐵↑2) · (𝐵↑-2)) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) = (1 · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) |
102 | 92 | mulid2d 10702 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (1 ·
(abs‘((𝐴 / 𝐵) + (√‘𝐷)))) = (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) |
103 | 95, 101, 102 | 3eqtrd 2797 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) = (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) |
104 | 41, 36 | addcomd 10885 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) + (√‘𝐷)) = ((√‘𝐷) + (𝐴 / 𝐵))) |
105 | | ppncan 10971 |
. . . . . . . . . 10
⊢
(((√‘𝐷)
∈ ℂ ∧ (√‘𝐷) ∈ ℂ ∧ (𝐴 / 𝐵) ∈ ℂ) →
(((√‘𝐷) +
(√‘𝐷)) +
((𝐴 / 𝐵) − (√‘𝐷))) = ((√‘𝐷) + (𝐴 / 𝐵))) |
106 | 105 | eqcomd 2764 |
. . . . . . . . 9
⊢
(((√‘𝐷)
∈ ℂ ∧ (√‘𝐷) ∈ ℂ ∧ (𝐴 / 𝐵) ∈ ℂ) →
((√‘𝐷) + (𝐴 / 𝐵)) = (((√‘𝐷) + (√‘𝐷)) + ((𝐴 / 𝐵) − (√‘𝐷)))) |
107 | 36, 36, 41, 106 | syl3anc 1368 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((√‘𝐷) + (𝐴 / 𝐵)) = (((√‘𝐷) + (√‘𝐷)) + ((𝐴 / 𝐵) − (√‘𝐷)))) |
108 | 36, 36 | addcld 10703 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((√‘𝐷) + (√‘𝐷)) ∈
ℂ) |
109 | 108, 48 | addcomd 10885 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((√‘𝐷) + (√‘𝐷)) + ((𝐴 / 𝐵) − (√‘𝐷))) = (((𝐴 / 𝐵) − (√‘𝐷)) + ((√‘𝐷) + (√‘𝐷)))) |
110 | | 2times 11815 |
. . . . . . . . . . . 12
⊢
((√‘𝐷)
∈ ℂ → (2 · (√‘𝐷)) = ((√‘𝐷) + (√‘𝐷))) |
111 | 110 | eqcomd 2764 |
. . . . . . . . . . 11
⊢
((√‘𝐷)
∈ ℂ → ((√‘𝐷) + (√‘𝐷)) = (2 · (√‘𝐷))) |
112 | 36, 111 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((√‘𝐷) + (√‘𝐷)) = (2 ·
(√‘𝐷))) |
113 | 112 | oveq2d 7171 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵) − (√‘𝐷)) + ((√‘𝐷) + (√‘𝐷))) = (((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷)))) |
114 | 109, 113 | eqtrd 2793 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((√‘𝐷) + (√‘𝐷)) + ((𝐴 / 𝐵) − (√‘𝐷))) = (((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷)))) |
115 | 104, 107,
114 | 3eqtrd 2797 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) + (√‘𝐷)) = (((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷)))) |
116 | 115 | fveq2d 6666 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) + (√‘𝐷))) = (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷))))) |
117 | 47, 70 | readdcld 10713 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷))) ∈
ℝ) |
118 | 117 | recnd 10712 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷))) ∈
ℂ) |
119 | 118 | abscld 14849 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷)))) ∈
ℝ) |
120 | 70 | recnd 10712 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (2 ·
(√‘𝐷)) ∈
ℂ) |
121 | 120 | abscld 14849 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(2 ·
(√‘𝐷))) ∈
ℝ) |
122 | 57, 121 | readdcld 10713 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (abs‘(2 ·
(√‘𝐷)))) ∈
ℝ) |
123 | 48, 120 | abstrid 14869 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷)))) ≤ ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (abs‘(2 ·
(√‘𝐷))))) |
124 | | 0le2 11781 |
. . . . . . . . . . . 12
⊢ 0 ≤
2 |
125 | 124 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 ≤ 2) |
126 | 30, 32 | sqrtge0d 14833 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 ≤
(√‘𝐷)) |
127 | 69, 35, 125, 126 | mulge0d 11260 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 ≤ (2 ·
(√‘𝐷))) |
128 | 70, 127 | absidd 14835 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(2 ·
(√‘𝐷))) = (2
· (√‘𝐷))) |
129 | 128 | oveq2d 7171 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (abs‘(2 ·
(√‘𝐷)))) =
((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (2 ·
(√‘𝐷)))) |
130 | 1 | nnsqcld 13660 |
. . . . . . . . . . . . . . 15
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑2) ∈ ℕ) |
131 | 130 | nnge1d 11727 |
. . . . . . . . . . . . . 14
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 1 ≤ (𝐵↑2)) |
132 | | 0lt1 11205 |
. . . . . . . . . . . . . . . 16
⊢ 0 <
1 |
133 | 132 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < 1) |
134 | | lerec 11566 |
. . . . . . . . . . . . . . 15
⊢ (((1
∈ ℝ ∧ 0 < 1) ∧ ((𝐵↑2) ∈ ℝ ∧ 0 < (𝐵↑2))) → (1 ≤ (𝐵↑2) ↔ (1 / (𝐵↑2)) ≤ (1 /
1))) |
135 | 67, 133, 3, 87, 134 | syl22anc 837 |
. . . . . . . . . . . . . 14
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (1 ≤ (𝐵↑2) ↔ (1 / (𝐵↑2)) ≤ (1 / 1))) |
136 | 131, 135 | mpbid 235 |
. . . . . . . . . . . . 13
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (1 / (𝐵↑2)) ≤ (1 / 1)) |
137 | | 1div1e1 11373 |
. . . . . . . . . . . . 13
⊢ (1 / 1) =
1 |
138 | 136, 137 | breqtrdi 5076 |
. . . . . . . . . . . 12
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (1 / (𝐵↑2)) ≤ 1) |
139 | 97, 138 | eqbrtrd 5057 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑-2) ≤ 1) |
140 | 57, 64, 67, 72, 139 | ltletrd 10843 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < 1) |
141 | 57, 67, 140 | ltled 10831 |
. . . . . . . . 9
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) − (√‘𝐷))) ≤ 1) |
142 | 57, 67, 70, 141 | leadd1dd 11297 |
. . . . . . . 8
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (2 · (√‘𝐷))) ≤ (1 + (2 ·
(√‘𝐷)))) |
143 | 129, 142 | eqbrtrd 5057 |
. . . . . . 7
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (abs‘(2 ·
(√‘𝐷)))) ≤
(1 + (2 · (√‘𝐷)))) |
144 | 119, 122,
71, 123, 143 | letrd 10840 |
. . . . . 6
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷)))) ≤ (1 + (2 ·
(√‘𝐷)))) |
145 | 116, 144 | eqbrtrd 5057 |
. . . . 5
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) + (√‘𝐷))) ≤ (1 + (2 ·
(√‘𝐷)))) |
146 | 103, 145 | eqbrtrd 5057 |
. . . 4
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) ≤ (1 + (2 ·
(√‘𝐷)))) |
147 | 60, 66, 71, 90, 146 | ltletrd 10843 |
. . 3
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) < (1 + (2 ·
(√‘𝐷)))) |
148 | 56, 147 | eqbrtrd 5057 |
. 2
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))) < (1 + (2 ·
(√‘𝐷)))) |
149 | 54, 148 | eqbrtrd 5057 |
1
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧
(abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) < (1 + (2 ·
(√‘𝐷)))) |