Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem2 Structured version   Visualization version   GIF version

Theorem pellexlem2 42922
Description: Lemma for pellex 42927. Arithmetical core of pellexlem3, norm upper bound. (Contributed by Stefan O'Rear, 14-Sep-2014.)
Assertion
Ref Expression
pellexlem2 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) < (1 + (2 · (√‘𝐷))))

Proof of Theorem pellexlem2
StepHypRef Expression
1 simpl3 1194 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐵 ∈ ℕ)
21nnred 12140 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐵 ∈ ℝ)
32resqcld 14032 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑2) ∈ ℝ)
42sqge0d 14044 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 ≤ (𝐵↑2))
53, 4absidd 15330 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(𝐵↑2)) = (𝐵↑2))
65eqcomd 2737 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑2) = (abs‘(𝐵↑2)))
76oveq2d 7362 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (𝐵↑2)) = ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (abs‘(𝐵↑2))))
8 simpl2 1193 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐴 ∈ ℕ)
98nncnd 12141 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐴 ∈ ℂ)
109sqcld 14051 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐴↑2) ∈ ℂ)
11 simpl1 1192 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐷 ∈ ℕ)
1211nncnd 12141 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐷 ∈ ℂ)
131nncnd 12141 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐵 ∈ ℂ)
1413sqcld 14051 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑2) ∈ ℂ)
1512, 14mulcld 11132 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐷 · (𝐵↑2)) ∈ ℂ)
1610, 15subcld 11472 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) ∈ ℂ)
171nnne0d 12175 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐵 ≠ 0)
18 sqne0 14030 . . . . . . . 8 (𝐵 ∈ ℂ → ((𝐵↑2) ≠ 0 ↔ 𝐵 ≠ 0))
1918biimpar 477 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵↑2) ≠ 0)
2013, 17, 19syl2anc 584 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑2) ≠ 0)
2116, 14, 20absdivd 15365 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2))) = ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (abs‘(𝐵↑2))))
227, 21eqtr4d 2769 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (𝐵↑2)) = (abs‘(((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2))))
2322oveq2d 7362 . . 3 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (𝐵↑2))) = ((𝐵↑2) · (abs‘(((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2)))))
2416abscld 15346 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) ∈ ℝ)
2524recnd 11140 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) ∈ ℂ)
2625, 14, 20divcan2d 11899 . . 3 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (𝐵↑2))) = (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))))
2710, 15, 14, 20divsubdird 11936 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2)) = (((𝐴↑2) / (𝐵↑2)) − ((𝐷 · (𝐵↑2)) / (𝐵↑2))))
289, 13, 17sqdivd 14066 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)))
2928eqcomd 2737 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴↑2) / (𝐵↑2)) = ((𝐴 / 𝐵)↑2))
3011nnred 12140 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐷 ∈ ℝ)
3111nnnn0d 12442 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐷 ∈ ℕ0)
3231nn0ge0d 12445 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 ≤ 𝐷)
33 remsqsqrt 15163 . . . . . . . . 9 ((𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) → ((√‘𝐷) · (√‘𝐷)) = 𝐷)
3430, 32, 33syl2anc 584 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((√‘𝐷) · (√‘𝐷)) = 𝐷)
3530, 32resqrtcld 15325 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (√‘𝐷) ∈ ℝ)
3635recnd 11140 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (√‘𝐷) ∈ ℂ)
3736sqvald 14050 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((√‘𝐷)↑2) = ((√‘𝐷) · (√‘𝐷)))
3812, 14, 20divcan4d 11903 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐷 · (𝐵↑2)) / (𝐵↑2)) = 𝐷)
3934, 37, 383eqtr4rd 2777 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐷 · (𝐵↑2)) / (𝐵↑2)) = ((√‘𝐷)↑2))
4029, 39oveq12d 7364 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴↑2) / (𝐵↑2)) − ((𝐷 · (𝐵↑2)) / (𝐵↑2))) = (((𝐴 / 𝐵)↑2) − ((√‘𝐷)↑2)))
419, 13, 17divcld 11897 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐴 / 𝐵) ∈ ℂ)
42 subsq 14117 . . . . . . . 8 (((𝐴 / 𝐵) ∈ ℂ ∧ (√‘𝐷) ∈ ℂ) → (((𝐴 / 𝐵)↑2) − ((√‘𝐷)↑2)) = (((𝐴 / 𝐵) + (√‘𝐷)) · ((𝐴 / 𝐵) − (√‘𝐷))))
4341, 36, 42syl2anc 584 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵)↑2) − ((√‘𝐷)↑2)) = (((𝐴 / 𝐵) + (√‘𝐷)) · ((𝐴 / 𝐵) − (√‘𝐷))))
4441, 36addcld 11131 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) + (√‘𝐷)) ∈ ℂ)
458nnred 12140 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐴 ∈ ℝ)
4645, 1nndivred 12179 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐴 / 𝐵) ∈ ℝ)
4746, 35resubcld 11545 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) − (√‘𝐷)) ∈ ℝ)
4847recnd 11140 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) − (√‘𝐷)) ∈ ℂ)
4944, 48mulcomd 11133 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵) + (√‘𝐷)) · ((𝐴 / 𝐵) − (√‘𝐷))) = (((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))
5043, 49eqtrd 2766 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵)↑2) − ((√‘𝐷)↑2)) = (((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))
5127, 40, 503eqtrd 2770 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2)) = (((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))
5251fveq2d 6826 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2))) = (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷)))))
5352oveq2d 7362 . . 3 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (abs‘(((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2)))) = ((𝐵↑2) · (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))))
5423, 26, 533eqtr3d 2774 . 2 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) = ((𝐵↑2) · (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))))
5548, 44absmuld 15364 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷)))) = ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))
5655oveq2d 7362 . . 3 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))) = ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))))
5748abscld 15346 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) − (√‘𝐷))) ∈ ℝ)
5844abscld 15346 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) + (√‘𝐷))) ∈ ℝ)
5957, 58remulcld 11142 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ∈ ℝ)
603, 59remulcld 11142 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) ∈ ℝ)
61 2nn0 12398 . . . . . . . . 9 2 ∈ ℕ0
6261nn0negzi 12511 . . . . . . . 8 -2 ∈ ℤ
6362a1i 11 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → -2 ∈ ℤ)
642, 17, 63reexpclzd 14156 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑-2) ∈ ℝ)
6564, 58remulcld 11142 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ∈ ℝ)
663, 65remulcld 11142 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) ∈ ℝ)
67 1red 11113 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 1 ∈ ℝ)
68 2re 12199 . . . . . . 7 2 ∈ ℝ
6968a1i 11 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 2 ∈ ℝ)
7069, 35remulcld 11142 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (2 · (√‘𝐷)) ∈ ℝ)
7167, 70readdcld 11141 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (1 + (2 · (√‘𝐷))) ∈ ℝ)
72 simpr 484 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2))
738nngt0d 12174 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < 𝐴)
741nngt0d 12174 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < 𝐵)
7545, 2, 73, 74divgt0d 12057 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < (𝐴 / 𝐵))
7611nngt0d 12174 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < 𝐷)
77 sqrtgt0 15165 . . . . . . . . . . 11 ((𝐷 ∈ ℝ ∧ 0 < 𝐷) → 0 < (√‘𝐷))
7830, 76, 77syl2anc 584 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < (√‘𝐷))
7946, 35, 75, 78addgt0d 11692 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < ((𝐴 / 𝐵) + (√‘𝐷)))
8079gt0ne0d 11681 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) + (√‘𝐷)) ≠ 0)
81 absgt0 15232 . . . . . . . . 9 (((𝐴 / 𝐵) + (√‘𝐷)) ∈ ℂ → (((𝐴 / 𝐵) + (√‘𝐷)) ≠ 0 ↔ 0 < (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))
8281biimpa 476 . . . . . . . 8 ((((𝐴 / 𝐵) + (√‘𝐷)) ∈ ℂ ∧ ((𝐴 / 𝐵) + (√‘𝐷)) ≠ 0) → 0 < (abs‘((𝐴 / 𝐵) + (√‘𝐷))))
8344, 80, 82syl2anc 584 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < (abs‘((𝐴 / 𝐵) + (√‘𝐷))))
84 ltmul1 11971 . . . . . . 7 (((abs‘((𝐴 / 𝐵) − (√‘𝐷))) ∈ ℝ ∧ (𝐵↑-2) ∈ ℝ ∧ ((abs‘((𝐴 / 𝐵) + (√‘𝐷))) ∈ ℝ ∧ 0 < (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2) ↔ ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) < ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))))
8557, 64, 58, 83, 84syl112anc 1376 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2) ↔ ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) < ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))))
8672, 85mpbid 232 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) < ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))
872, 17sqgt0d 14157 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < (𝐵↑2))
88 ltmul2 11972 . . . . . 6 ((((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ∈ ℝ ∧ ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ∈ ℝ ∧ ((𝐵↑2) ∈ ℝ ∧ 0 < (𝐵↑2))) → (((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) < ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ↔ ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) < ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))))
8959, 65, 3, 87, 88syl112anc 1376 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) < ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ↔ ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) < ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))))
9086, 89mpbid 232 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) < ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))))
9113, 17, 63expclzd 14058 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑-2) ∈ ℂ)
9258recnd 11140 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) + (√‘𝐷))) ∈ ℂ)
93 mulass 11094 . . . . . . . 8 (((𝐵↑2) ∈ ℂ ∧ (𝐵↑-2) ∈ ℂ ∧ (abs‘((𝐴 / 𝐵) + (√‘𝐷))) ∈ ℂ) → (((𝐵↑2) · (𝐵↑-2)) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) = ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))))
9493eqcomd 2737 . . . . . . 7 (((𝐵↑2) ∈ ℂ ∧ (𝐵↑-2) ∈ ℂ ∧ (abs‘((𝐴 / 𝐵) + (√‘𝐷))) ∈ ℂ) → ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) = (((𝐵↑2) · (𝐵↑-2)) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))
9514, 91, 92, 94syl3anc 1373 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) = (((𝐵↑2) · (𝐵↑-2)) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))
96 expneg 13976 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝐵↑-2) = (1 / (𝐵↑2)))
9713, 61, 96sylancl 586 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑-2) = (1 / (𝐵↑2)))
9897oveq2d 7362 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (𝐵↑-2)) = ((𝐵↑2) · (1 / (𝐵↑2))))
9914, 20recidd 11892 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (1 / (𝐵↑2))) = 1)
10098, 99eqtrd 2766 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (𝐵↑-2)) = 1)
101100oveq1d 7361 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐵↑2) · (𝐵↑-2)) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) = (1 · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))
10292mullidd 11130 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (1 · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) = (abs‘((𝐴 / 𝐵) + (√‘𝐷))))
10395, 101, 1023eqtrd 2770 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) = (abs‘((𝐴 / 𝐵) + (√‘𝐷))))
10441, 36addcomd 11315 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) + (√‘𝐷)) = ((√‘𝐷) + (𝐴 / 𝐵)))
105 ppncan 11403 . . . . . . . . . 10 (((√‘𝐷) ∈ ℂ ∧ (√‘𝐷) ∈ ℂ ∧ (𝐴 / 𝐵) ∈ ℂ) → (((√‘𝐷) + (√‘𝐷)) + ((𝐴 / 𝐵) − (√‘𝐷))) = ((√‘𝐷) + (𝐴 / 𝐵)))
106105eqcomd 2737 . . . . . . . . 9 (((√‘𝐷) ∈ ℂ ∧ (√‘𝐷) ∈ ℂ ∧ (𝐴 / 𝐵) ∈ ℂ) → ((√‘𝐷) + (𝐴 / 𝐵)) = (((√‘𝐷) + (√‘𝐷)) + ((𝐴 / 𝐵) − (√‘𝐷))))
10736, 36, 41, 106syl3anc 1373 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((√‘𝐷) + (𝐴 / 𝐵)) = (((√‘𝐷) + (√‘𝐷)) + ((𝐴 / 𝐵) − (√‘𝐷))))
10836, 36addcld 11131 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((√‘𝐷) + (√‘𝐷)) ∈ ℂ)
109108, 48addcomd 11315 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((√‘𝐷) + (√‘𝐷)) + ((𝐴 / 𝐵) − (√‘𝐷))) = (((𝐴 / 𝐵) − (√‘𝐷)) + ((√‘𝐷) + (√‘𝐷))))
110 2times 12256 . . . . . . . . . . . 12 ((√‘𝐷) ∈ ℂ → (2 · (√‘𝐷)) = ((√‘𝐷) + (√‘𝐷)))
111110eqcomd 2737 . . . . . . . . . . 11 ((√‘𝐷) ∈ ℂ → ((√‘𝐷) + (√‘𝐷)) = (2 · (√‘𝐷)))
11236, 111syl 17 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((√‘𝐷) + (√‘𝐷)) = (2 · (√‘𝐷)))
113112oveq2d 7362 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵) − (√‘𝐷)) + ((√‘𝐷) + (√‘𝐷))) = (((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷))))
114109, 113eqtrd 2766 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((√‘𝐷) + (√‘𝐷)) + ((𝐴 / 𝐵) − (√‘𝐷))) = (((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷))))
115104, 107, 1143eqtrd 2770 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) + (√‘𝐷)) = (((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷))))
116115fveq2d 6826 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) + (√‘𝐷))) = (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷)))))
11747, 70readdcld 11141 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷))) ∈ ℝ)
118117recnd 11140 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷))) ∈ ℂ)
119118abscld 15346 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷)))) ∈ ℝ)
12070recnd 11140 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (2 · (√‘𝐷)) ∈ ℂ)
121120abscld 15346 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(2 · (√‘𝐷))) ∈ ℝ)
12257, 121readdcld 11141 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (abs‘(2 · (√‘𝐷)))) ∈ ℝ)
12348, 120abstrid 15366 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷)))) ≤ ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (abs‘(2 · (√‘𝐷)))))
124 0le2 12227 . . . . . . . . . . . 12 0 ≤ 2
125124a1i 11 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 ≤ 2)
12630, 32sqrtge0d 15328 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 ≤ (√‘𝐷))
12769, 35, 125, 126mulge0d 11694 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 ≤ (2 · (√‘𝐷)))
12870, 127absidd 15330 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(2 · (√‘𝐷))) = (2 · (√‘𝐷)))
129128oveq2d 7362 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (abs‘(2 · (√‘𝐷)))) = ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (2 · (√‘𝐷))))
1301nnsqcld 14151 . . . . . . . . . . . . . . 15 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑2) ∈ ℕ)
131130nnge1d 12173 . . . . . . . . . . . . . 14 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 1 ≤ (𝐵↑2))
132 0lt1 11639 . . . . . . . . . . . . . . . 16 0 < 1
133132a1i 11 . . . . . . . . . . . . . . 15 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < 1)
134 lerec 12005 . . . . . . . . . . . . . . 15 (((1 ∈ ℝ ∧ 0 < 1) ∧ ((𝐵↑2) ∈ ℝ ∧ 0 < (𝐵↑2))) → (1 ≤ (𝐵↑2) ↔ (1 / (𝐵↑2)) ≤ (1 / 1)))
13567, 133, 3, 87, 134syl22anc 838 . . . . . . . . . . . . . 14 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (1 ≤ (𝐵↑2) ↔ (1 / (𝐵↑2)) ≤ (1 / 1)))
136131, 135mpbid 232 . . . . . . . . . . . . 13 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (1 / (𝐵↑2)) ≤ (1 / 1))
137 1div1e1 11812 . . . . . . . . . . . . 13 (1 / 1) = 1
138136, 137breqtrdi 5130 . . . . . . . . . . . 12 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (1 / (𝐵↑2)) ≤ 1)
13997, 138eqbrtrd 5111 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑-2) ≤ 1)
14057, 64, 67, 72, 139ltletrd 11273 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < 1)
14157, 67, 140ltled 11261 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) − (√‘𝐷))) ≤ 1)
14257, 67, 70, 141leadd1dd 11731 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (2 · (√‘𝐷))) ≤ (1 + (2 · (√‘𝐷))))
143129, 142eqbrtrd 5111 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (abs‘(2 · (√‘𝐷)))) ≤ (1 + (2 · (√‘𝐷))))
144119, 122, 71, 123, 143letrd 11270 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷)))) ≤ (1 + (2 · (√‘𝐷))))
145116, 144eqbrtrd 5111 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) + (√‘𝐷))) ≤ (1 + (2 · (√‘𝐷))))
146103, 145eqbrtrd 5111 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) ≤ (1 + (2 · (√‘𝐷))))
14760, 66, 71, 90, 146ltletrd 11273 . . 3 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) < (1 + (2 · (√‘𝐷))))
14856, 147eqbrtrd 5111 . 2 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))) < (1 + (2 · (√‘𝐷))))
14954, 148eqbrtrd 5111 1 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) < (1 + (2 · (√‘𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344  -cneg 11345   / cdiv 11774  cn 12125  2c2 12180  0cn0 12381  cz 12468  cexp 13968  csqrt 15140  abscabs 15141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143
This theorem is referenced by:  pellexlem3  42923
  Copyright terms: Public domain W3C validator