Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem2 Structured version   Visualization version   GIF version

Theorem pellexlem2 37913
Description: Lemma for pellex 37918. Arithmetical core of pellexlem3, norm upper bound. (Contributed by Stefan O'Rear, 14-Sep-2014.)
Assertion
Ref Expression
pellexlem2 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) < (1 + (2 · (√‘𝐷))))

Proof of Theorem pellexlem2
StepHypRef Expression
1 simpl3 1230 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐵 ∈ ℕ)
21nnred 11236 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐵 ∈ ℝ)
32resqcld 13241 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑2) ∈ ℝ)
42sqge0d 13242 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 ≤ (𝐵↑2))
53, 4absidd 14368 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(𝐵↑2)) = (𝐵↑2))
65eqcomd 2776 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑2) = (abs‘(𝐵↑2)))
76oveq2d 6808 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (𝐵↑2)) = ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (abs‘(𝐵↑2))))
8 simpl2 1228 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐴 ∈ ℕ)
98nncnd 11237 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐴 ∈ ℂ)
109sqcld 13212 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐴↑2) ∈ ℂ)
11 simpl1 1226 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐷 ∈ ℕ)
1211nncnd 11237 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐷 ∈ ℂ)
131nncnd 11237 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐵 ∈ ℂ)
1413sqcld 13212 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑2) ∈ ℂ)
1512, 14mulcld 10261 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐷 · (𝐵↑2)) ∈ ℂ)
1610, 15subcld 10593 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴↑2) − (𝐷 · (𝐵↑2))) ∈ ℂ)
171nnne0d 11266 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐵 ≠ 0)
18 sqne0 13136 . . . . . . . 8 (𝐵 ∈ ℂ → ((𝐵↑2) ≠ 0 ↔ 𝐵 ≠ 0))
1918biimpar 463 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵↑2) ≠ 0)
2013, 17, 19syl2anc 565 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑2) ≠ 0)
2116, 14, 20absdivd 14401 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2))) = ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (abs‘(𝐵↑2))))
227, 21eqtr4d 2807 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (𝐵↑2)) = (abs‘(((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2))))
2322oveq2d 6808 . . 3 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (𝐵↑2))) = ((𝐵↑2) · (abs‘(((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2)))))
2416abscld 14382 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) ∈ ℝ)
2524recnd 10269 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) ∈ ℂ)
2625, 14, 20divcan2d 11004 . . 3 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) / (𝐵↑2))) = (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))))
2710, 15, 14, 20divsubdird 11041 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2)) = (((𝐴↑2) / (𝐵↑2)) − ((𝐷 · (𝐵↑2)) / (𝐵↑2))))
289, 13, 17sqdivd 13227 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)))
2928eqcomd 2776 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴↑2) / (𝐵↑2)) = ((𝐴 / 𝐵)↑2))
3011nnred 11236 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐷 ∈ ℝ)
3111nnnn0d 11552 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐷 ∈ ℕ0)
3231nn0ge0d 11555 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 ≤ 𝐷)
33 remsqsqrt 14204 . . . . . . . . 9 ((𝐷 ∈ ℝ ∧ 0 ≤ 𝐷) → ((√‘𝐷) · (√‘𝐷)) = 𝐷)
3430, 32, 33syl2anc 565 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((√‘𝐷) · (√‘𝐷)) = 𝐷)
3530, 32resqrtcld 14363 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (√‘𝐷) ∈ ℝ)
3635recnd 10269 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (√‘𝐷) ∈ ℂ)
3736sqvald 13211 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((√‘𝐷)↑2) = ((√‘𝐷) · (√‘𝐷)))
3812, 14, 20divcan4d 11008 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐷 · (𝐵↑2)) / (𝐵↑2)) = 𝐷)
3934, 37, 383eqtr4rd 2815 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐷 · (𝐵↑2)) / (𝐵↑2)) = ((√‘𝐷)↑2))
4029, 39oveq12d 6810 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴↑2) / (𝐵↑2)) − ((𝐷 · (𝐵↑2)) / (𝐵↑2))) = (((𝐴 / 𝐵)↑2) − ((√‘𝐷)↑2)))
419, 13, 17divcld 11002 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐴 / 𝐵) ∈ ℂ)
42 subsq 13178 . . . . . . . 8 (((𝐴 / 𝐵) ∈ ℂ ∧ (√‘𝐷) ∈ ℂ) → (((𝐴 / 𝐵)↑2) − ((√‘𝐷)↑2)) = (((𝐴 / 𝐵) + (√‘𝐷)) · ((𝐴 / 𝐵) − (√‘𝐷))))
4341, 36, 42syl2anc 565 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵)↑2) − ((√‘𝐷)↑2)) = (((𝐴 / 𝐵) + (√‘𝐷)) · ((𝐴 / 𝐵) − (√‘𝐷))))
4441, 36addcld 10260 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) + (√‘𝐷)) ∈ ℂ)
458nnred 11236 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 𝐴 ∈ ℝ)
4645, 1nndivred 11270 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐴 / 𝐵) ∈ ℝ)
4746, 35resubcld 10659 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) − (√‘𝐷)) ∈ ℝ)
4847recnd 10269 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) − (√‘𝐷)) ∈ ℂ)
4944, 48mulcomd 10262 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵) + (√‘𝐷)) · ((𝐴 / 𝐵) − (√‘𝐷))) = (((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))
5043, 49eqtrd 2804 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵)↑2) − ((√‘𝐷)↑2)) = (((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))
5127, 40, 503eqtrd 2808 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2)) = (((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))
5251fveq2d 6336 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2))) = (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷)))))
5352oveq2d 6808 . . 3 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (abs‘(((𝐴↑2) − (𝐷 · (𝐵↑2))) / (𝐵↑2)))) = ((𝐵↑2) · (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))))
5423, 26, 533eqtr3d 2812 . 2 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) = ((𝐵↑2) · (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))))
5548, 44absmuld 14400 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷)))) = ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))
5655oveq2d 6808 . . 3 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))) = ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))))
5748abscld 14382 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) − (√‘𝐷))) ∈ ℝ)
5844abscld 14382 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) + (√‘𝐷))) ∈ ℝ)
5957, 58remulcld 10271 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ∈ ℝ)
603, 59remulcld 10271 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) ∈ ℝ)
61 2nn0 11510 . . . . . . . . 9 2 ∈ ℕ0
6261nn0negzi 11617 . . . . . . . 8 -2 ∈ ℤ
6362a1i 11 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → -2 ∈ ℤ)
642, 17, 63reexpclzd 13240 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑-2) ∈ ℝ)
6564, 58remulcld 10271 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ∈ ℝ)
663, 65remulcld 10271 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) ∈ ℝ)
67 1red 10256 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 1 ∈ ℝ)
68 2re 11291 . . . . . . 7 2 ∈ ℝ
6968a1i 11 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 2 ∈ ℝ)
7069, 35remulcld 10271 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (2 · (√‘𝐷)) ∈ ℝ)
7167, 70readdcld 10270 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (1 + (2 · (√‘𝐷))) ∈ ℝ)
72 simpr 471 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2))
738nngt0d 11265 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < 𝐴)
741nngt0d 11265 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < 𝐵)
7545, 2, 73, 74divgt0d 11160 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < (𝐴 / 𝐵))
7611nngt0d 11265 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < 𝐷)
77 sqrtgt0 14206 . . . . . . . . . . 11 ((𝐷 ∈ ℝ ∧ 0 < 𝐷) → 0 < (√‘𝐷))
7830, 76, 77syl2anc 565 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < (√‘𝐷))
7946, 35, 75, 78addgt0d 10803 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < ((𝐴 / 𝐵) + (√‘𝐷)))
8079gt0ne0d 10793 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) + (√‘𝐷)) ≠ 0)
81 absgt0 14271 . . . . . . . . 9 (((𝐴 / 𝐵) + (√‘𝐷)) ∈ ℂ → (((𝐴 / 𝐵) + (√‘𝐷)) ≠ 0 ↔ 0 < (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))
8281biimpa 462 . . . . . . . 8 ((((𝐴 / 𝐵) + (√‘𝐷)) ∈ ℂ ∧ ((𝐴 / 𝐵) + (√‘𝐷)) ≠ 0) → 0 < (abs‘((𝐴 / 𝐵) + (√‘𝐷))))
8344, 80, 82syl2anc 565 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < (abs‘((𝐴 / 𝐵) + (√‘𝐷))))
84 ltmul1 11074 . . . . . . 7 (((abs‘((𝐴 / 𝐵) − (√‘𝐷))) ∈ ℝ ∧ (𝐵↑-2) ∈ ℝ ∧ ((abs‘((𝐴 / 𝐵) + (√‘𝐷))) ∈ ℝ ∧ 0 < (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2) ↔ ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) < ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))))
8557, 64, 58, 83, 84syl112anc 1479 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2) ↔ ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) < ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))))
8672, 85mpbid 222 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) < ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))
872, 17sqgt0d 13243 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < (𝐵↑2))
88 ltmul2 11075 . . . . . 6 ((((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ∈ ℝ ∧ ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ∈ ℝ ∧ ((𝐵↑2) ∈ ℝ ∧ 0 < (𝐵↑2))) → (((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) < ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ↔ ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) < ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))))
8959, 65, 3, 87, 88syl112anc 1479 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) < ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) ↔ ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) < ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))))
9086, 89mpbid 222 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) < ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))))
9113, 17, 63expclzd 13219 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑-2) ∈ ℂ)
9258recnd 10269 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) + (√‘𝐷))) ∈ ℂ)
93 mulass 10225 . . . . . . . 8 (((𝐵↑2) ∈ ℂ ∧ (𝐵↑-2) ∈ ℂ ∧ (abs‘((𝐴 / 𝐵) + (√‘𝐷))) ∈ ℂ) → (((𝐵↑2) · (𝐵↑-2)) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) = ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))))
9493eqcomd 2776 . . . . . . 7 (((𝐵↑2) ∈ ℂ ∧ (𝐵↑-2) ∈ ℂ ∧ (abs‘((𝐴 / 𝐵) + (√‘𝐷))) ∈ ℂ) → ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) = (((𝐵↑2) · (𝐵↑-2)) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))
9514, 91, 92, 94syl3anc 1475 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) = (((𝐵↑2) · (𝐵↑-2)) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))
96 expneg 13074 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝐵↑-2) = (1 / (𝐵↑2)))
9713, 61, 96sylancl 566 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑-2) = (1 / (𝐵↑2)))
9897oveq2d 6808 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (𝐵↑-2)) = ((𝐵↑2) · (1 / (𝐵↑2))))
9914, 20recidd 10997 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (1 / (𝐵↑2))) = 1)
10098, 99eqtrd 2804 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (𝐵↑-2)) = 1)
101100oveq1d 6807 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐵↑2) · (𝐵↑-2)) · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) = (1 · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))))
10292mulid2d 10259 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (1 · (abs‘((𝐴 / 𝐵) + (√‘𝐷)))) = (abs‘((𝐴 / 𝐵) + (√‘𝐷))))
10395, 101, 1023eqtrd 2808 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) = (abs‘((𝐴 / 𝐵) + (√‘𝐷))))
10441, 36addcomd 10439 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) + (√‘𝐷)) = ((√‘𝐷) + (𝐴 / 𝐵)))
105 ppncan 10524 . . . . . . . . . 10 (((√‘𝐷) ∈ ℂ ∧ (√‘𝐷) ∈ ℂ ∧ (𝐴 / 𝐵) ∈ ℂ) → (((√‘𝐷) + (√‘𝐷)) + ((𝐴 / 𝐵) − (√‘𝐷))) = ((√‘𝐷) + (𝐴 / 𝐵)))
106105eqcomd 2776 . . . . . . . . 9 (((√‘𝐷) ∈ ℂ ∧ (√‘𝐷) ∈ ℂ ∧ (𝐴 / 𝐵) ∈ ℂ) → ((√‘𝐷) + (𝐴 / 𝐵)) = (((√‘𝐷) + (√‘𝐷)) + ((𝐴 / 𝐵) − (√‘𝐷))))
10736, 36, 41, 106syl3anc 1475 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((√‘𝐷) + (𝐴 / 𝐵)) = (((√‘𝐷) + (√‘𝐷)) + ((𝐴 / 𝐵) − (√‘𝐷))))
10836, 36addcld 10260 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((√‘𝐷) + (√‘𝐷)) ∈ ℂ)
109108, 48addcomd 10439 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((√‘𝐷) + (√‘𝐷)) + ((𝐴 / 𝐵) − (√‘𝐷))) = (((𝐴 / 𝐵) − (√‘𝐷)) + ((√‘𝐷) + (√‘𝐷))))
110 2times 11346 . . . . . . . . . . . 12 ((√‘𝐷) ∈ ℂ → (2 · (√‘𝐷)) = ((√‘𝐷) + (√‘𝐷)))
111110eqcomd 2776 . . . . . . . . . . 11 ((√‘𝐷) ∈ ℂ → ((√‘𝐷) + (√‘𝐷)) = (2 · (√‘𝐷)))
11236, 111syl 17 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((√‘𝐷) + (√‘𝐷)) = (2 · (√‘𝐷)))
113112oveq2d 6808 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵) − (√‘𝐷)) + ((√‘𝐷) + (√‘𝐷))) = (((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷))))
114109, 113eqtrd 2804 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((√‘𝐷) + (√‘𝐷)) + ((𝐴 / 𝐵) − (√‘𝐷))) = (((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷))))
115104, 107, 1143eqtrd 2808 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐴 / 𝐵) + (√‘𝐷)) = (((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷))))
116115fveq2d 6336 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) + (√‘𝐷))) = (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷)))))
11747, 70readdcld 10270 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷))) ∈ ℝ)
118117recnd 10269 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷))) ∈ ℂ)
119118abscld 14382 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷)))) ∈ ℝ)
12070recnd 10269 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (2 · (√‘𝐷)) ∈ ℂ)
121120abscld 14382 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(2 · (√‘𝐷))) ∈ ℝ)
12257, 121readdcld 10270 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (abs‘(2 · (√‘𝐷)))) ∈ ℝ)
12348, 120abstrid 14402 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷)))) ≤ ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (abs‘(2 · (√‘𝐷)))))
124 0le2 11312 . . . . . . . . . . . 12 0 ≤ 2
125124a1i 11 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 ≤ 2)
12630, 32sqrtge0d 14366 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 ≤ (√‘𝐷))
12769, 35, 125, 126mulge0d 10805 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 ≤ (2 · (√‘𝐷)))
12870, 127absidd 14368 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(2 · (√‘𝐷))) = (2 · (√‘𝐷)))
129128oveq2d 6808 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (abs‘(2 · (√‘𝐷)))) = ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (2 · (√‘𝐷))))
1301nnsqcld 13235 . . . . . . . . . . . . . . 15 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑2) ∈ ℕ)
131130nnge1d 11264 . . . . . . . . . . . . . 14 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 1 ≤ (𝐵↑2))
132 0lt1 10751 . . . . . . . . . . . . . . . 16 0 < 1
133132a1i 11 . . . . . . . . . . . . . . 15 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → 0 < 1)
134 lerec 11107 . . . . . . . . . . . . . . 15 (((1 ∈ ℝ ∧ 0 < 1) ∧ ((𝐵↑2) ∈ ℝ ∧ 0 < (𝐵↑2))) → (1 ≤ (𝐵↑2) ↔ (1 / (𝐵↑2)) ≤ (1 / 1)))
13567, 133, 3, 87, 134syl22anc 1476 . . . . . . . . . . . . . 14 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (1 ≤ (𝐵↑2) ↔ (1 / (𝐵↑2)) ≤ (1 / 1)))
136131, 135mpbid 222 . . . . . . . . . . . . 13 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (1 / (𝐵↑2)) ≤ (1 / 1))
137 1div1e1 10918 . . . . . . . . . . . . 13 (1 / 1) = 1
138136, 137syl6breq 4825 . . . . . . . . . . . 12 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (1 / (𝐵↑2)) ≤ 1)
13997, 138eqbrtrd 4806 . . . . . . . . . . 11 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (𝐵↑-2) ≤ 1)
14057, 64, 67, 72, 139ltletrd 10398 . . . . . . . . . 10 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < 1)
14157, 67, 140ltled 10386 . . . . . . . . 9 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) − (√‘𝐷))) ≤ 1)
14257, 67, 70, 141leadd1dd 10842 . . . . . . . 8 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (2 · (√‘𝐷))) ≤ (1 + (2 · (√‘𝐷))))
143129, 142eqbrtrd 4806 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) + (abs‘(2 · (√‘𝐷)))) ≤ (1 + (2 · (√‘𝐷))))
144119, 122, 71, 123, 143letrd 10395 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) + (2 · (√‘𝐷)))) ≤ (1 + (2 · (√‘𝐷))))
145116, 144eqbrtrd 4806 . . . . 5 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴 / 𝐵) + (√‘𝐷))) ≤ (1 + (2 · (√‘𝐷))))
146103, 145eqbrtrd 4806 . . . 4 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((𝐵↑-2) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) ≤ (1 + (2 · (√‘𝐷))))
14760, 66, 71, 90, 146ltletrd 10398 . . 3 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · ((abs‘((𝐴 / 𝐵) − (√‘𝐷))) · (abs‘((𝐴 / 𝐵) + (√‘𝐷))))) < (1 + (2 · (√‘𝐷))))
14856, 147eqbrtrd 4806 . 2 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → ((𝐵↑2) · (abs‘(((𝐴 / 𝐵) − (√‘𝐷)) · ((𝐴 / 𝐵) + (√‘𝐷))))) < (1 + (2 · (√‘𝐷))))
14954, 148eqbrtrd 4806 1 (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (abs‘((𝐴 / 𝐵) − (√‘𝐷))) < (𝐵↑-2)) → (abs‘((𝐴↑2) − (𝐷 · (𝐵↑2)))) < (1 + (2 · (√‘𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wcel 2144  wne 2942   class class class wbr 4784  cfv 6031  (class class class)co 6792  cc 10135  cr 10136  0cc0 10137  1c1 10138   + caddc 10140   · cmul 10142   < clt 10275  cle 10276  cmin 10467  -cneg 10468   / cdiv 10885  cn 11221  2c2 11271  0cn0 11493  cz 11578  cexp 13066  csqrt 14180  abscabs 14181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-sup 8503  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-seq 13008  df-exp 13067  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183
This theorem is referenced by:  pellexlem3  37914
  Copyright terms: Public domain W3C validator