| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cos2t | Structured version Visualization version GIF version | ||
| Description: Double-angle formula for cosine. (Contributed by Paul Chapman, 24-Jan-2008.) |
| Ref | Expression |
|---|---|
| cos2t | ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = ((2 · ((cos‘𝐴)↑2)) − 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coscl 16163 | . . . 4 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
| 2 | 1 | sqcld 14184 | . . 3 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) ∈ ℂ) |
| 3 | ax-1cn 11213 | . . . 4 ⊢ 1 ∈ ℂ | |
| 4 | subsub3 11541 | . . . 4 ⊢ ((((cos‘𝐴)↑2) ∈ ℂ ∧ 1 ∈ ℂ ∧ ((cos‘𝐴)↑2) ∈ ℂ) → (((cos‘𝐴)↑2) − (1 − ((cos‘𝐴)↑2))) = ((((cos‘𝐴)↑2) + ((cos‘𝐴)↑2)) − 1)) | |
| 5 | 3, 4 | mp3an2 1451 | . . 3 ⊢ ((((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ∈ ℂ) → (((cos‘𝐴)↑2) − (1 − ((cos‘𝐴)↑2))) = ((((cos‘𝐴)↑2) + ((cos‘𝐴)↑2)) − 1)) |
| 6 | 2, 2, 5 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) − (1 − ((cos‘𝐴)↑2))) = ((((cos‘𝐴)↑2) + ((cos‘𝐴)↑2)) − 1)) |
| 7 | cosadd 16201 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (cos‘(𝐴 + 𝐴)) = (((cos‘𝐴) · (cos‘𝐴)) − ((sin‘𝐴) · (sin‘𝐴)))) | |
| 8 | 7 | anidms 566 | . . . 4 ⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 + 𝐴)) = (((cos‘𝐴) · (cos‘𝐴)) − ((sin‘𝐴) · (sin‘𝐴)))) |
| 9 | 2times 12402 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
| 10 | 9 | fveq2d 6910 | . . . 4 ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (cos‘(𝐴 + 𝐴))) |
| 11 | 1 | sqvald 14183 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) = ((cos‘𝐴) · (cos‘𝐴))) |
| 12 | sincl 16162 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
| 13 | 12 | sqvald 14183 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) = ((sin‘𝐴) · (sin‘𝐴))) |
| 14 | 11, 13 | oveq12d 7449 | . . . 4 ⊢ (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) − ((sin‘𝐴)↑2)) = (((cos‘𝐴) · (cos‘𝐴)) − ((sin‘𝐴) · (sin‘𝐴)))) |
| 15 | 8, 10, 14 | 3eqtr4d 2787 | . . 3 ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (((cos‘𝐴)↑2) − ((sin‘𝐴)↑2))) |
| 16 | 12 | sqcld 14184 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) ∈ ℂ) |
| 17 | 16, 2 | addcomd 11463 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2))) |
| 18 | sincossq 16212 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) | |
| 19 | 17, 18 | eqtr3d 2779 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = 1) |
| 20 | subadd 11511 | . . . . . 6 ⊢ ((1 ∈ ℂ ∧ ((cos‘𝐴)↑2) ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ) → ((1 − ((cos‘𝐴)↑2)) = ((sin‘𝐴)↑2) ↔ (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = 1)) | |
| 21 | 3, 2, 16, 20 | mp3an2i 1468 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((1 − ((cos‘𝐴)↑2)) = ((sin‘𝐴)↑2) ↔ (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = 1)) |
| 22 | 19, 21 | mpbird 257 | . . . 4 ⊢ (𝐴 ∈ ℂ → (1 − ((cos‘𝐴)↑2)) = ((sin‘𝐴)↑2)) |
| 23 | 22 | oveq2d 7447 | . . 3 ⊢ (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) − (1 − ((cos‘𝐴)↑2))) = (((cos‘𝐴)↑2) − ((sin‘𝐴)↑2))) |
| 24 | 15, 23 | eqtr4d 2780 | . 2 ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (((cos‘𝐴)↑2) − (1 − ((cos‘𝐴)↑2)))) |
| 25 | 2 | 2timesd 12509 | . . 3 ⊢ (𝐴 ∈ ℂ → (2 · ((cos‘𝐴)↑2)) = (((cos‘𝐴)↑2) + ((cos‘𝐴)↑2))) |
| 26 | 25 | oveq1d 7446 | . 2 ⊢ (𝐴 ∈ ℂ → ((2 · ((cos‘𝐴)↑2)) − 1) = ((((cos‘𝐴)↑2) + ((cos‘𝐴)↑2)) − 1)) |
| 27 | 6, 24, 26 | 3eqtr4d 2787 | 1 ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = ((2 · ((cos‘𝐴)↑2)) − 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 1c1 11156 + caddc 11158 · cmul 11160 − cmin 11492 2c2 12321 ↑cexp 14102 sincsin 16099 cosccos 16100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-ico 13393 df-fz 13548 df-fzo 13695 df-fl 13832 df-seq 14043 df-exp 14103 df-fac 14313 df-bc 14342 df-hash 14370 df-shft 15106 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-limsup 15507 df-clim 15524 df-rlim 15525 df-sum 15723 df-ef 16103 df-sin 16105 df-cos 16106 |
| This theorem is referenced by: cos2tsin 16215 cos2bnd 16224 cospi 26514 cos2pi 26518 tangtx 26547 coskpi 26565 sin2h 37617 cos2h 37618 |
| Copyright terms: Public domain | W3C validator |