MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cos2t Structured version   Visualization version   GIF version

Theorem cos2t 16087
Description: Double-angle formula for cosine. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
cos2t (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = ((2 · ((cos‘𝐴)↑2)) − 1))

Proof of Theorem cos2t
StepHypRef Expression
1 coscl 16036 . . . 4 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
21sqcld 14051 . . 3 (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) ∈ ℂ)
3 ax-1cn 11064 . . . 4 1 ∈ ℂ
4 subsub3 11393 . . . 4 ((((cos‘𝐴)↑2) ∈ ℂ ∧ 1 ∈ ℂ ∧ ((cos‘𝐴)↑2) ∈ ℂ) → (((cos‘𝐴)↑2) − (1 − ((cos‘𝐴)↑2))) = ((((cos‘𝐴)↑2) + ((cos‘𝐴)↑2)) − 1))
53, 4mp3an2 1451 . . 3 ((((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ∈ ℂ) → (((cos‘𝐴)↑2) − (1 − ((cos‘𝐴)↑2))) = ((((cos‘𝐴)↑2) + ((cos‘𝐴)↑2)) − 1))
62, 2, 5syl2anc 584 . 2 (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) − (1 − ((cos‘𝐴)↑2))) = ((((cos‘𝐴)↑2) + ((cos‘𝐴)↑2)) − 1))
7 cosadd 16074 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (cos‘(𝐴 + 𝐴)) = (((cos‘𝐴) · (cos‘𝐴)) − ((sin‘𝐴) · (sin‘𝐴))))
87anidms 566 . . . 4 (𝐴 ∈ ℂ → (cos‘(𝐴 + 𝐴)) = (((cos‘𝐴) · (cos‘𝐴)) − ((sin‘𝐴) · (sin‘𝐴))))
9 2times 12256 . . . . 5 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
109fveq2d 6826 . . . 4 (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (cos‘(𝐴 + 𝐴)))
111sqvald 14050 . . . . 5 (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) = ((cos‘𝐴) · (cos‘𝐴)))
12 sincl 16035 . . . . . 6 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
1312sqvald 14050 . . . . 5 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) = ((sin‘𝐴) · (sin‘𝐴)))
1411, 13oveq12d 7364 . . . 4 (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) − ((sin‘𝐴)↑2)) = (((cos‘𝐴) · (cos‘𝐴)) − ((sin‘𝐴) · (sin‘𝐴))))
158, 10, 143eqtr4d 2776 . . 3 (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (((cos‘𝐴)↑2) − ((sin‘𝐴)↑2)))
1612sqcld 14051 . . . . . . 7 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) ∈ ℂ)
1716, 2addcomd 11315 . . . . . 6 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)))
18 sincossq 16085 . . . . . 6 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
1917, 18eqtr3d 2768 . . . . 5 (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = 1)
20 subadd 11363 . . . . . 6 ((1 ∈ ℂ ∧ ((cos‘𝐴)↑2) ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ) → ((1 − ((cos‘𝐴)↑2)) = ((sin‘𝐴)↑2) ↔ (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = 1))
213, 2, 16, 20mp3an2i 1468 . . . . 5 (𝐴 ∈ ℂ → ((1 − ((cos‘𝐴)↑2)) = ((sin‘𝐴)↑2) ↔ (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = 1))
2219, 21mpbird 257 . . . 4 (𝐴 ∈ ℂ → (1 − ((cos‘𝐴)↑2)) = ((sin‘𝐴)↑2))
2322oveq2d 7362 . . 3 (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) − (1 − ((cos‘𝐴)↑2))) = (((cos‘𝐴)↑2) − ((sin‘𝐴)↑2)))
2415, 23eqtr4d 2769 . 2 (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (((cos‘𝐴)↑2) − (1 − ((cos‘𝐴)↑2))))
2522timesd 12364 . . 3 (𝐴 ∈ ℂ → (2 · ((cos‘𝐴)↑2)) = (((cos‘𝐴)↑2) + ((cos‘𝐴)↑2)))
2625oveq1d 7361 . 2 (𝐴 ∈ ℂ → ((2 · ((cos‘𝐴)↑2)) − 1) = ((((cos‘𝐴)↑2) + ((cos‘𝐴)↑2)) − 1))
276, 24, 263eqtr4d 2776 1 (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = ((2 · ((cos‘𝐴)↑2)) − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  cc 11004  1c1 11007   + caddc 11009   · cmul 11011  cmin 11344  2c2 12180  cexp 13968  sincsin 15970  cosccos 15971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ico 13251  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977
This theorem is referenced by:  cos2tsin  16088  cos2bnd  16097  cospi  26408  cos2pi  26412  tangtx  26441  coskpi  26459  sin2h  37658  cos2h  37659
  Copyright terms: Public domain W3C validator