Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cos2t | Structured version Visualization version GIF version |
Description: Double-angle formula for cosine. (Contributed by Paul Chapman, 24-Jan-2008.) |
Ref | Expression |
---|---|
cos2t | ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = ((2 · ((cos‘𝐴)↑2)) − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coscl 15528 | . . . 4 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
2 | 1 | sqcld 13558 | . . 3 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) ∈ ℂ) |
3 | ax-1cn 10633 | . . . 4 ⊢ 1 ∈ ℂ | |
4 | subsub3 10956 | . . . 4 ⊢ ((((cos‘𝐴)↑2) ∈ ℂ ∧ 1 ∈ ℂ ∧ ((cos‘𝐴)↑2) ∈ ℂ) → (((cos‘𝐴)↑2) − (1 − ((cos‘𝐴)↑2))) = ((((cos‘𝐴)↑2) + ((cos‘𝐴)↑2)) − 1)) | |
5 | 3, 4 | mp3an2 1446 | . . 3 ⊢ ((((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ∈ ℂ) → (((cos‘𝐴)↑2) − (1 − ((cos‘𝐴)↑2))) = ((((cos‘𝐴)↑2) + ((cos‘𝐴)↑2)) − 1)) |
6 | 2, 2, 5 | syl2anc 587 | . 2 ⊢ (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) − (1 − ((cos‘𝐴)↑2))) = ((((cos‘𝐴)↑2) + ((cos‘𝐴)↑2)) − 1)) |
7 | cosadd 15566 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (cos‘(𝐴 + 𝐴)) = (((cos‘𝐴) · (cos‘𝐴)) − ((sin‘𝐴) · (sin‘𝐴)))) | |
8 | 7 | anidms 570 | . . . 4 ⊢ (𝐴 ∈ ℂ → (cos‘(𝐴 + 𝐴)) = (((cos‘𝐴) · (cos‘𝐴)) − ((sin‘𝐴) · (sin‘𝐴)))) |
9 | 2times 11810 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
10 | 9 | fveq2d 6662 | . . . 4 ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (cos‘(𝐴 + 𝐴))) |
11 | 1 | sqvald 13557 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) = ((cos‘𝐴) · (cos‘𝐴))) |
12 | sincl 15527 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
13 | 12 | sqvald 13557 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) = ((sin‘𝐴) · (sin‘𝐴))) |
14 | 11, 13 | oveq12d 7168 | . . . 4 ⊢ (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) − ((sin‘𝐴)↑2)) = (((cos‘𝐴) · (cos‘𝐴)) − ((sin‘𝐴) · (sin‘𝐴)))) |
15 | 8, 10, 14 | 3eqtr4d 2803 | . . 3 ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (((cos‘𝐴)↑2) − ((sin‘𝐴)↑2))) |
16 | 12 | sqcld 13558 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) ∈ ℂ) |
17 | 16, 2 | addcomd 10880 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2))) |
18 | sincossq 15577 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) | |
19 | 17, 18 | eqtr3d 2795 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = 1) |
20 | subadd 10927 | . . . . . 6 ⊢ ((1 ∈ ℂ ∧ ((cos‘𝐴)↑2) ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ) → ((1 − ((cos‘𝐴)↑2)) = ((sin‘𝐴)↑2) ↔ (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = 1)) | |
21 | 3, 2, 16, 20 | mp3an2i 1463 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((1 − ((cos‘𝐴)↑2)) = ((sin‘𝐴)↑2) ↔ (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = 1)) |
22 | 19, 21 | mpbird 260 | . . . 4 ⊢ (𝐴 ∈ ℂ → (1 − ((cos‘𝐴)↑2)) = ((sin‘𝐴)↑2)) |
23 | 22 | oveq2d 7166 | . . 3 ⊢ (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) − (1 − ((cos‘𝐴)↑2))) = (((cos‘𝐴)↑2) − ((sin‘𝐴)↑2))) |
24 | 15, 23 | eqtr4d 2796 | . 2 ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = (((cos‘𝐴)↑2) − (1 − ((cos‘𝐴)↑2)))) |
25 | 2 | 2timesd 11917 | . . 3 ⊢ (𝐴 ∈ ℂ → (2 · ((cos‘𝐴)↑2)) = (((cos‘𝐴)↑2) + ((cos‘𝐴)↑2))) |
26 | 25 | oveq1d 7165 | . 2 ⊢ (𝐴 ∈ ℂ → ((2 · ((cos‘𝐴)↑2)) − 1) = ((((cos‘𝐴)↑2) + ((cos‘𝐴)↑2)) − 1)) |
27 | 6, 24, 26 | 3eqtr4d 2803 | 1 ⊢ (𝐴 ∈ ℂ → (cos‘(2 · 𝐴)) = ((2 · ((cos‘𝐴)↑2)) − 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1538 ∈ wcel 2111 ‘cfv 6335 (class class class)co 7150 ℂcc 10573 1c1 10576 + caddc 10578 · cmul 10580 − cmin 10908 2c2 11729 ↑cexp 13479 sincsin 15465 cosccos 15466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 ax-addf 10654 ax-mulf 10655 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-pm 8419 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-sup 8939 df-inf 8940 df-oi 9007 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-n0 11935 df-z 12021 df-uz 12283 df-rp 12431 df-ico 12785 df-fz 12940 df-fzo 13083 df-fl 13211 df-seq 13419 df-exp 13480 df-fac 13684 df-bc 13713 df-hash 13741 df-shft 14474 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-limsup 14876 df-clim 14893 df-rlim 14894 df-sum 15091 df-ef 15469 df-sin 15471 df-cos 15472 |
This theorem is referenced by: cos2tsin 15580 cos2bnd 15589 cospi 25164 cos2pi 25168 tangtx 25197 coskpi 25214 sin2h 35327 cos2h 35328 |
Copyright terms: Public domain | W3C validator |