![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2timesgt | Structured version Visualization version GIF version |
Description: Double of a positive real is larger than the real itself. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
2timesgt | โข (๐ด โ โ+ โ ๐ด < (2 ยท ๐ด)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 12978 | . . 3 โข (๐ด โ โ+ โ ๐ด โ โ) | |
2 | id 22 | . . 3 โข (๐ด โ โ+ โ ๐ด โ โ+) | |
3 | 1, 2 | ltaddrp2d 13046 | . 2 โข (๐ด โ โ+ โ ๐ด < (๐ด + ๐ด)) |
4 | rpcn 12980 | . . 3 โข (๐ด โ โ+ โ ๐ด โ โ) | |
5 | 2times 12344 | . . . 4 โข (๐ด โ โ โ (2 ยท ๐ด) = (๐ด + ๐ด)) | |
6 | 5 | eqcomd 2730 | . . 3 โข (๐ด โ โ โ (๐ด + ๐ด) = (2 ยท ๐ด)) |
7 | 4, 6 | syl 17 | . 2 โข (๐ด โ โ+ โ (๐ด + ๐ด) = (2 ยท ๐ด)) |
8 | 3, 7 | breqtrd 5164 | 1 โข (๐ด โ โ+ โ ๐ด < (2 ยท ๐ด)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1533 โ wcel 2098 class class class wbr 5138 (class class class)co 7401 โcc 11103 + caddc 11108 ยท cmul 11110 < clt 11244 2c2 12263 โ+crp 12970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-ltxr 11249 df-2 12271 df-rp 12971 |
This theorem is referenced by: limsup10exlem 44939 fourierdlem24 45298 fourierdlem43 45317 fourierdlem44 45318 sqwvfoura 45395 sqwvfourb 45396 fourierswlem 45397 fouriersw 45398 |
Copyright terms: Public domain | W3C validator |