| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sin2t | Structured version Visualization version GIF version | ||
| Description: Double-angle formula for sine. (Contributed by Paul Chapman, 17-Jan-2008.) |
| Ref | Expression |
|---|---|
| sin2t | ⊢ (𝐴 ∈ ℂ → (sin‘(2 · 𝐴)) = (2 · ((sin‘𝐴) · (cos‘𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2times 12402 | . . 3 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
| 2 | 1 | fveq2d 6910 | . 2 ⊢ (𝐴 ∈ ℂ → (sin‘(2 · 𝐴)) = (sin‘(𝐴 + 𝐴))) |
| 3 | coscl 16163 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
| 4 | sincl 16162 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
| 5 | 3, 4 | mulcomd 11282 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) · (sin‘𝐴)) = ((sin‘𝐴) · (cos‘𝐴))) |
| 6 | 5 | oveq2d 7447 | . . 3 ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴) · (cos‘𝐴)) + ((cos‘𝐴) · (sin‘𝐴))) = (((sin‘𝐴) · (cos‘𝐴)) + ((sin‘𝐴) · (cos‘𝐴)))) |
| 7 | sinadd 16200 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (sin‘(𝐴 + 𝐴)) = (((sin‘𝐴) · (cos‘𝐴)) + ((cos‘𝐴) · (sin‘𝐴)))) | |
| 8 | 7 | anidms 566 | . . 3 ⊢ (𝐴 ∈ ℂ → (sin‘(𝐴 + 𝐴)) = (((sin‘𝐴) · (cos‘𝐴)) + ((cos‘𝐴) · (sin‘𝐴)))) |
| 9 | 4, 3 | mulcld 11281 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴) · (cos‘𝐴)) ∈ ℂ) |
| 10 | 9 | 2timesd 12509 | . . 3 ⊢ (𝐴 ∈ ℂ → (2 · ((sin‘𝐴) · (cos‘𝐴))) = (((sin‘𝐴) · (cos‘𝐴)) + ((sin‘𝐴) · (cos‘𝐴)))) |
| 11 | 6, 8, 10 | 3eqtr4d 2787 | . 2 ⊢ (𝐴 ∈ ℂ → (sin‘(𝐴 + 𝐴)) = (2 · ((sin‘𝐴) · (cos‘𝐴)))) |
| 12 | 2, 11 | eqtrd 2777 | 1 ⊢ (𝐴 ∈ ℂ → (sin‘(2 · 𝐴)) = (2 · ((sin‘𝐴) · (cos‘𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 + caddc 11158 · cmul 11160 2c2 12321 sincsin 16099 cosccos 16100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-ico 13393 df-fz 13548 df-fzo 13695 df-fl 13832 df-seq 14043 df-exp 14103 df-fac 14313 df-bc 14342 df-hash 14370 df-shft 15106 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-limsup 15507 df-clim 15524 df-rlim 15525 df-sum 15723 df-ef 16103 df-sin 16105 df-cos 16106 |
| This theorem is referenced by: sin02gt0 16228 sin4lt0 16231 pilem2 26496 sinhalfpilem 26505 sin2pi 26517 tangtx 26547 sinq12gt0 26549 sincos4thpi 26555 sincos6thpi 26558 dirkertrigeqlem2 46114 |
| Copyright terms: Public domain | W3C validator |