![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sin2t | Structured version Visualization version GIF version |
Description: Double-angle formula for sine. (Contributed by Paul Chapman, 17-Jan-2008.) |
Ref | Expression |
---|---|
sin2t | ⊢ (𝐴 ∈ ℂ → (sin‘(2 · 𝐴)) = (2 · ((sin‘𝐴) · (cos‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2times 12335 | . . 3 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
2 | 1 | fveq2d 6885 | . 2 ⊢ (𝐴 ∈ ℂ → (sin‘(2 · 𝐴)) = (sin‘(𝐴 + 𝐴))) |
3 | coscl 16057 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
4 | sincl 16056 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
5 | 3, 4 | mulcomd 11222 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((cos‘𝐴) · (sin‘𝐴)) = ((sin‘𝐴) · (cos‘𝐴))) |
6 | 5 | oveq2d 7412 | . . 3 ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴) · (cos‘𝐴)) + ((cos‘𝐴) · (sin‘𝐴))) = (((sin‘𝐴) · (cos‘𝐴)) + ((sin‘𝐴) · (cos‘𝐴)))) |
7 | sinadd 16094 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (sin‘(𝐴 + 𝐴)) = (((sin‘𝐴) · (cos‘𝐴)) + ((cos‘𝐴) · (sin‘𝐴)))) | |
8 | 7 | anidms 568 | . . 3 ⊢ (𝐴 ∈ ℂ → (sin‘(𝐴 + 𝐴)) = (((sin‘𝐴) · (cos‘𝐴)) + ((cos‘𝐴) · (sin‘𝐴)))) |
9 | 4, 3 | mulcld 11221 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((sin‘𝐴) · (cos‘𝐴)) ∈ ℂ) |
10 | 9 | 2timesd 12442 | . . 3 ⊢ (𝐴 ∈ ℂ → (2 · ((sin‘𝐴) · (cos‘𝐴))) = (((sin‘𝐴) · (cos‘𝐴)) + ((sin‘𝐴) · (cos‘𝐴)))) |
11 | 6, 8, 10 | 3eqtr4d 2783 | . 2 ⊢ (𝐴 ∈ ℂ → (sin‘(𝐴 + 𝐴)) = (2 · ((sin‘𝐴) · (cos‘𝐴)))) |
12 | 2, 11 | eqtrd 2773 | 1 ⊢ (𝐴 ∈ ℂ → (sin‘(2 · 𝐴)) = (2 · ((sin‘𝐴) · (cos‘𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ‘cfv 6535 (class class class)co 7396 ℂcc 11095 + caddc 11100 · cmul 11102 2c2 12254 sincsin 15994 cosccos 15995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-inf2 9623 ax-cnex 11153 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-pre-mulgt0 11174 ax-pre-sup 11175 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-int 4947 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-isom 6544 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-om 7843 df-1st 7962 df-2nd 7963 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-1o 8453 df-er 8691 df-pm 8811 df-en 8928 df-dom 8929 df-sdom 8930 df-fin 8931 df-sup 9424 df-inf 9425 df-oi 9492 df-card 9921 df-pnf 11237 df-mnf 11238 df-xr 11239 df-ltxr 11240 df-le 11241 df-sub 11433 df-neg 11434 df-div 11859 df-nn 12200 df-2 12262 df-3 12263 df-n0 12460 df-z 12546 df-uz 12810 df-rp 12962 df-ico 13317 df-fz 13472 df-fzo 13615 df-fl 13744 df-seq 13954 df-exp 14015 df-fac 14221 df-bc 14250 df-hash 14278 df-shft 15001 df-cj 15033 df-re 15034 df-im 15035 df-sqrt 15169 df-abs 15170 df-limsup 15402 df-clim 15419 df-rlim 15420 df-sum 15620 df-ef 15998 df-sin 16000 df-cos 16001 |
This theorem is referenced by: sin02gt0 16122 sin4lt0 16125 pilem2 25933 sinhalfpilem 25942 sin2pi 25954 tangtx 25984 sinq12gt0 25986 sincos4thpi 25992 sincos6thpi 25994 dirkertrigeqlem2 44688 |
Copyright terms: Public domain | W3C validator |