MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-ind-dvds Structured version   Visualization version   GIF version

Theorem ex-ind-dvds 28834
Description: Example of a proof by induction (divisibility result). (Contributed by Stanislas Polu, 9-Mar-2020.) (Revised by BJ, 24-Mar-2020.)
Assertion
Ref Expression
ex-ind-dvds (𝑁 ∈ ℕ0 → 3 ∥ ((4↑𝑁) + 2))

Proof of Theorem ex-ind-dvds
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7292 . . . 4 (𝑘 = 0 → (4↑𝑘) = (4↑0))
21oveq1d 7299 . . 3 (𝑘 = 0 → ((4↑𝑘) + 2) = ((4↑0) + 2))
32breq2d 5087 . 2 (𝑘 = 0 → (3 ∥ ((4↑𝑘) + 2) ↔ 3 ∥ ((4↑0) + 2)))
4 oveq2 7292 . . . 4 (𝑘 = 𝑛 → (4↑𝑘) = (4↑𝑛))
54oveq1d 7299 . . 3 (𝑘 = 𝑛 → ((4↑𝑘) + 2) = ((4↑𝑛) + 2))
65breq2d 5087 . 2 (𝑘 = 𝑛 → (3 ∥ ((4↑𝑘) + 2) ↔ 3 ∥ ((4↑𝑛) + 2)))
7 oveq2 7292 . . . 4 (𝑘 = (𝑛 + 1) → (4↑𝑘) = (4↑(𝑛 + 1)))
87oveq1d 7299 . . 3 (𝑘 = (𝑛 + 1) → ((4↑𝑘) + 2) = ((4↑(𝑛 + 1)) + 2))
98breq2d 5087 . 2 (𝑘 = (𝑛 + 1) → (3 ∥ ((4↑𝑘) + 2) ↔ 3 ∥ ((4↑(𝑛 + 1)) + 2)))
10 oveq2 7292 . . . 4 (𝑘 = 𝑁 → (4↑𝑘) = (4↑𝑁))
1110oveq1d 7299 . . 3 (𝑘 = 𝑁 → ((4↑𝑘) + 2) = ((4↑𝑁) + 2))
1211breq2d 5087 . 2 (𝑘 = 𝑁 → (3 ∥ ((4↑𝑘) + 2) ↔ 3 ∥ ((4↑𝑁) + 2)))
13 3z 12362 . . . 4 3 ∈ ℤ
14 iddvds 15988 . . . 4 (3 ∈ ℤ → 3 ∥ 3)
1513, 14ax-mp 5 . . 3 3 ∥ 3
16 4nn0 12261 . . . . . 6 4 ∈ ℕ0
1716numexp0 16786 . . . . 5 (4↑0) = 1
1817oveq1i 7294 . . . 4 ((4↑0) + 2) = (1 + 2)
19 1p2e3 12125 . . . 4 (1 + 2) = 3
2018, 19eqtri 2767 . . 3 ((4↑0) + 2) = 3
2115, 20breqtrri 5102 . 2 3 ∥ ((4↑0) + 2)
2213a1i 11 . . . . 5 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∈ ℤ)
2316a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 4 ∈ ℕ0)
24 simpl 483 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 𝑛 ∈ ℕ0)
2523, 24nn0expcld 13970 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → (4↑𝑛) ∈ ℕ0)
2625nn0zd 12433 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → (4↑𝑛) ∈ ℤ)
27 2z 12361 . . . . . . . 8 2 ∈ ℤ
2827a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 2 ∈ ℤ)
2926, 28zaddcld 12439 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → ((4↑𝑛) + 2) ∈ ℤ)
30 4z 12363 . . . . . . 7 4 ∈ ℤ
3130a1i 11 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 4 ∈ ℤ)
3229, 31zmulcld 12441 . . . . 5 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → (((4↑𝑛) + 2) · 4) ∈ ℤ)
3322, 28zmulcld 12441 . . . . 5 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → (3 · 2) ∈ ℤ)
3416a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → 4 ∈ ℕ0)
35 id 22 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
3634, 35nn0expcld 13970 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (4↑𝑛) ∈ ℕ0)
3736nn0zd 12433 . . . . . . . 8 (𝑛 ∈ ℕ0 → (4↑𝑛) ∈ ℤ)
3837adantr 481 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → (4↑𝑛) ∈ ℤ)
3938, 28zaddcld 12439 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → ((4↑𝑛) + 2) ∈ ℤ)
40 simpr 485 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∥ ((4↑𝑛) + 2))
4122, 39, 31, 40dvdsmultr1d 16015 . . . . 5 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∥ (((4↑𝑛) + 2) · 4))
42 dvdsmul1 15996 . . . . . . 7 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → 3 ∥ (3 · 2))
4313, 27, 42mp2an 689 . . . . . 6 3 ∥ (3 · 2)
4443a1i 11 . . . . 5 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∥ (3 · 2))
4522, 32, 33, 41, 44dvds2subd 16011 . . . 4 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∥ ((((4↑𝑛) + 2) · 4) − (3 · 2)))
4636nn0cnd 12304 . . . . . . . 8 (𝑛 ∈ ℕ0 → (4↑𝑛) ∈ ℂ)
47 2cnd 12060 . . . . . . . 8 (𝑛 ∈ ℕ0 → 2 ∈ ℂ)
48 4cn 12067 . . . . . . . . 9 4 ∈ ℂ
4948a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ0 → 4 ∈ ℂ)
5046, 47, 49adddird 11009 . . . . . . 7 (𝑛 ∈ ℕ0 → (((4↑𝑛) + 2) · 4) = (((4↑𝑛) · 4) + (2 · 4)))
5150oveq1d 7299 . . . . . 6 (𝑛 ∈ ℕ0 → ((((4↑𝑛) + 2) · 4) − (2 · 3)) = ((((4↑𝑛) · 4) + (2 · 4)) − (2 · 3)))
52 3cn 12063 . . . . . . . . 9 3 ∈ ℂ
53 2cn 12057 . . . . . . . . 9 2 ∈ ℂ
5452, 53mulcomi 10992 . . . . . . . 8 (3 · 2) = (2 · 3)
5554a1i 11 . . . . . . 7 (𝑛 ∈ ℕ0 → (3 · 2) = (2 · 3))
5655oveq2d 7300 . . . . . 6 (𝑛 ∈ ℕ0 → ((((4↑𝑛) + 2) · 4) − (3 · 2)) = ((((4↑𝑛) + 2) · 4) − (2 · 3)))
5749, 35expp1d 13874 . . . . . . . 8 (𝑛 ∈ ℕ0 → (4↑(𝑛 + 1)) = ((4↑𝑛) · 4))
58 ax-1cn 10938 . . . . . . . . . . . 12 1 ∈ ℂ
59 3p1e4 12127 . . . . . . . . . . . . . 14 (3 + 1) = 4
6052, 58, 59addcomli 11176 . . . . . . . . . . . . 13 (1 + 3) = 4
6160eqcomi 2748 . . . . . . . . . . . 12 4 = (1 + 3)
6258, 52, 61mvrraddi 11247 . . . . . . . . . . 11 (4 − 3) = 1
6362oveq2i 7295 . . . . . . . . . 10 (2 · (4 − 3)) = (2 · 1)
6453, 48, 52subdii 11433 . . . . . . . . . 10 (2 · (4 − 3)) = ((2 · 4) − (2 · 3))
65 2t1e2 12145 . . . . . . . . . 10 (2 · 1) = 2
6663, 64, 653eqtr3ri 2776 . . . . . . . . 9 2 = ((2 · 4) − (2 · 3))
6766a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ0 → 2 = ((2 · 4) − (2 · 3)))
6857, 67oveq12d 7302 . . . . . . 7 (𝑛 ∈ ℕ0 → ((4↑(𝑛 + 1)) + 2) = (((4↑𝑛) · 4) + ((2 · 4) − (2 · 3))))
6946, 49mulcld 11004 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((4↑𝑛) · 4) ∈ ℂ)
7047, 49mulcld 11004 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2 · 4) ∈ ℂ)
7152a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ0 → 3 ∈ ℂ)
7247, 71mulcld 11004 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2 · 3) ∈ ℂ)
7369, 70, 72addsubassd 11361 . . . . . . 7 (𝑛 ∈ ℕ0 → ((((4↑𝑛) · 4) + (2 · 4)) − (2 · 3)) = (((4↑𝑛) · 4) + ((2 · 4) − (2 · 3))))
7468, 73eqtr4d 2782 . . . . . 6 (𝑛 ∈ ℕ0 → ((4↑(𝑛 + 1)) + 2) = ((((4↑𝑛) · 4) + (2 · 4)) − (2 · 3)))
7551, 56, 743eqtr4rd 2790 . . . . 5 (𝑛 ∈ ℕ0 → ((4↑(𝑛 + 1)) + 2) = ((((4↑𝑛) + 2) · 4) − (3 · 2)))
7675adantr 481 . . . 4 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → ((4↑(𝑛 + 1)) + 2) = ((((4↑𝑛) + 2) · 4) − (3 · 2)))
7745, 76breqtrrd 5103 . . 3 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∥ ((4↑(𝑛 + 1)) + 2))
7877ex 413 . 2 (𝑛 ∈ ℕ0 → (3 ∥ ((4↑𝑛) + 2) → 3 ∥ ((4↑(𝑛 + 1)) + 2)))
793, 6, 9, 12, 21, 78nn0ind 12424 1 (𝑁 ∈ ℕ0 → 3 ∥ ((4↑𝑁) + 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2107   class class class wbr 5075  (class class class)co 7284  cc 10878  0cc0 10880  1c1 10881   + caddc 10883   · cmul 10885  cmin 11214  2c2 12037  3c3 12038  4c4 12039  0cn0 12242  cz 12328  cexp 13791  cdvds 15972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-n0 12243  df-z 12329  df-uz 12592  df-seq 13731  df-exp 13792  df-dvds 15973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator