| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7439 |
. . . 4
⊢ (𝑘 = 0 → (4↑𝑘) = (4↑0)) |
| 2 | 1 | oveq1d 7446 |
. . 3
⊢ (𝑘 = 0 → ((4↑𝑘) + 2) = ((4↑0) +
2)) |
| 3 | 2 | breq2d 5155 |
. 2
⊢ (𝑘 = 0 → (3 ∥
((4↑𝑘) + 2) ↔ 3
∥ ((4↑0) + 2))) |
| 4 | | oveq2 7439 |
. . . 4
⊢ (𝑘 = 𝑛 → (4↑𝑘) = (4↑𝑛)) |
| 5 | 4 | oveq1d 7446 |
. . 3
⊢ (𝑘 = 𝑛 → ((4↑𝑘) + 2) = ((4↑𝑛) + 2)) |
| 6 | 5 | breq2d 5155 |
. 2
⊢ (𝑘 = 𝑛 → (3 ∥ ((4↑𝑘) + 2) ↔ 3 ∥
((4↑𝑛) +
2))) |
| 7 | | oveq2 7439 |
. . . 4
⊢ (𝑘 = (𝑛 + 1) → (4↑𝑘) = (4↑(𝑛 + 1))) |
| 8 | 7 | oveq1d 7446 |
. . 3
⊢ (𝑘 = (𝑛 + 1) → ((4↑𝑘) + 2) = ((4↑(𝑛 + 1)) + 2)) |
| 9 | 8 | breq2d 5155 |
. 2
⊢ (𝑘 = (𝑛 + 1) → (3 ∥ ((4↑𝑘) + 2) ↔ 3 ∥
((4↑(𝑛 + 1)) +
2))) |
| 10 | | oveq2 7439 |
. . . 4
⊢ (𝑘 = 𝑁 → (4↑𝑘) = (4↑𝑁)) |
| 11 | 10 | oveq1d 7446 |
. . 3
⊢ (𝑘 = 𝑁 → ((4↑𝑘) + 2) = ((4↑𝑁) + 2)) |
| 12 | 11 | breq2d 5155 |
. 2
⊢ (𝑘 = 𝑁 → (3 ∥ ((4↑𝑘) + 2) ↔ 3 ∥
((4↑𝑁) +
2))) |
| 13 | | 3z 12650 |
. . . 4
⊢ 3 ∈
ℤ |
| 14 | | iddvds 16307 |
. . . 4
⊢ (3 ∈
ℤ → 3 ∥ 3) |
| 15 | 13, 14 | ax-mp 5 |
. . 3
⊢ 3 ∥
3 |
| 16 | | 4nn0 12545 |
. . . . . 6
⊢ 4 ∈
ℕ0 |
| 17 | 16 | numexp0 17113 |
. . . . 5
⊢
(4↑0) = 1 |
| 18 | 17 | oveq1i 7441 |
. . . 4
⊢
((4↑0) + 2) = (1 + 2) |
| 19 | | 1p2e3 12409 |
. . . 4
⊢ (1 + 2) =
3 |
| 20 | 18, 19 | eqtri 2765 |
. . 3
⊢
((4↑0) + 2) = 3 |
| 21 | 15, 20 | breqtrri 5170 |
. 2
⊢ 3 ∥
((4↑0) + 2) |
| 22 | 13 | a1i 11 |
. . . . 5
⊢ ((𝑛 ∈ ℕ0
∧ 3 ∥ ((4↑𝑛)
+ 2)) → 3 ∈ ℤ) |
| 23 | 16 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0
∧ 3 ∥ ((4↑𝑛)
+ 2)) → 4 ∈ ℕ0) |
| 24 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0
∧ 3 ∥ ((4↑𝑛)
+ 2)) → 𝑛 ∈
ℕ0) |
| 25 | 23, 24 | nn0expcld 14285 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0
∧ 3 ∥ ((4↑𝑛)
+ 2)) → (4↑𝑛)
∈ ℕ0) |
| 26 | 25 | nn0zd 12639 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ 3 ∥ ((4↑𝑛)
+ 2)) → (4↑𝑛)
∈ ℤ) |
| 27 | | 2z 12649 |
. . . . . . . 8
⊢ 2 ∈
ℤ |
| 28 | 27 | a1i 11 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ 3 ∥ ((4↑𝑛)
+ 2)) → 2 ∈ ℤ) |
| 29 | 26, 28 | zaddcld 12726 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0
∧ 3 ∥ ((4↑𝑛)
+ 2)) → ((4↑𝑛) +
2) ∈ ℤ) |
| 30 | | 4z 12651 |
. . . . . . 7
⊢ 4 ∈
ℤ |
| 31 | 30 | a1i 11 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0
∧ 3 ∥ ((4↑𝑛)
+ 2)) → 4 ∈ ℤ) |
| 32 | 29, 31 | zmulcld 12728 |
. . . . 5
⊢ ((𝑛 ∈ ℕ0
∧ 3 ∥ ((4↑𝑛)
+ 2)) → (((4↑𝑛) +
2) · 4) ∈ ℤ) |
| 33 | 22, 28 | zmulcld 12728 |
. . . . 5
⊢ ((𝑛 ∈ ℕ0
∧ 3 ∥ ((4↑𝑛)
+ 2)) → (3 · 2) ∈ ℤ) |
| 34 | 16 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ 4 ∈ ℕ0) |
| 35 | | id 22 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℕ0) |
| 36 | 34, 35 | nn0expcld 14285 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
→ (4↑𝑛) ∈
ℕ0) |
| 37 | 36 | nn0zd 12639 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ (4↑𝑛) ∈
ℤ) |
| 38 | 37 | adantr 480 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ 3 ∥ ((4↑𝑛)
+ 2)) → (4↑𝑛)
∈ ℤ) |
| 39 | 38, 28 | zaddcld 12726 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0
∧ 3 ∥ ((4↑𝑛)
+ 2)) → ((4↑𝑛) +
2) ∈ ℤ) |
| 40 | | simpr 484 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0
∧ 3 ∥ ((4↑𝑛)
+ 2)) → 3 ∥ ((4↑𝑛) + 2)) |
| 41 | 22, 39, 31, 40 | dvdsmultr1d 16334 |
. . . . 5
⊢ ((𝑛 ∈ ℕ0
∧ 3 ∥ ((4↑𝑛)
+ 2)) → 3 ∥ (((4↑𝑛) + 2) · 4)) |
| 42 | | dvdsmul1 16315 |
. . . . . . 7
⊢ ((3
∈ ℤ ∧ 2 ∈ ℤ) → 3 ∥ (3 ·
2)) |
| 43 | 13, 27, 42 | mp2an 692 |
. . . . . 6
⊢ 3 ∥
(3 · 2) |
| 44 | 43 | a1i 11 |
. . . . 5
⊢ ((𝑛 ∈ ℕ0
∧ 3 ∥ ((4↑𝑛)
+ 2)) → 3 ∥ (3 · 2)) |
| 45 | 22, 32, 33, 41, 44 | dvds2subd 16330 |
. . . 4
⊢ ((𝑛 ∈ ℕ0
∧ 3 ∥ ((4↑𝑛)
+ 2)) → 3 ∥ ((((4↑𝑛) + 2) · 4) − (3 ·
2))) |
| 46 | 36 | nn0cnd 12589 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ (4↑𝑛) ∈
ℂ) |
| 47 | | 2cnd 12344 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ 2 ∈ ℂ) |
| 48 | | 4cn 12351 |
. . . . . . . . 9
⊢ 4 ∈
ℂ |
| 49 | 48 | a1i 11 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ 4 ∈ ℂ) |
| 50 | 46, 47, 49 | adddird 11286 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
→ (((4↑𝑛) + 2)
· 4) = (((4↑𝑛)
· 4) + (2 · 4))) |
| 51 | 50 | oveq1d 7446 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
→ ((((4↑𝑛) + 2)
· 4) − (2 · 3)) = ((((4↑𝑛) · 4) + (2 · 4)) − (2
· 3))) |
| 52 | | 3cn 12347 |
. . . . . . . . 9
⊢ 3 ∈
ℂ |
| 53 | | 2cn 12341 |
. . . . . . . . 9
⊢ 2 ∈
ℂ |
| 54 | 52, 53 | mulcomi 11269 |
. . . . . . . 8
⊢ (3
· 2) = (2 · 3) |
| 55 | 54 | a1i 11 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
→ (3 · 2) = (2 · 3)) |
| 56 | 55 | oveq2d 7447 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
→ ((((4↑𝑛) + 2)
· 4) − (3 · 2)) = ((((4↑𝑛) + 2) · 4) − (2 ·
3))) |
| 57 | 49, 35 | expp1d 14187 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ (4↑(𝑛 + 1)) =
((4↑𝑛) ·
4)) |
| 58 | | ax-1cn 11213 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
| 59 | | 3p1e4 12411 |
. . . . . . . . . . . . . 14
⊢ (3 + 1) =
4 |
| 60 | 52, 58, 59 | addcomli 11453 |
. . . . . . . . . . . . 13
⊢ (1 + 3) =
4 |
| 61 | 60 | eqcomi 2746 |
. . . . . . . . . . . 12
⊢ 4 = (1 +
3) |
| 62 | 58, 52, 61 | mvrraddi 11525 |
. . . . . . . . . . 11
⊢ (4
− 3) = 1 |
| 63 | 62 | oveq2i 7442 |
. . . . . . . . . 10
⊢ (2
· (4 − 3)) = (2 · 1) |
| 64 | 53, 48, 52 | subdii 11712 |
. . . . . . . . . 10
⊢ (2
· (4 − 3)) = ((2 · 4) − (2 ·
3)) |
| 65 | | 2t1e2 12429 |
. . . . . . . . . 10
⊢ (2
· 1) = 2 |
| 66 | 63, 64, 65 | 3eqtr3ri 2774 |
. . . . . . . . 9
⊢ 2 = ((2
· 4) − (2 · 3)) |
| 67 | 66 | a1i 11 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ 2 = ((2 · 4) − (2 · 3))) |
| 68 | 57, 67 | oveq12d 7449 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
→ ((4↑(𝑛 + 1)) +
2) = (((4↑𝑛) ·
4) + ((2 · 4) − (2 · 3)))) |
| 69 | 46, 49 | mulcld 11281 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ ((4↑𝑛) ·
4) ∈ ℂ) |
| 70 | 47, 49 | mulcld 11281 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ (2 · 4) ∈ ℂ) |
| 71 | 52 | a1i 11 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
→ 3 ∈ ℂ) |
| 72 | 47, 71 | mulcld 11281 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ (2 · 3) ∈ ℂ) |
| 73 | 69, 70, 72 | addsubassd 11640 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
→ ((((4↑𝑛)
· 4) + (2 · 4)) − (2 · 3)) = (((4↑𝑛) · 4) + ((2 · 4)
− (2 · 3)))) |
| 74 | 68, 73 | eqtr4d 2780 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
→ ((4↑(𝑛 + 1)) +
2) = ((((4↑𝑛) ·
4) + (2 · 4)) − (2 · 3))) |
| 75 | 51, 56, 74 | 3eqtr4rd 2788 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
→ ((4↑(𝑛 + 1)) +
2) = ((((4↑𝑛) + 2)
· 4) − (3 · 2))) |
| 76 | 75 | adantr 480 |
. . . 4
⊢ ((𝑛 ∈ ℕ0
∧ 3 ∥ ((4↑𝑛)
+ 2)) → ((4↑(𝑛 +
1)) + 2) = ((((4↑𝑛) +
2) · 4) − (3 · 2))) |
| 77 | 45, 76 | breqtrrd 5171 |
. . 3
⊢ ((𝑛 ∈ ℕ0
∧ 3 ∥ ((4↑𝑛)
+ 2)) → 3 ∥ ((4↑(𝑛 + 1)) + 2)) |
| 78 | 77 | ex 412 |
. 2
⊢ (𝑛 ∈ ℕ0
→ (3 ∥ ((4↑𝑛) + 2) → 3 ∥ ((4↑(𝑛 + 1)) + 2))) |
| 79 | 3, 6, 9, 12, 21, 78 | nn0ind 12713 |
1
⊢ (𝑁 ∈ ℕ0
→ 3 ∥ ((4↑𝑁) + 2)) |