MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-ind-dvds Structured version   Visualization version   GIF version

Theorem ex-ind-dvds 30431
Description: Example of a proof by induction (divisibility result). (Contributed by Stanislas Polu, 9-Mar-2020.) (Revised by BJ, 24-Mar-2020.)
Assertion
Ref Expression
ex-ind-dvds (𝑁 ∈ ℕ0 → 3 ∥ ((4↑𝑁) + 2))

Proof of Theorem ex-ind-dvds
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7349 . . . 4 (𝑘 = 0 → (4↑𝑘) = (4↑0))
21oveq1d 7356 . . 3 (𝑘 = 0 → ((4↑𝑘) + 2) = ((4↑0) + 2))
32breq2d 5101 . 2 (𝑘 = 0 → (3 ∥ ((4↑𝑘) + 2) ↔ 3 ∥ ((4↑0) + 2)))
4 oveq2 7349 . . . 4 (𝑘 = 𝑛 → (4↑𝑘) = (4↑𝑛))
54oveq1d 7356 . . 3 (𝑘 = 𝑛 → ((4↑𝑘) + 2) = ((4↑𝑛) + 2))
65breq2d 5101 . 2 (𝑘 = 𝑛 → (3 ∥ ((4↑𝑘) + 2) ↔ 3 ∥ ((4↑𝑛) + 2)))
7 oveq2 7349 . . . 4 (𝑘 = (𝑛 + 1) → (4↑𝑘) = (4↑(𝑛 + 1)))
87oveq1d 7356 . . 3 (𝑘 = (𝑛 + 1) → ((4↑𝑘) + 2) = ((4↑(𝑛 + 1)) + 2))
98breq2d 5101 . 2 (𝑘 = (𝑛 + 1) → (3 ∥ ((4↑𝑘) + 2) ↔ 3 ∥ ((4↑(𝑛 + 1)) + 2)))
10 oveq2 7349 . . . 4 (𝑘 = 𝑁 → (4↑𝑘) = (4↑𝑁))
1110oveq1d 7356 . . 3 (𝑘 = 𝑁 → ((4↑𝑘) + 2) = ((4↑𝑁) + 2))
1211breq2d 5101 . 2 (𝑘 = 𝑁 → (3 ∥ ((4↑𝑘) + 2) ↔ 3 ∥ ((4↑𝑁) + 2)))
13 3z 12497 . . . 4 3 ∈ ℤ
14 iddvds 16172 . . . 4 (3 ∈ ℤ → 3 ∥ 3)
1513, 14ax-mp 5 . . 3 3 ∥ 3
16 4nn0 12392 . . . . . 6 4 ∈ ℕ0
1716numexp0 16979 . . . . 5 (4↑0) = 1
1817oveq1i 7351 . . . 4 ((4↑0) + 2) = (1 + 2)
19 1p2e3 12255 . . . 4 (1 + 2) = 3
2018, 19eqtri 2753 . . 3 ((4↑0) + 2) = 3
2115, 20breqtrri 5116 . 2 3 ∥ ((4↑0) + 2)
2213a1i 11 . . . . 5 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∈ ℤ)
2316a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 4 ∈ ℕ0)
24 simpl 482 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 𝑛 ∈ ℕ0)
2523, 24nn0expcld 14145 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → (4↑𝑛) ∈ ℕ0)
2625nn0zd 12486 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → (4↑𝑛) ∈ ℤ)
27 2z 12496 . . . . . . . 8 2 ∈ ℤ
2827a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 2 ∈ ℤ)
2926, 28zaddcld 12573 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → ((4↑𝑛) + 2) ∈ ℤ)
30 4z 12498 . . . . . . 7 4 ∈ ℤ
3130a1i 11 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 4 ∈ ℤ)
3229, 31zmulcld 12575 . . . . 5 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → (((4↑𝑛) + 2) · 4) ∈ ℤ)
3322, 28zmulcld 12575 . . . . 5 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → (3 · 2) ∈ ℤ)
3416a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → 4 ∈ ℕ0)
35 id 22 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
3634, 35nn0expcld 14145 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (4↑𝑛) ∈ ℕ0)
3736nn0zd 12486 . . . . . . . 8 (𝑛 ∈ ℕ0 → (4↑𝑛) ∈ ℤ)
3837adantr 480 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → (4↑𝑛) ∈ ℤ)
3938, 28zaddcld 12573 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → ((4↑𝑛) + 2) ∈ ℤ)
40 simpr 484 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∥ ((4↑𝑛) + 2))
4122, 39, 31, 40dvdsmultr1d 16200 . . . . 5 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∥ (((4↑𝑛) + 2) · 4))
42 dvdsmul1 16180 . . . . . . 7 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → 3 ∥ (3 · 2))
4313, 27, 42mp2an 692 . . . . . 6 3 ∥ (3 · 2)
4443a1i 11 . . . . 5 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∥ (3 · 2))
4522, 32, 33, 41, 44dvds2subd 16196 . . . 4 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∥ ((((4↑𝑛) + 2) · 4) − (3 · 2)))
4636nn0cnd 12436 . . . . . . . 8 (𝑛 ∈ ℕ0 → (4↑𝑛) ∈ ℂ)
47 2cnd 12195 . . . . . . . 8 (𝑛 ∈ ℕ0 → 2 ∈ ℂ)
48 4cn 12202 . . . . . . . . 9 4 ∈ ℂ
4948a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ0 → 4 ∈ ℂ)
5046, 47, 49adddird 11129 . . . . . . 7 (𝑛 ∈ ℕ0 → (((4↑𝑛) + 2) · 4) = (((4↑𝑛) · 4) + (2 · 4)))
5150oveq1d 7356 . . . . . 6 (𝑛 ∈ ℕ0 → ((((4↑𝑛) + 2) · 4) − (2 · 3)) = ((((4↑𝑛) · 4) + (2 · 4)) − (2 · 3)))
52 3cn 12198 . . . . . . . . 9 3 ∈ ℂ
53 2cn 12192 . . . . . . . . 9 2 ∈ ℂ
5452, 53mulcomi 11112 . . . . . . . 8 (3 · 2) = (2 · 3)
5554a1i 11 . . . . . . 7 (𝑛 ∈ ℕ0 → (3 · 2) = (2 · 3))
5655oveq2d 7357 . . . . . 6 (𝑛 ∈ ℕ0 → ((((4↑𝑛) + 2) · 4) − (3 · 2)) = ((((4↑𝑛) + 2) · 4) − (2 · 3)))
5749, 35expp1d 14046 . . . . . . . 8 (𝑛 ∈ ℕ0 → (4↑(𝑛 + 1)) = ((4↑𝑛) · 4))
58 ax-1cn 11056 . . . . . . . . . . . 12 1 ∈ ℂ
59 3p1e4 12257 . . . . . . . . . . . . . 14 (3 + 1) = 4
6052, 58, 59addcomli 11297 . . . . . . . . . . . . 13 (1 + 3) = 4
6160eqcomi 2739 . . . . . . . . . . . 12 4 = (1 + 3)
6258, 52, 61mvrraddi 11369 . . . . . . . . . . 11 (4 − 3) = 1
6362oveq2i 7352 . . . . . . . . . 10 (2 · (4 − 3)) = (2 · 1)
6453, 48, 52subdii 11558 . . . . . . . . . 10 (2 · (4 − 3)) = ((2 · 4) − (2 · 3))
65 2t1e2 12275 . . . . . . . . . 10 (2 · 1) = 2
6663, 64, 653eqtr3ri 2762 . . . . . . . . 9 2 = ((2 · 4) − (2 · 3))
6766a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ0 → 2 = ((2 · 4) − (2 · 3)))
6857, 67oveq12d 7359 . . . . . . 7 (𝑛 ∈ ℕ0 → ((4↑(𝑛 + 1)) + 2) = (((4↑𝑛) · 4) + ((2 · 4) − (2 · 3))))
6946, 49mulcld 11124 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((4↑𝑛) · 4) ∈ ℂ)
7047, 49mulcld 11124 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2 · 4) ∈ ℂ)
7152a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ0 → 3 ∈ ℂ)
7247, 71mulcld 11124 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2 · 3) ∈ ℂ)
7369, 70, 72addsubassd 11484 . . . . . . 7 (𝑛 ∈ ℕ0 → ((((4↑𝑛) · 4) + (2 · 4)) − (2 · 3)) = (((4↑𝑛) · 4) + ((2 · 4) − (2 · 3))))
7468, 73eqtr4d 2768 . . . . . 6 (𝑛 ∈ ℕ0 → ((4↑(𝑛 + 1)) + 2) = ((((4↑𝑛) · 4) + (2 · 4)) − (2 · 3)))
7551, 56, 743eqtr4rd 2776 . . . . 5 (𝑛 ∈ ℕ0 → ((4↑(𝑛 + 1)) + 2) = ((((4↑𝑛) + 2) · 4) − (3 · 2)))
7675adantr 480 . . . 4 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → ((4↑(𝑛 + 1)) + 2) = ((((4↑𝑛) + 2) · 4) − (3 · 2)))
7745, 76breqtrrd 5117 . . 3 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∥ ((4↑(𝑛 + 1)) + 2))
7877ex 412 . 2 (𝑛 ∈ ℕ0 → (3 ∥ ((4↑𝑛) + 2) → 3 ∥ ((4↑(𝑛 + 1)) + 2)))
793, 6, 9, 12, 21, 78nn0ind 12560 1 (𝑁 ∈ ℕ0 → 3 ∥ ((4↑𝑁) + 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110   class class class wbr 5089  (class class class)co 7341  cc 10996  0cc0 10998  1c1 10999   + caddc 11001   · cmul 11003  cmin 11336  2c2 12172  3c3 12173  4c4 12174  0cn0 12373  cz 12460  cexp 13960  cdvds 16155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-n0 12374  df-z 12461  df-uz 12725  df-seq 13901  df-exp 13961  df-dvds 16156
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator