MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-ind-dvds Structured version   Visualization version   GIF version

Theorem ex-ind-dvds 27872
Description: Example of a proof by induction (divisibility result). (Contributed by Stanislas Polu, 9-Mar-2020.) (Revised by BJ, 24-Mar-2020.)
Assertion
Ref Expression
ex-ind-dvds (𝑁 ∈ ℕ0 → 3 ∥ ((4↑𝑁) + 2))

Proof of Theorem ex-ind-dvds
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6918 . . . 4 (𝑘 = 0 → (4↑𝑘) = (4↑0))
21oveq1d 6925 . . 3 (𝑘 = 0 → ((4↑𝑘) + 2) = ((4↑0) + 2))
32breq2d 4887 . 2 (𝑘 = 0 → (3 ∥ ((4↑𝑘) + 2) ↔ 3 ∥ ((4↑0) + 2)))
4 oveq2 6918 . . . 4 (𝑘 = 𝑛 → (4↑𝑘) = (4↑𝑛))
54oveq1d 6925 . . 3 (𝑘 = 𝑛 → ((4↑𝑘) + 2) = ((4↑𝑛) + 2))
65breq2d 4887 . 2 (𝑘 = 𝑛 → (3 ∥ ((4↑𝑘) + 2) ↔ 3 ∥ ((4↑𝑛) + 2)))
7 oveq2 6918 . . . 4 (𝑘 = (𝑛 + 1) → (4↑𝑘) = (4↑(𝑛 + 1)))
87oveq1d 6925 . . 3 (𝑘 = (𝑛 + 1) → ((4↑𝑘) + 2) = ((4↑(𝑛 + 1)) + 2))
98breq2d 4887 . 2 (𝑘 = (𝑛 + 1) → (3 ∥ ((4↑𝑘) + 2) ↔ 3 ∥ ((4↑(𝑛 + 1)) + 2)))
10 oveq2 6918 . . . 4 (𝑘 = 𝑁 → (4↑𝑘) = (4↑𝑁))
1110oveq1d 6925 . . 3 (𝑘 = 𝑁 → ((4↑𝑘) + 2) = ((4↑𝑁) + 2))
1211breq2d 4887 . 2 (𝑘 = 𝑁 → (3 ∥ ((4↑𝑘) + 2) ↔ 3 ∥ ((4↑𝑁) + 2)))
13 3z 11745 . . . 4 3 ∈ ℤ
14 iddvds 15379 . . . 4 (3 ∈ ℤ → 3 ∥ 3)
1513, 14ax-mp 5 . . 3 3 ∥ 3
16 4nn0 11646 . . . . . 6 4 ∈ ℕ0
1716numexp0 16158 . . . . 5 (4↑0) = 1
1817oveq1i 6920 . . . 4 ((4↑0) + 2) = (1 + 2)
19 1p2e3 11508 . . . 4 (1 + 2) = 3
2018, 19eqtri 2849 . . 3 ((4↑0) + 2) = 3
2115, 20breqtrri 4902 . 2 3 ∥ ((4↑0) + 2)
2213a1i 11 . . . . 5 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∈ ℤ)
2316a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → 4 ∈ ℕ0)
24 id 22 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
2523, 24nn0expcld 13334 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (4↑𝑛) ∈ ℕ0)
2625nn0zd 11815 . . . . . . . 8 (𝑛 ∈ ℕ0 → (4↑𝑛) ∈ ℤ)
2726adantr 474 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → (4↑𝑛) ∈ ℤ)
28 2z 11744 . . . . . . . 8 2 ∈ ℤ
2928a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 2 ∈ ℤ)
3027, 29zaddcld 11821 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → ((4↑𝑛) + 2) ∈ ℤ)
31 4z 11746 . . . . . . 7 4 ∈ ℤ
3231a1i 11 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 4 ∈ ℤ)
33 simpr 479 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∥ ((4↑𝑛) + 2))
3422, 30, 32, 33dvdsmultr1d 15404 . . . . 5 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∥ (((4↑𝑛) + 2) · 4))
35 dvdsmul1 15387 . . . . . . 7 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → 3 ∥ (3 · 2))
3613, 28, 35mp2an 683 . . . . . 6 3 ∥ (3 · 2)
3736a1i 11 . . . . 5 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∥ (3 · 2))
3816a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 4 ∈ ℕ0)
39 simpl 476 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 𝑛 ∈ ℕ0)
4038, 39nn0expcld 13334 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → (4↑𝑛) ∈ ℕ0)
4140nn0zd 11815 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → (4↑𝑛) ∈ ℤ)
4241, 29zaddcld 11821 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → ((4↑𝑛) + 2) ∈ ℤ)
4342, 32zmulcld 11823 . . . . 5 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → (((4↑𝑛) + 2) · 4) ∈ ℤ)
4422, 29zmulcld 11823 . . . . 5 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → (3 · 2) ∈ ℤ)
4522, 34, 37, 43, 44dvds2subd 15401 . . . 4 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∥ ((((4↑𝑛) + 2) · 4) − (3 · 2)))
4625nn0cnd 11687 . . . . . . . 8 (𝑛 ∈ ℕ0 → (4↑𝑛) ∈ ℂ)
47 2cnd 11436 . . . . . . . 8 (𝑛 ∈ ℕ0 → 2 ∈ ℂ)
48 4cn 11444 . . . . . . . . 9 4 ∈ ℂ
4948a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ0 → 4 ∈ ℂ)
5046, 47, 49adddird 10389 . . . . . . 7 (𝑛 ∈ ℕ0 → (((4↑𝑛) + 2) · 4) = (((4↑𝑛) · 4) + (2 · 4)))
5150oveq1d 6925 . . . . . 6 (𝑛 ∈ ℕ0 → ((((4↑𝑛) + 2) · 4) − (2 · 3)) = ((((4↑𝑛) · 4) + (2 · 4)) − (2 · 3)))
52 3cn 11439 . . . . . . . . 9 3 ∈ ℂ
53 2cn 11433 . . . . . . . . 9 2 ∈ ℂ
5452, 53mulcomi 10372 . . . . . . . 8 (3 · 2) = (2 · 3)
5554a1i 11 . . . . . . 7 (𝑛 ∈ ℕ0 → (3 · 2) = (2 · 3))
5655oveq2d 6926 . . . . . 6 (𝑛 ∈ ℕ0 → ((((4↑𝑛) + 2) · 4) − (3 · 2)) = ((((4↑𝑛) + 2) · 4) − (2 · 3)))
5749, 24expp1d 13310 . . . . . . . 8 (𝑛 ∈ ℕ0 → (4↑(𝑛 + 1)) = ((4↑𝑛) · 4))
58 ax-1cn 10317 . . . . . . . . . . . . . . 15 1 ∈ ℂ
59 3p1e4 11510 . . . . . . . . . . . . . . 15 (3 + 1) = 4
6052, 58, 59addcomli 10554 . . . . . . . . . . . . . 14 (1 + 3) = 4
6160eqcomi 2834 . . . . . . . . . . . . 13 4 = (1 + 3)
6261oveq1i 6920 . . . . . . . . . . . 12 (4 − 3) = ((1 + 3) − 3)
6358, 52pncan3oi 10625 . . . . . . . . . . . 12 ((1 + 3) − 3) = 1
6462, 63eqtri 2849 . . . . . . . . . . 11 (4 − 3) = 1
6564oveq2i 6921 . . . . . . . . . 10 (2 · (4 − 3)) = (2 · 1)
6653, 48, 52subdii 10810 . . . . . . . . . 10 (2 · (4 − 3)) = ((2 · 4) − (2 · 3))
67 2t1e2 11528 . . . . . . . . . 10 (2 · 1) = 2
6865, 66, 673eqtr3ri 2858 . . . . . . . . 9 2 = ((2 · 4) − (2 · 3))
6968a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ0 → 2 = ((2 · 4) − (2 · 3)))
7057, 69oveq12d 6928 . . . . . . 7 (𝑛 ∈ ℕ0 → ((4↑(𝑛 + 1)) + 2) = (((4↑𝑛) · 4) + ((2 · 4) − (2 · 3))))
7146, 49mulcld 10384 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((4↑𝑛) · 4) ∈ ℂ)
7247, 49mulcld 10384 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2 · 4) ∈ ℂ)
7352a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ0 → 3 ∈ ℂ)
7447, 73mulcld 10384 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2 · 3) ∈ ℂ)
7571, 72, 74addsubassd 10740 . . . . . . 7 (𝑛 ∈ ℕ0 → ((((4↑𝑛) · 4) + (2 · 4)) − (2 · 3)) = (((4↑𝑛) · 4) + ((2 · 4) − (2 · 3))))
7670, 75eqtr4d 2864 . . . . . 6 (𝑛 ∈ ℕ0 → ((4↑(𝑛 + 1)) + 2) = ((((4↑𝑛) · 4) + (2 · 4)) − (2 · 3)))
7751, 56, 763eqtr4rd 2872 . . . . 5 (𝑛 ∈ ℕ0 → ((4↑(𝑛 + 1)) + 2) = ((((4↑𝑛) + 2) · 4) − (3 · 2)))
7877adantr 474 . . . 4 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → ((4↑(𝑛 + 1)) + 2) = ((((4↑𝑛) + 2) · 4) − (3 · 2)))
7945, 78breqtrrd 4903 . . 3 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∥ ((4↑(𝑛 + 1)) + 2))
8079ex 403 . 2 (𝑛 ∈ ℕ0 → (3 ∥ ((4↑𝑛) + 2) → 3 ∥ ((4↑(𝑛 + 1)) + 2)))
813, 6, 9, 12, 21, 80nn0ind 11807 1 (𝑁 ∈ ℕ0 → 3 ∥ ((4↑𝑁) + 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164   class class class wbr 4875  (class class class)co 6910  cc 10257  0cc0 10259  1c1 10260   + caddc 10262   · cmul 10264  cmin 10592  2c2 11413  3c3 11414  4c4 11415  0cn0 11625  cz 11711  cexp 13161  cdvds 15364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-n0 11626  df-z 11712  df-uz 11976  df-seq 13103  df-exp 13162  df-dvds 15365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator