MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-ind-dvds Structured version   Visualization version   GIF version

Theorem ex-ind-dvds 30493
Description: Example of a proof by induction (divisibility result). (Contributed by Stanislas Polu, 9-Mar-2020.) (Revised by BJ, 24-Mar-2020.)
Assertion
Ref Expression
ex-ind-dvds (𝑁 ∈ ℕ0 → 3 ∥ ((4↑𝑁) + 2))

Proof of Theorem ex-ind-dvds
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7456 . . . 4 (𝑘 = 0 → (4↑𝑘) = (4↑0))
21oveq1d 7463 . . 3 (𝑘 = 0 → ((4↑𝑘) + 2) = ((4↑0) + 2))
32breq2d 5178 . 2 (𝑘 = 0 → (3 ∥ ((4↑𝑘) + 2) ↔ 3 ∥ ((4↑0) + 2)))
4 oveq2 7456 . . . 4 (𝑘 = 𝑛 → (4↑𝑘) = (4↑𝑛))
54oveq1d 7463 . . 3 (𝑘 = 𝑛 → ((4↑𝑘) + 2) = ((4↑𝑛) + 2))
65breq2d 5178 . 2 (𝑘 = 𝑛 → (3 ∥ ((4↑𝑘) + 2) ↔ 3 ∥ ((4↑𝑛) + 2)))
7 oveq2 7456 . . . 4 (𝑘 = (𝑛 + 1) → (4↑𝑘) = (4↑(𝑛 + 1)))
87oveq1d 7463 . . 3 (𝑘 = (𝑛 + 1) → ((4↑𝑘) + 2) = ((4↑(𝑛 + 1)) + 2))
98breq2d 5178 . 2 (𝑘 = (𝑛 + 1) → (3 ∥ ((4↑𝑘) + 2) ↔ 3 ∥ ((4↑(𝑛 + 1)) + 2)))
10 oveq2 7456 . . . 4 (𝑘 = 𝑁 → (4↑𝑘) = (4↑𝑁))
1110oveq1d 7463 . . 3 (𝑘 = 𝑁 → ((4↑𝑘) + 2) = ((4↑𝑁) + 2))
1211breq2d 5178 . 2 (𝑘 = 𝑁 → (3 ∥ ((4↑𝑘) + 2) ↔ 3 ∥ ((4↑𝑁) + 2)))
13 3z 12676 . . . 4 3 ∈ ℤ
14 iddvds 16318 . . . 4 (3 ∈ ℤ → 3 ∥ 3)
1513, 14ax-mp 5 . . 3 3 ∥ 3
16 4nn0 12572 . . . . . 6 4 ∈ ℕ0
1716numexp0 17123 . . . . 5 (4↑0) = 1
1817oveq1i 7458 . . . 4 ((4↑0) + 2) = (1 + 2)
19 1p2e3 12436 . . . 4 (1 + 2) = 3
2018, 19eqtri 2768 . . 3 ((4↑0) + 2) = 3
2115, 20breqtrri 5193 . 2 3 ∥ ((4↑0) + 2)
2213a1i 11 . . . . 5 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∈ ℤ)
2316a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 4 ∈ ℕ0)
24 simpl 482 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 𝑛 ∈ ℕ0)
2523, 24nn0expcld 14295 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → (4↑𝑛) ∈ ℕ0)
2625nn0zd 12665 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → (4↑𝑛) ∈ ℤ)
27 2z 12675 . . . . . . . 8 2 ∈ ℤ
2827a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 2 ∈ ℤ)
2926, 28zaddcld 12751 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → ((4↑𝑛) + 2) ∈ ℤ)
30 4z 12677 . . . . . . 7 4 ∈ ℤ
3130a1i 11 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 4 ∈ ℤ)
3229, 31zmulcld 12753 . . . . 5 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → (((4↑𝑛) + 2) · 4) ∈ ℤ)
3322, 28zmulcld 12753 . . . . 5 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → (3 · 2) ∈ ℤ)
3416a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → 4 ∈ ℕ0)
35 id 22 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
3634, 35nn0expcld 14295 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (4↑𝑛) ∈ ℕ0)
3736nn0zd 12665 . . . . . . . 8 (𝑛 ∈ ℕ0 → (4↑𝑛) ∈ ℤ)
3837adantr 480 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → (4↑𝑛) ∈ ℤ)
3938, 28zaddcld 12751 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → ((4↑𝑛) + 2) ∈ ℤ)
40 simpr 484 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∥ ((4↑𝑛) + 2))
4122, 39, 31, 40dvdsmultr1d 16345 . . . . 5 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∥ (((4↑𝑛) + 2) · 4))
42 dvdsmul1 16326 . . . . . . 7 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → 3 ∥ (3 · 2))
4313, 27, 42mp2an 691 . . . . . 6 3 ∥ (3 · 2)
4443a1i 11 . . . . 5 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∥ (3 · 2))
4522, 32, 33, 41, 44dvds2subd 16341 . . . 4 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∥ ((((4↑𝑛) + 2) · 4) − (3 · 2)))
4636nn0cnd 12615 . . . . . . . 8 (𝑛 ∈ ℕ0 → (4↑𝑛) ∈ ℂ)
47 2cnd 12371 . . . . . . . 8 (𝑛 ∈ ℕ0 → 2 ∈ ℂ)
48 4cn 12378 . . . . . . . . 9 4 ∈ ℂ
4948a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ0 → 4 ∈ ℂ)
5046, 47, 49adddird 11315 . . . . . . 7 (𝑛 ∈ ℕ0 → (((4↑𝑛) + 2) · 4) = (((4↑𝑛) · 4) + (2 · 4)))
5150oveq1d 7463 . . . . . 6 (𝑛 ∈ ℕ0 → ((((4↑𝑛) + 2) · 4) − (2 · 3)) = ((((4↑𝑛) · 4) + (2 · 4)) − (2 · 3)))
52 3cn 12374 . . . . . . . . 9 3 ∈ ℂ
53 2cn 12368 . . . . . . . . 9 2 ∈ ℂ
5452, 53mulcomi 11298 . . . . . . . 8 (3 · 2) = (2 · 3)
5554a1i 11 . . . . . . 7 (𝑛 ∈ ℕ0 → (3 · 2) = (2 · 3))
5655oveq2d 7464 . . . . . 6 (𝑛 ∈ ℕ0 → ((((4↑𝑛) + 2) · 4) − (3 · 2)) = ((((4↑𝑛) + 2) · 4) − (2 · 3)))
5749, 35expp1d 14197 . . . . . . . 8 (𝑛 ∈ ℕ0 → (4↑(𝑛 + 1)) = ((4↑𝑛) · 4))
58 ax-1cn 11242 . . . . . . . . . . . 12 1 ∈ ℂ
59 3p1e4 12438 . . . . . . . . . . . . . 14 (3 + 1) = 4
6052, 58, 59addcomli 11482 . . . . . . . . . . . . 13 (1 + 3) = 4
6160eqcomi 2749 . . . . . . . . . . . 12 4 = (1 + 3)
6258, 52, 61mvrraddi 11553 . . . . . . . . . . 11 (4 − 3) = 1
6362oveq2i 7459 . . . . . . . . . 10 (2 · (4 − 3)) = (2 · 1)
6453, 48, 52subdii 11739 . . . . . . . . . 10 (2 · (4 − 3)) = ((2 · 4) − (2 · 3))
65 2t1e2 12456 . . . . . . . . . 10 (2 · 1) = 2
6663, 64, 653eqtr3ri 2777 . . . . . . . . 9 2 = ((2 · 4) − (2 · 3))
6766a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ0 → 2 = ((2 · 4) − (2 · 3)))
6857, 67oveq12d 7466 . . . . . . 7 (𝑛 ∈ ℕ0 → ((4↑(𝑛 + 1)) + 2) = (((4↑𝑛) · 4) + ((2 · 4) − (2 · 3))))
6946, 49mulcld 11310 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((4↑𝑛) · 4) ∈ ℂ)
7047, 49mulcld 11310 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2 · 4) ∈ ℂ)
7152a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ0 → 3 ∈ ℂ)
7247, 71mulcld 11310 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2 · 3) ∈ ℂ)
7369, 70, 72addsubassd 11667 . . . . . . 7 (𝑛 ∈ ℕ0 → ((((4↑𝑛) · 4) + (2 · 4)) − (2 · 3)) = (((4↑𝑛) · 4) + ((2 · 4) − (2 · 3))))
7468, 73eqtr4d 2783 . . . . . 6 (𝑛 ∈ ℕ0 → ((4↑(𝑛 + 1)) + 2) = ((((4↑𝑛) · 4) + (2 · 4)) − (2 · 3)))
7551, 56, 743eqtr4rd 2791 . . . . 5 (𝑛 ∈ ℕ0 → ((4↑(𝑛 + 1)) + 2) = ((((4↑𝑛) + 2) · 4) − (3 · 2)))
7675adantr 480 . . . 4 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → ((4↑(𝑛 + 1)) + 2) = ((((4↑𝑛) + 2) · 4) − (3 · 2)))
7745, 76breqtrrd 5194 . . 3 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∥ ((4↑(𝑛 + 1)) + 2))
7877ex 412 . 2 (𝑛 ∈ ℕ0 → (3 ∥ ((4↑𝑛) + 2) → 3 ∥ ((4↑(𝑛 + 1)) + 2)))
793, 6, 9, 12, 21, 78nn0ind 12738 1 (𝑁 ∈ ℕ0 → 3 ∥ ((4↑𝑁) + 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520  2c2 12348  3c3 12349  4c4 12350  0cn0 12553  cz 12639  cexp 14112  cdvds 16302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053  df-exp 14113  df-dvds 16303
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator