MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-ind-dvds Structured version   Visualization version   GIF version

Theorem ex-ind-dvds 30146
Description: Example of a proof by induction (divisibility result). (Contributed by Stanislas Polu, 9-Mar-2020.) (Revised by BJ, 24-Mar-2020.)
Assertion
Ref Expression
ex-ind-dvds (𝑁 ∈ ℕ0 → 3 ∥ ((4↑𝑁) + 2))

Proof of Theorem ex-ind-dvds
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7420 . . . 4 (𝑘 = 0 → (4↑𝑘) = (4↑0))
21oveq1d 7427 . . 3 (𝑘 = 0 → ((4↑𝑘) + 2) = ((4↑0) + 2))
32breq2d 5160 . 2 (𝑘 = 0 → (3 ∥ ((4↑𝑘) + 2) ↔ 3 ∥ ((4↑0) + 2)))
4 oveq2 7420 . . . 4 (𝑘 = 𝑛 → (4↑𝑘) = (4↑𝑛))
54oveq1d 7427 . . 3 (𝑘 = 𝑛 → ((4↑𝑘) + 2) = ((4↑𝑛) + 2))
65breq2d 5160 . 2 (𝑘 = 𝑛 → (3 ∥ ((4↑𝑘) + 2) ↔ 3 ∥ ((4↑𝑛) + 2)))
7 oveq2 7420 . . . 4 (𝑘 = (𝑛 + 1) → (4↑𝑘) = (4↑(𝑛 + 1)))
87oveq1d 7427 . . 3 (𝑘 = (𝑛 + 1) → ((4↑𝑘) + 2) = ((4↑(𝑛 + 1)) + 2))
98breq2d 5160 . 2 (𝑘 = (𝑛 + 1) → (3 ∥ ((4↑𝑘) + 2) ↔ 3 ∥ ((4↑(𝑛 + 1)) + 2)))
10 oveq2 7420 . . . 4 (𝑘 = 𝑁 → (4↑𝑘) = (4↑𝑁))
1110oveq1d 7427 . . 3 (𝑘 = 𝑁 → ((4↑𝑘) + 2) = ((4↑𝑁) + 2))
1211breq2d 5160 . 2 (𝑘 = 𝑁 → (3 ∥ ((4↑𝑘) + 2) ↔ 3 ∥ ((4↑𝑁) + 2)))
13 3z 12602 . . . 4 3 ∈ ℤ
14 iddvds 16220 . . . 4 (3 ∈ ℤ → 3 ∥ 3)
1513, 14ax-mp 5 . . 3 3 ∥ 3
16 4nn0 12498 . . . . . 6 4 ∈ ℕ0
1716numexp0 17016 . . . . 5 (4↑0) = 1
1817oveq1i 7422 . . . 4 ((4↑0) + 2) = (1 + 2)
19 1p2e3 12362 . . . 4 (1 + 2) = 3
2018, 19eqtri 2759 . . 3 ((4↑0) + 2) = 3
2115, 20breqtrri 5175 . 2 3 ∥ ((4↑0) + 2)
2213a1i 11 . . . . 5 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∈ ℤ)
2316a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 4 ∈ ℕ0)
24 simpl 482 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 𝑛 ∈ ℕ0)
2523, 24nn0expcld 14216 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → (4↑𝑛) ∈ ℕ0)
2625nn0zd 12591 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → (4↑𝑛) ∈ ℤ)
27 2z 12601 . . . . . . . 8 2 ∈ ℤ
2827a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 2 ∈ ℤ)
2926, 28zaddcld 12677 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → ((4↑𝑛) + 2) ∈ ℤ)
30 4z 12603 . . . . . . 7 4 ∈ ℤ
3130a1i 11 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 4 ∈ ℤ)
3229, 31zmulcld 12679 . . . . 5 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → (((4↑𝑛) + 2) · 4) ∈ ℤ)
3322, 28zmulcld 12679 . . . . 5 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → (3 · 2) ∈ ℤ)
3416a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → 4 ∈ ℕ0)
35 id 22 . . . . . . . . . 10 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
3634, 35nn0expcld 14216 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (4↑𝑛) ∈ ℕ0)
3736nn0zd 12591 . . . . . . . 8 (𝑛 ∈ ℕ0 → (4↑𝑛) ∈ ℤ)
3837adantr 480 . . . . . . 7 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → (4↑𝑛) ∈ ℤ)
3938, 28zaddcld 12677 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → ((4↑𝑛) + 2) ∈ ℤ)
40 simpr 484 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∥ ((4↑𝑛) + 2))
4122, 39, 31, 40dvdsmultr1d 16247 . . . . 5 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∥ (((4↑𝑛) + 2) · 4))
42 dvdsmul1 16228 . . . . . . 7 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → 3 ∥ (3 · 2))
4313, 27, 42mp2an 689 . . . . . 6 3 ∥ (3 · 2)
4443a1i 11 . . . . 5 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∥ (3 · 2))
4522, 32, 33, 41, 44dvds2subd 16243 . . . 4 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∥ ((((4↑𝑛) + 2) · 4) − (3 · 2)))
4636nn0cnd 12541 . . . . . . . 8 (𝑛 ∈ ℕ0 → (4↑𝑛) ∈ ℂ)
47 2cnd 12297 . . . . . . . 8 (𝑛 ∈ ℕ0 → 2 ∈ ℂ)
48 4cn 12304 . . . . . . . . 9 4 ∈ ℂ
4948a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ0 → 4 ∈ ℂ)
5046, 47, 49adddird 11246 . . . . . . 7 (𝑛 ∈ ℕ0 → (((4↑𝑛) + 2) · 4) = (((4↑𝑛) · 4) + (2 · 4)))
5150oveq1d 7427 . . . . . 6 (𝑛 ∈ ℕ0 → ((((4↑𝑛) + 2) · 4) − (2 · 3)) = ((((4↑𝑛) · 4) + (2 · 4)) − (2 · 3)))
52 3cn 12300 . . . . . . . . 9 3 ∈ ℂ
53 2cn 12294 . . . . . . . . 9 2 ∈ ℂ
5452, 53mulcomi 11229 . . . . . . . 8 (3 · 2) = (2 · 3)
5554a1i 11 . . . . . . 7 (𝑛 ∈ ℕ0 → (3 · 2) = (2 · 3))
5655oveq2d 7428 . . . . . 6 (𝑛 ∈ ℕ0 → ((((4↑𝑛) + 2) · 4) − (3 · 2)) = ((((4↑𝑛) + 2) · 4) − (2 · 3)))
5749, 35expp1d 14119 . . . . . . . 8 (𝑛 ∈ ℕ0 → (4↑(𝑛 + 1)) = ((4↑𝑛) · 4))
58 ax-1cn 11174 . . . . . . . . . . . 12 1 ∈ ℂ
59 3p1e4 12364 . . . . . . . . . . . . . 14 (3 + 1) = 4
6052, 58, 59addcomli 11413 . . . . . . . . . . . . 13 (1 + 3) = 4
6160eqcomi 2740 . . . . . . . . . . . 12 4 = (1 + 3)
6258, 52, 61mvrraddi 11484 . . . . . . . . . . 11 (4 − 3) = 1
6362oveq2i 7423 . . . . . . . . . 10 (2 · (4 − 3)) = (2 · 1)
6453, 48, 52subdii 11670 . . . . . . . . . 10 (2 · (4 − 3)) = ((2 · 4) − (2 · 3))
65 2t1e2 12382 . . . . . . . . . 10 (2 · 1) = 2
6663, 64, 653eqtr3ri 2768 . . . . . . . . 9 2 = ((2 · 4) − (2 · 3))
6766a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ0 → 2 = ((2 · 4) − (2 · 3)))
6857, 67oveq12d 7430 . . . . . . 7 (𝑛 ∈ ℕ0 → ((4↑(𝑛 + 1)) + 2) = (((4↑𝑛) · 4) + ((2 · 4) − (2 · 3))))
6946, 49mulcld 11241 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((4↑𝑛) · 4) ∈ ℂ)
7047, 49mulcld 11241 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2 · 4) ∈ ℂ)
7152a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕ0 → 3 ∈ ℂ)
7247, 71mulcld 11241 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2 · 3) ∈ ℂ)
7369, 70, 72addsubassd 11598 . . . . . . 7 (𝑛 ∈ ℕ0 → ((((4↑𝑛) · 4) + (2 · 4)) − (2 · 3)) = (((4↑𝑛) · 4) + ((2 · 4) − (2 · 3))))
7468, 73eqtr4d 2774 . . . . . 6 (𝑛 ∈ ℕ0 → ((4↑(𝑛 + 1)) + 2) = ((((4↑𝑛) · 4) + (2 · 4)) − (2 · 3)))
7551, 56, 743eqtr4rd 2782 . . . . 5 (𝑛 ∈ ℕ0 → ((4↑(𝑛 + 1)) + 2) = ((((4↑𝑛) + 2) · 4) − (3 · 2)))
7675adantr 480 . . . 4 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → ((4↑(𝑛 + 1)) + 2) = ((((4↑𝑛) + 2) · 4) − (3 · 2)))
7745, 76breqtrrd 5176 . . 3 ((𝑛 ∈ ℕ0 ∧ 3 ∥ ((4↑𝑛) + 2)) → 3 ∥ ((4↑(𝑛 + 1)) + 2))
7877ex 412 . 2 (𝑛 ∈ ℕ0 → (3 ∥ ((4↑𝑛) + 2) → 3 ∥ ((4↑(𝑛 + 1)) + 2)))
793, 6, 9, 12, 21, 78nn0ind 12664 1 (𝑁 ∈ ℕ0 → 3 ∥ ((4↑𝑁) + 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105   class class class wbr 5148  (class class class)co 7412  cc 11114  0cc0 11116  1c1 11117   + caddc 11119   · cmul 11121  cmin 11451  2c2 12274  3c3 12275  4c4 12276  0cn0 12479  cz 12565  cexp 14034  cdvds 16204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-n0 12480  df-z 12566  df-uz 12830  df-seq 13974  df-exp 14035  df-dvds 16205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator