![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0dp2dp | Structured version Visualization version GIF version |
Description: Multiply by 10 a decimal expansion which starts with a zero. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
Ref | Expression |
---|---|
0dp2dp.a | โข ๐ด โ โ0 |
0dp2dp.b | โข ๐ต โ โ+ |
Ref | Expression |
---|---|
0dp2dp | โข ((0._๐ด๐ต) ยท ;10) = (๐ด.๐ต) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0dp2dp.a | . . . 4 โข ๐ด โ โ0 | |
2 | 0dp2dp.b | . . . 4 โข ๐ต โ โ+ | |
3 | 0p1e1 12335 | . . . 4 โข (0 + 1) = 1 | |
4 | 0z 12570 | . . . 4 โข 0 โ โค | |
5 | 1z 12593 | . . . 4 โข 1 โ โค | |
6 | 1, 2, 3, 4, 5 | dpexpp1 32577 | . . 3 โข ((๐ด.๐ต) ยท (;10โ0)) = ((0._๐ด๐ต) ยท (;10โ1)) |
7 | 10nn0 12696 | . . . . . 6 โข ;10 โ โ0 | |
8 | 7 | nn0cni 12485 | . . . . 5 โข ;10 โ โ |
9 | exp0 14034 | . . . . 5 โข (;10 โ โ โ (;10โ0) = 1) | |
10 | 8, 9 | ax-mp 5 | . . . 4 โข (;10โ0) = 1 |
11 | 10 | oveq2i 7415 | . . 3 โข ((๐ด.๐ต) ยท (;10โ0)) = ((๐ด.๐ต) ยท 1) |
12 | exp1 14036 | . . . . 5 โข (;10 โ โ โ (;10โ1) = ;10) | |
13 | 8, 12 | ax-mp 5 | . . . 4 โข (;10โ1) = ;10 |
14 | 13 | oveq2i 7415 | . . 3 โข ((0._๐ด๐ต) ยท (;10โ1)) = ((0._๐ด๐ต) ยท ;10) |
15 | 6, 11, 14 | 3eqtr3ri 2763 | . 2 โข ((0._๐ด๐ต) ยท ;10) = ((๐ด.๐ต) ยท 1) |
16 | 1, 2 | rpdpcl 32572 | . . . 4 โข (๐ด.๐ต) โ โ+ |
17 | rpcn 12987 | . . . 4 โข ((๐ด.๐ต) โ โ+ โ (๐ด.๐ต) โ โ) | |
18 | 16, 17 | ax-mp 5 | . . 3 โข (๐ด.๐ต) โ โ |
19 | mulrid 11213 | . . 3 โข ((๐ด.๐ต) โ โ โ ((๐ด.๐ต) ยท 1) = (๐ด.๐ต)) | |
20 | 18, 19 | ax-mp 5 | . 2 โข ((๐ด.๐ต) ยท 1) = (๐ด.๐ต) |
21 | 15, 20 | eqtri 2754 | 1 โข ((0._๐ด๐ต) ยท ;10) = (๐ด.๐ต) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 โ wcel 2098 (class class class)co 7404 โcc 11107 0cc0 11109 1c1 11110 ยท cmul 11114 โ0cn0 12473 ;cdc 12678 โ+crp 12977 โcexp 14030 _cdp2 32540 .cdp 32557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-rp 12978 df-seq 13970 df-exp 14031 df-dp2 32541 df-dp 32558 |
This theorem is referenced by: hgt750lem 34192 |
Copyright terms: Public domain | W3C validator |