Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0dp2dp | Structured version Visualization version GIF version |
Description: Multiply by 10 a decimal expansion which starts with a zero. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
Ref | Expression |
---|---|
0dp2dp.a | ⊢ 𝐴 ∈ ℕ0 |
0dp2dp.b | ⊢ 𝐵 ∈ ℝ+ |
Ref | Expression |
---|---|
0dp2dp | ⊢ ((0._𝐴𝐵) · ;10) = (𝐴.𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0dp2dp.a | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
2 | 0dp2dp.b | . . . 4 ⊢ 𝐵 ∈ ℝ+ | |
3 | 0p1e1 12025 | . . . 4 ⊢ (0 + 1) = 1 | |
4 | 0z 12260 | . . . 4 ⊢ 0 ∈ ℤ | |
5 | 1z 12280 | . . . 4 ⊢ 1 ∈ ℤ | |
6 | 1, 2, 3, 4, 5 | dpexpp1 31084 | . . 3 ⊢ ((𝐴.𝐵) · (;10↑0)) = ((0._𝐴𝐵) · (;10↑1)) |
7 | 10nn0 12384 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
8 | 7 | nn0cni 12175 | . . . . 5 ⊢ ;10 ∈ ℂ |
9 | exp0 13714 | . . . . 5 ⊢ (;10 ∈ ℂ → (;10↑0) = 1) | |
10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ (;10↑0) = 1 |
11 | 10 | oveq2i 7266 | . . 3 ⊢ ((𝐴.𝐵) · (;10↑0)) = ((𝐴.𝐵) · 1) |
12 | exp1 13716 | . . . . 5 ⊢ (;10 ∈ ℂ → (;10↑1) = ;10) | |
13 | 8, 12 | ax-mp 5 | . . . 4 ⊢ (;10↑1) = ;10 |
14 | 13 | oveq2i 7266 | . . 3 ⊢ ((0._𝐴𝐵) · (;10↑1)) = ((0._𝐴𝐵) · ;10) |
15 | 6, 11, 14 | 3eqtr3ri 2775 | . 2 ⊢ ((0._𝐴𝐵) · ;10) = ((𝐴.𝐵) · 1) |
16 | 1, 2 | rpdpcl 31079 | . . . 4 ⊢ (𝐴.𝐵) ∈ ℝ+ |
17 | rpcn 12669 | . . . 4 ⊢ ((𝐴.𝐵) ∈ ℝ+ → (𝐴.𝐵) ∈ ℂ) | |
18 | 16, 17 | ax-mp 5 | . . 3 ⊢ (𝐴.𝐵) ∈ ℂ |
19 | mulid1 10904 | . . 3 ⊢ ((𝐴.𝐵) ∈ ℂ → ((𝐴.𝐵) · 1) = (𝐴.𝐵)) | |
20 | 18, 19 | ax-mp 5 | . 2 ⊢ ((𝐴.𝐵) · 1) = (𝐴.𝐵) |
21 | 15, 20 | eqtri 2766 | 1 ⊢ ((0._𝐴𝐵) · ;10) = (𝐴.𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 · cmul 10807 ℕ0cn0 12163 ;cdc 12366 ℝ+crp 12659 ↑cexp 13710 _cdp2 31047 .cdp 31064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-dp2 31048 df-dp 31065 |
This theorem is referenced by: hgt750lem 32531 |
Copyright terms: Public domain | W3C validator |