| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0dp2dp | Structured version Visualization version GIF version | ||
| Description: Multiply by 10 a decimal expansion which starts with a zero. (Contributed by Thierry Arnoux, 16-Dec-2021.) |
| Ref | Expression |
|---|---|
| 0dp2dp.a | ⊢ 𝐴 ∈ ℕ0 |
| 0dp2dp.b | ⊢ 𝐵 ∈ ℝ+ |
| Ref | Expression |
|---|---|
| 0dp2dp | ⊢ ((0._𝐴𝐵) · ;10) = (𝐴.𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0dp2dp.a | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | 0dp2dp.b | . . . 4 ⊢ 𝐵 ∈ ℝ+ | |
| 3 | 0p1e1 12371 | . . . 4 ⊢ (0 + 1) = 1 | |
| 4 | 0z 12608 | . . . 4 ⊢ 0 ∈ ℤ | |
| 5 | 1z 12631 | . . . 4 ⊢ 1 ∈ ℤ | |
| 6 | 1, 2, 3, 4, 5 | dpexpp1 32837 | . . 3 ⊢ ((𝐴.𝐵) · (;10↑0)) = ((0._𝐴𝐵) · (;10↑1)) |
| 7 | 10nn0 12735 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
| 8 | 7 | nn0cni 12522 | . . . . 5 ⊢ ;10 ∈ ℂ |
| 9 | exp0 14089 | . . . . 5 ⊢ (;10 ∈ ℂ → (;10↑0) = 1) | |
| 10 | 8, 9 | ax-mp 5 | . . . 4 ⊢ (;10↑0) = 1 |
| 11 | 10 | oveq2i 7425 | . . 3 ⊢ ((𝐴.𝐵) · (;10↑0)) = ((𝐴.𝐵) · 1) |
| 12 | exp1 14091 | . . . . 5 ⊢ (;10 ∈ ℂ → (;10↑1) = ;10) | |
| 13 | 8, 12 | ax-mp 5 | . . . 4 ⊢ (;10↑1) = ;10 |
| 14 | 13 | oveq2i 7425 | . . 3 ⊢ ((0._𝐴𝐵) · (;10↑1)) = ((0._𝐴𝐵) · ;10) |
| 15 | 6, 11, 14 | 3eqtr3ri 2766 | . 2 ⊢ ((0._𝐴𝐵) · ;10) = ((𝐴.𝐵) · 1) |
| 16 | 1, 2 | rpdpcl 32832 | . . . 4 ⊢ (𝐴.𝐵) ∈ ℝ+ |
| 17 | rpcn 13028 | . . . 4 ⊢ ((𝐴.𝐵) ∈ ℝ+ → (𝐴.𝐵) ∈ ℂ) | |
| 18 | 16, 17 | ax-mp 5 | . . 3 ⊢ (𝐴.𝐵) ∈ ℂ |
| 19 | mulrid 11242 | . . 3 ⊢ ((𝐴.𝐵) ∈ ℂ → ((𝐴.𝐵) · 1) = (𝐴.𝐵)) | |
| 20 | 18, 19 | ax-mp 5 | . 2 ⊢ ((𝐴.𝐵) · 1) = (𝐴.𝐵) |
| 21 | 15, 20 | eqtri 2757 | 1 ⊢ ((0._𝐴𝐵) · ;10) = (𝐴.𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 (class class class)co 7414 ℂcc 11136 0cc0 11138 1c1 11139 · cmul 11143 ℕ0cn0 12510 ;cdc 12717 ℝ+crp 13017 ↑cexp 14085 _cdp2 32800 .cdp 32817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-rp 13018 df-seq 14026 df-exp 14086 df-dp2 32801 df-dp 32818 |
| This theorem is referenced by: hgt750lem 34607 |
| Copyright terms: Public domain | W3C validator |