MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1mhlfehlf Structured version   Visualization version   GIF version

Theorem 1mhlfehlf 12435
Description: Prove that 1 - 1/2 = 1/2. (Contributed by David A. Wheeler, 4-Jan-2017.)
Assertion
Ref Expression
1mhlfehlf (1 − (1 / 2)) = (1 / 2)

Proof of Theorem 1mhlfehlf
StepHypRef Expression
1 2cn 12291 . . 3 2 ∈ ℂ
2 ax-1cn 11170 . . 3 1 ∈ ℂ
3 2cnne0 12426 . . 3 (2 ∈ ℂ ∧ 2 ≠ 0)
4 divsubdir 11912 . . 3 ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2 − 1) / 2) = ((2 / 2) − (1 / 2)))
51, 2, 3, 4mp3an 1457 . 2 ((2 − 1) / 2) = ((2 / 2) − (1 / 2))
6 2m1e1 12342 . . 3 (2 − 1) = 1
76oveq1i 7415 . 2 ((2 − 1) / 2) = (1 / 2)
8 2div2e1 12357 . . 3 (2 / 2) = 1
98oveq1i 7415 . 2 ((2 / 2) − (1 / 2)) = (1 − (1 / 2))
105, 7, 93eqtr3ri 2763 1 (1 − (1 / 2)) = (1 / 2)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1533  wcel 2098  wne 2934  (class class class)co 7405  cc 11110  0cc0 11112  1c1 11113  cmin 11448   / cdiv 11875  2c2 12271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-2 12279
This theorem is referenced by:  geo2sum  15825  geoihalfsum  15834  pcoass  24906  aaliou3lem3  26234  ang180lem3  26698  coinflippvt  34013  dnibndlem3  35864  oddfl  44559  dirkertrigeqlem3  45388
  Copyright terms: Public domain W3C validator