![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3lcm2e6 | Structured version Visualization version GIF version |
Description: The least common multiple of three and two is six. The operands are unequal primes and thus coprime, so the result is (the absolute value of) their product. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 27-Aug-2020.) |
Ref | Expression |
---|---|
3lcm2e6 | ⊢ (3 lcm 2) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12234 | . . . . . 6 ⊢ 2 ∈ ℝ | |
2 | 2lt3 12332 | . . . . . 6 ⊢ 2 < 3 | |
3 | 1, 2 | gtneii 11274 | . . . . 5 ⊢ 3 ≠ 2 |
4 | 3prm 16577 | . . . . . 6 ⊢ 3 ∈ ℙ | |
5 | 2prm 16575 | . . . . . 6 ⊢ 2 ∈ ℙ | |
6 | prmrp 16595 | . . . . . 6 ⊢ ((3 ∈ ℙ ∧ 2 ∈ ℙ) → ((3 gcd 2) = 1 ↔ 3 ≠ 2)) | |
7 | 4, 5, 6 | mp2an 691 | . . . . 5 ⊢ ((3 gcd 2) = 1 ↔ 3 ≠ 2) |
8 | 3, 7 | mpbir 230 | . . . 4 ⊢ (3 gcd 2) = 1 |
9 | 8 | oveq2i 7373 | . . 3 ⊢ ((3 lcm 2) · (3 gcd 2)) = ((3 lcm 2) · 1) |
10 | 3nn 12239 | . . . 4 ⊢ 3 ∈ ℕ | |
11 | 2nn 12233 | . . . 4 ⊢ 2 ∈ ℕ | |
12 | lcmgcdnn 16494 | . . . 4 ⊢ ((3 ∈ ℕ ∧ 2 ∈ ℕ) → ((3 lcm 2) · (3 gcd 2)) = (3 · 2)) | |
13 | 10, 11, 12 | mp2an 691 | . . 3 ⊢ ((3 lcm 2) · (3 gcd 2)) = (3 · 2) |
14 | 10 | nnzi 12534 | . . . . . 6 ⊢ 3 ∈ ℤ |
15 | 11 | nnzi 12534 | . . . . . 6 ⊢ 2 ∈ ℤ |
16 | lcmcl 16484 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 lcm 2) ∈ ℕ0) | |
17 | 14, 15, 16 | mp2an 691 | . . . . 5 ⊢ (3 lcm 2) ∈ ℕ0 |
18 | 17 | nn0cni 12432 | . . . 4 ⊢ (3 lcm 2) ∈ ℂ |
19 | 18 | mulid1i 11166 | . . 3 ⊢ ((3 lcm 2) · 1) = (3 lcm 2) |
20 | 9, 13, 19 | 3eqtr3ri 2774 | . 2 ⊢ (3 lcm 2) = (3 · 2) |
21 | 3t2e6 12326 | . 2 ⊢ (3 · 2) = 6 | |
22 | 20, 21 | eqtri 2765 | 1 ⊢ (3 lcm 2) = 6 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ∈ wcel 2107 ≠ wne 2944 (class class class)co 7362 1c1 11059 · cmul 11063 ℕcn 12160 2c2 12215 3c3 12216 6c6 12219 ℕ0cn0 12420 ℤcz 12506 gcd cgcd 16381 lcm clcm 16471 ℙcprime 16554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 ax-pre-sup 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-1st 7926 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-1o 8417 df-2o 8418 df-er 8655 df-en 8891 df-dom 8892 df-sdom 8893 df-fin 8894 df-sup 9385 df-inf 9386 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-div 11820 df-nn 12161 df-2 12223 df-3 12224 df-4 12225 df-5 12226 df-6 12227 df-n0 12421 df-z 12507 df-uz 12771 df-rp 12923 df-fz 13432 df-fl 13704 df-mod 13782 df-seq 13914 df-exp 13975 df-cj 14991 df-re 14992 df-im 14993 df-sqrt 15127 df-abs 15128 df-dvds 16144 df-gcd 16382 df-lcm 16473 df-prm 16555 |
This theorem is referenced by: lcm3un 40501 |
Copyright terms: Public domain | W3C validator |