Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpnnen2lem3 | Structured version Visualization version GIF version |
Description: Lemma for rpnnen2 16026. (Contributed by Mario Carneiro, 13-May-2013.) |
Ref | Expression |
---|---|
rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
Ref | Expression |
---|---|
rpnnen2lem3 | ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11068 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
2 | 3nn 12145 | . . . . . . 7 ⊢ 3 ∈ ℕ | |
3 | nndivre 12107 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ) | |
4 | 1, 2, 3 | mp2an 689 | . . . . . 6 ⊢ (1 / 3) ∈ ℝ |
5 | 4 | recni 11082 | . . . . 5 ⊢ (1 / 3) ∈ ℂ |
6 | 5 | a1i 11 | . . . 4 ⊢ (⊤ → (1 / 3) ∈ ℂ) |
7 | 0re 11070 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
8 | 3re 12146 | . . . . . . . . 9 ⊢ 3 ∈ ℝ | |
9 | 3pos 12171 | . . . . . . . . 9 ⊢ 0 < 3 | |
10 | 8, 9 | recgt0ii 11974 | . . . . . . . 8 ⊢ 0 < (1 / 3) |
11 | 7, 4, 10 | ltleii 11191 | . . . . . . 7 ⊢ 0 ≤ (1 / 3) |
12 | absid 15099 | . . . . . . 7 ⊢ (((1 / 3) ∈ ℝ ∧ 0 ≤ (1 / 3)) → (abs‘(1 / 3)) = (1 / 3)) | |
13 | 4, 11, 12 | mp2an 689 | . . . . . 6 ⊢ (abs‘(1 / 3)) = (1 / 3) |
14 | 1lt3 12239 | . . . . . . 7 ⊢ 1 < 3 | |
15 | recgt1 11964 | . . . . . . . 8 ⊢ ((3 ∈ ℝ ∧ 0 < 3) → (1 < 3 ↔ (1 / 3) < 1)) | |
16 | 8, 9, 15 | mp2an 689 | . . . . . . 7 ⊢ (1 < 3 ↔ (1 / 3) < 1) |
17 | 14, 16 | mpbi 229 | . . . . . 6 ⊢ (1 / 3) < 1 |
18 | 13, 17 | eqbrtri 5110 | . . . . 5 ⊢ (abs‘(1 / 3)) < 1 |
19 | 18 | a1i 11 | . . . 4 ⊢ (⊤ → (abs‘(1 / 3)) < 1) |
20 | 1nn0 12342 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
21 | 20 | a1i 11 | . . . 4 ⊢ (⊤ → 1 ∈ ℕ0) |
22 | ssid 3953 | . . . . . 6 ⊢ ℕ ⊆ ℕ | |
23 | simpr 485 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → 𝑘 ∈ (ℤ≥‘1)) | |
24 | nnuz 12714 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
25 | 23, 24 | eleqtrrdi 2848 | . . . . . 6 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → 𝑘 ∈ ℕ) |
26 | rpnnen2.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
27 | 26 | rpnnen2lem1 16014 | . . . . . 6 ⊢ ((ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0)) |
28 | 22, 25, 27 | sylancr 587 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0)) |
29 | 25 | iftrued 4480 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0) = ((1 / 3)↑𝑘)) |
30 | 28, 29 | eqtrd 2776 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝐹‘ℕ)‘𝑘) = ((1 / 3)↑𝑘)) |
31 | 6, 19, 21, 30 | geolim2 15674 | . . 3 ⊢ (⊤ → seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3)))) |
32 | 31 | mptru 1547 | . 2 ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3))) |
33 | exp1 13881 | . . . . 5 ⊢ ((1 / 3) ∈ ℂ → ((1 / 3)↑1) = (1 / 3)) | |
34 | 5, 33 | ax-mp 5 | . . . 4 ⊢ ((1 / 3)↑1) = (1 / 3) |
35 | 3cn 12147 | . . . . . 6 ⊢ 3 ∈ ℂ | |
36 | ax-1cn 11022 | . . . . . 6 ⊢ 1 ∈ ℂ | |
37 | 3ne0 12172 | . . . . . . 7 ⊢ 3 ≠ 0 | |
38 | 35, 37 | pm3.2i 471 | . . . . . 6 ⊢ (3 ∈ ℂ ∧ 3 ≠ 0) |
39 | divsubdir 11762 | . . . . . 6 ⊢ ((3 ∈ ℂ ∧ 1 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((3 − 1) / 3) = ((3 / 3) − (1 / 3))) | |
40 | 35, 36, 38, 39 | mp3an 1460 | . . . . 5 ⊢ ((3 − 1) / 3) = ((3 / 3) − (1 / 3)) |
41 | 3m1e2 12194 | . . . . . 6 ⊢ (3 − 1) = 2 | |
42 | 41 | oveq1i 7339 | . . . . 5 ⊢ ((3 − 1) / 3) = (2 / 3) |
43 | 35, 37 | dividi 11801 | . . . . . 6 ⊢ (3 / 3) = 1 |
44 | 43 | oveq1i 7339 | . . . . 5 ⊢ ((3 / 3) − (1 / 3)) = (1 − (1 / 3)) |
45 | 40, 42, 44 | 3eqtr3ri 2773 | . . . 4 ⊢ (1 − (1 / 3)) = (2 / 3) |
46 | 34, 45 | oveq12i 7341 | . . 3 ⊢ (((1 / 3)↑1) / (1 − (1 / 3))) = ((1 / 3) / (2 / 3)) |
47 | 2cnne0 12276 | . . . 4 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
48 | divcan7 11777 | . . . 4 ⊢ ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((1 / 3) / (2 / 3)) = (1 / 2)) | |
49 | 36, 47, 38, 48 | mp3an 1460 | . . 3 ⊢ ((1 / 3) / (2 / 3)) = (1 / 2) |
50 | 46, 49 | eqtri 2764 | . 2 ⊢ (((1 / 3)↑1) / (1 − (1 / 3))) = (1 / 2) |
51 | 32, 50 | breqtri 5114 | 1 ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1540 ⊤wtru 1541 ∈ wcel 2105 ≠ wne 2940 ⊆ wss 3897 ifcif 4472 𝒫 cpw 4546 class class class wbr 5089 ↦ cmpt 5172 ‘cfv 6473 (class class class)co 7329 ℂcc 10962 ℝcr 10963 0cc0 10964 1c1 10965 + caddc 10967 < clt 11102 ≤ cle 11103 − cmin 11298 / cdiv 11725 ℕcn 12066 2c2 12121 3c3 12122 ℕ0cn0 12326 ℤ≥cuz 12675 seqcseq 13814 ↑cexp 13875 abscabs 15036 ⇝ cli 15284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-inf2 9490 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-se 5570 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-isom 6482 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-pm 8681 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-sup 9291 df-inf 9292 df-oi 9359 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-2 12129 df-3 12130 df-n0 12327 df-z 12413 df-uz 12676 df-rp 12824 df-fz 13333 df-fzo 13476 df-fl 13605 df-seq 13815 df-exp 13876 df-hash 14138 df-cj 14901 df-re 14902 df-im 14903 df-sqrt 15037 df-abs 15038 df-clim 15288 df-rlim 15289 df-sum 15489 |
This theorem is referenced by: rpnnen2lem5 16018 rpnnen2lem12 16025 |
Copyright terms: Public domain | W3C validator |