Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpnnen2lem3 | Structured version Visualization version GIF version |
Description: Lemma for rpnnen2 15935. (Contributed by Mario Carneiro, 13-May-2013.) |
Ref | Expression |
---|---|
rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
Ref | Expression |
---|---|
rpnnen2lem3 | ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 10975 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
2 | 3nn 12052 | . . . . . . 7 ⊢ 3 ∈ ℕ | |
3 | nndivre 12014 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ) | |
4 | 1, 2, 3 | mp2an 689 | . . . . . 6 ⊢ (1 / 3) ∈ ℝ |
5 | 4 | recni 10989 | . . . . 5 ⊢ (1 / 3) ∈ ℂ |
6 | 5 | a1i 11 | . . . 4 ⊢ (⊤ → (1 / 3) ∈ ℂ) |
7 | 0re 10977 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
8 | 3re 12053 | . . . . . . . . 9 ⊢ 3 ∈ ℝ | |
9 | 3pos 12078 | . . . . . . . . 9 ⊢ 0 < 3 | |
10 | 8, 9 | recgt0ii 11881 | . . . . . . . 8 ⊢ 0 < (1 / 3) |
11 | 7, 4, 10 | ltleii 11098 | . . . . . . 7 ⊢ 0 ≤ (1 / 3) |
12 | absid 15008 | . . . . . . 7 ⊢ (((1 / 3) ∈ ℝ ∧ 0 ≤ (1 / 3)) → (abs‘(1 / 3)) = (1 / 3)) | |
13 | 4, 11, 12 | mp2an 689 | . . . . . 6 ⊢ (abs‘(1 / 3)) = (1 / 3) |
14 | 1lt3 12146 | . . . . . . 7 ⊢ 1 < 3 | |
15 | recgt1 11871 | . . . . . . . 8 ⊢ ((3 ∈ ℝ ∧ 0 < 3) → (1 < 3 ↔ (1 / 3) < 1)) | |
16 | 8, 9, 15 | mp2an 689 | . . . . . . 7 ⊢ (1 < 3 ↔ (1 / 3) < 1) |
17 | 14, 16 | mpbi 229 | . . . . . 6 ⊢ (1 / 3) < 1 |
18 | 13, 17 | eqbrtri 5095 | . . . . 5 ⊢ (abs‘(1 / 3)) < 1 |
19 | 18 | a1i 11 | . . . 4 ⊢ (⊤ → (abs‘(1 / 3)) < 1) |
20 | 1nn0 12249 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
21 | 20 | a1i 11 | . . . 4 ⊢ (⊤ → 1 ∈ ℕ0) |
22 | ssid 3943 | . . . . . 6 ⊢ ℕ ⊆ ℕ | |
23 | simpr 485 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → 𝑘 ∈ (ℤ≥‘1)) | |
24 | nnuz 12621 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
25 | 23, 24 | eleqtrrdi 2850 | . . . . . 6 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → 𝑘 ∈ ℕ) |
26 | rpnnen2.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
27 | 26 | rpnnen2lem1 15923 | . . . . . 6 ⊢ ((ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0)) |
28 | 22, 25, 27 | sylancr 587 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0)) |
29 | 25 | iftrued 4467 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0) = ((1 / 3)↑𝑘)) |
30 | 28, 29 | eqtrd 2778 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝐹‘ℕ)‘𝑘) = ((1 / 3)↑𝑘)) |
31 | 6, 19, 21, 30 | geolim2 15583 | . . 3 ⊢ (⊤ → seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3)))) |
32 | 31 | mptru 1546 | . 2 ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3))) |
33 | exp1 13788 | . . . . 5 ⊢ ((1 / 3) ∈ ℂ → ((1 / 3)↑1) = (1 / 3)) | |
34 | 5, 33 | ax-mp 5 | . . . 4 ⊢ ((1 / 3)↑1) = (1 / 3) |
35 | 3cn 12054 | . . . . . 6 ⊢ 3 ∈ ℂ | |
36 | ax-1cn 10929 | . . . . . 6 ⊢ 1 ∈ ℂ | |
37 | 3ne0 12079 | . . . . . . 7 ⊢ 3 ≠ 0 | |
38 | 35, 37 | pm3.2i 471 | . . . . . 6 ⊢ (3 ∈ ℂ ∧ 3 ≠ 0) |
39 | divsubdir 11669 | . . . . . 6 ⊢ ((3 ∈ ℂ ∧ 1 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((3 − 1) / 3) = ((3 / 3) − (1 / 3))) | |
40 | 35, 36, 38, 39 | mp3an 1460 | . . . . 5 ⊢ ((3 − 1) / 3) = ((3 / 3) − (1 / 3)) |
41 | 3m1e2 12101 | . . . . . 6 ⊢ (3 − 1) = 2 | |
42 | 41 | oveq1i 7285 | . . . . 5 ⊢ ((3 − 1) / 3) = (2 / 3) |
43 | 35, 37 | dividi 11708 | . . . . . 6 ⊢ (3 / 3) = 1 |
44 | 43 | oveq1i 7285 | . . . . 5 ⊢ ((3 / 3) − (1 / 3)) = (1 − (1 / 3)) |
45 | 40, 42, 44 | 3eqtr3ri 2775 | . . . 4 ⊢ (1 − (1 / 3)) = (2 / 3) |
46 | 34, 45 | oveq12i 7287 | . . 3 ⊢ (((1 / 3)↑1) / (1 − (1 / 3))) = ((1 / 3) / (2 / 3)) |
47 | 2cnne0 12183 | . . . 4 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
48 | divcan7 11684 | . . . 4 ⊢ ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((1 / 3) / (2 / 3)) = (1 / 2)) | |
49 | 36, 47, 38, 48 | mp3an 1460 | . . 3 ⊢ ((1 / 3) / (2 / 3)) = (1 / 2) |
50 | 46, 49 | eqtri 2766 | . 2 ⊢ (((1 / 3)↑1) / (1 − (1 / 3))) = (1 / 2) |
51 | 32, 50 | breqtri 5099 | 1 ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 ≠ wne 2943 ⊆ wss 3887 ifcif 4459 𝒫 cpw 4533 class class class wbr 5074 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 < clt 11009 ≤ cle 11010 − cmin 11205 / cdiv 11632 ℕcn 11973 2c2 12028 3c3 12029 ℕ0cn0 12233 ℤ≥cuz 12582 seqcseq 13721 ↑cexp 13782 abscabs 14945 ⇝ cli 15193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-rlim 15198 df-sum 15398 |
This theorem is referenced by: rpnnen2lem5 15927 rpnnen2lem12 15934 |
Copyright terms: Public domain | W3C validator |