MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem3 Structured version   Visualization version   GIF version

Theorem rpnnen2lem3 16125
Description: Lemma for rpnnen2 16135. (Contributed by Mario Carneiro, 13-May-2013.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem3 seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2)
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 1re 11112 . . . . . . 7 1 ∈ ℝ
2 3nn 12204 . . . . . . 7 3 ∈ ℕ
3 nndivre 12166 . . . . . . 7 ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ)
41, 2, 3mp2an 692 . . . . . 6 (1 / 3) ∈ ℝ
54recni 11126 . . . . 5 (1 / 3) ∈ ℂ
65a1i 11 . . . 4 (⊤ → (1 / 3) ∈ ℂ)
7 0re 11114 . . . . . . . 8 0 ∈ ℝ
8 3re 12205 . . . . . . . . 9 3 ∈ ℝ
9 3pos 12230 . . . . . . . . 9 0 < 3
108, 9recgt0ii 12028 . . . . . . . 8 0 < (1 / 3)
117, 4, 10ltleii 11236 . . . . . . 7 0 ≤ (1 / 3)
12 absid 15203 . . . . . . 7 (((1 / 3) ∈ ℝ ∧ 0 ≤ (1 / 3)) → (abs‘(1 / 3)) = (1 / 3))
134, 11, 12mp2an 692 . . . . . 6 (abs‘(1 / 3)) = (1 / 3)
14 1lt3 12293 . . . . . . 7 1 < 3
15 recgt1 12018 . . . . . . . 8 ((3 ∈ ℝ ∧ 0 < 3) → (1 < 3 ↔ (1 / 3) < 1))
168, 9, 15mp2an 692 . . . . . . 7 (1 < 3 ↔ (1 / 3) < 1)
1714, 16mpbi 230 . . . . . 6 (1 / 3) < 1
1813, 17eqbrtri 5110 . . . . 5 (abs‘(1 / 3)) < 1
1918a1i 11 . . . 4 (⊤ → (abs‘(1 / 3)) < 1)
20 1nn0 12397 . . . . 5 1 ∈ ℕ0
2120a1i 11 . . . 4 (⊤ → 1 ∈ ℕ0)
22 ssid 3952 . . . . . 6 ℕ ⊆ ℕ
23 simpr 484 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ (ℤ‘1))
24 nnuz 12775 . . . . . . 7 ℕ = (ℤ‘1)
2523, 24eleqtrrdi 2842 . . . . . 6 ((⊤ ∧ 𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℕ)
26 rpnnen2.1 . . . . . . 7 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
2726rpnnen2lem1 16123 . . . . . 6 ((ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0))
2822, 25, 27sylancr 587 . . . . 5 ((⊤ ∧ 𝑘 ∈ (ℤ‘1)) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0))
2925iftrued 4480 . . . . 5 ((⊤ ∧ 𝑘 ∈ (ℤ‘1)) → if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0) = ((1 / 3)↑𝑘))
3028, 29eqtrd 2766 . . . 4 ((⊤ ∧ 𝑘 ∈ (ℤ‘1)) → ((𝐹‘ℕ)‘𝑘) = ((1 / 3)↑𝑘))
316, 19, 21, 30geolim2 15778 . . 3 (⊤ → seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3))))
3231mptru 1548 . 2 seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3)))
33 exp1 13974 . . . . 5 ((1 / 3) ∈ ℂ → ((1 / 3)↑1) = (1 / 3))
345, 33ax-mp 5 . . . 4 ((1 / 3)↑1) = (1 / 3)
35 3cn 12206 . . . . . 6 3 ∈ ℂ
36 ax-1cn 11064 . . . . . 6 1 ∈ ℂ
37 3ne0 12231 . . . . . . 7 3 ≠ 0
3835, 37pm3.2i 470 . . . . . 6 (3 ∈ ℂ ∧ 3 ≠ 0)
39 divsubdir 11815 . . . . . 6 ((3 ∈ ℂ ∧ 1 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((3 − 1) / 3) = ((3 / 3) − (1 / 3)))
4035, 36, 38, 39mp3an 1463 . . . . 5 ((3 − 1) / 3) = ((3 / 3) − (1 / 3))
41 3m1e2 12248 . . . . . 6 (3 − 1) = 2
4241oveq1i 7356 . . . . 5 ((3 − 1) / 3) = (2 / 3)
4335, 37dividi 11854 . . . . . 6 (3 / 3) = 1
4443oveq1i 7356 . . . . 5 ((3 / 3) − (1 / 3)) = (1 − (1 / 3))
4540, 42, 443eqtr3ri 2763 . . . 4 (1 − (1 / 3)) = (2 / 3)
4634, 45oveq12i 7358 . . 3 (((1 / 3)↑1) / (1 − (1 / 3))) = ((1 / 3) / (2 / 3))
47 2cnne0 12330 . . . 4 (2 ∈ ℂ ∧ 2 ≠ 0)
48 divcan7 11830 . . . 4 ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((1 / 3) / (2 / 3)) = (1 / 2))
4936, 47, 38, 48mp3an 1463 . . 3 ((1 / 3) / (2 / 3)) = (1 / 2)
5046, 49eqtri 2754 . 2 (((1 / 3)↑1) / (1 − (1 / 3))) = (1 / 2)
5132, 50breqtri 5114 1 seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wtru 1542  wcel 2111  wne 2928  wss 3897  ifcif 4472  𝒫 cpw 4547   class class class wbr 5089  cmpt 5170  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  2c2 12180  3c3 12181  0cn0 12381  cuz 12732  seqcseq 13908  cexp 13968  abscabs 15141  cli 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594
This theorem is referenced by:  rpnnen2lem5  16127  rpnnen2lem12  16134
  Copyright terms: Public domain W3C validator