| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpnnen2lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for rpnnen2 16201. (Contributed by Mario Carneiro, 13-May-2013.) |
| Ref | Expression |
|---|---|
| rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
| Ref | Expression |
|---|---|
| rpnnen2lem3 | ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11181 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 2 | 3nn 12272 | . . . . . . 7 ⊢ 3 ∈ ℕ | |
| 3 | nndivre 12234 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | . . . . . 6 ⊢ (1 / 3) ∈ ℝ |
| 5 | 4 | recni 11195 | . . . . 5 ⊢ (1 / 3) ∈ ℂ |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (⊤ → (1 / 3) ∈ ℂ) |
| 7 | 0re 11183 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 8 | 3re 12273 | . . . . . . . . 9 ⊢ 3 ∈ ℝ | |
| 9 | 3pos 12298 | . . . . . . . . 9 ⊢ 0 < 3 | |
| 10 | 8, 9 | recgt0ii 12096 | . . . . . . . 8 ⊢ 0 < (1 / 3) |
| 11 | 7, 4, 10 | ltleii 11304 | . . . . . . 7 ⊢ 0 ≤ (1 / 3) |
| 12 | absid 15269 | . . . . . . 7 ⊢ (((1 / 3) ∈ ℝ ∧ 0 ≤ (1 / 3)) → (abs‘(1 / 3)) = (1 / 3)) | |
| 13 | 4, 11, 12 | mp2an 692 | . . . . . 6 ⊢ (abs‘(1 / 3)) = (1 / 3) |
| 14 | 1lt3 12361 | . . . . . . 7 ⊢ 1 < 3 | |
| 15 | recgt1 12086 | . . . . . . . 8 ⊢ ((3 ∈ ℝ ∧ 0 < 3) → (1 < 3 ↔ (1 / 3) < 1)) | |
| 16 | 8, 9, 15 | mp2an 692 | . . . . . . 7 ⊢ (1 < 3 ↔ (1 / 3) < 1) |
| 17 | 14, 16 | mpbi 230 | . . . . . 6 ⊢ (1 / 3) < 1 |
| 18 | 13, 17 | eqbrtri 5131 | . . . . 5 ⊢ (abs‘(1 / 3)) < 1 |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (⊤ → (abs‘(1 / 3)) < 1) |
| 20 | 1nn0 12465 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (⊤ → 1 ∈ ℕ0) |
| 22 | ssid 3972 | . . . . . 6 ⊢ ℕ ⊆ ℕ | |
| 23 | simpr 484 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → 𝑘 ∈ (ℤ≥‘1)) | |
| 24 | nnuz 12843 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
| 25 | 23, 24 | eleqtrrdi 2840 | . . . . . 6 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → 𝑘 ∈ ℕ) |
| 26 | rpnnen2.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
| 27 | 26 | rpnnen2lem1 16189 | . . . . . 6 ⊢ ((ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0)) |
| 28 | 22, 25, 27 | sylancr 587 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0)) |
| 29 | 25 | iftrued 4499 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0) = ((1 / 3)↑𝑘)) |
| 30 | 28, 29 | eqtrd 2765 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝐹‘ℕ)‘𝑘) = ((1 / 3)↑𝑘)) |
| 31 | 6, 19, 21, 30 | geolim2 15844 | . . 3 ⊢ (⊤ → seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3)))) |
| 32 | 31 | mptru 1547 | . 2 ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3))) |
| 33 | exp1 14039 | . . . . 5 ⊢ ((1 / 3) ∈ ℂ → ((1 / 3)↑1) = (1 / 3)) | |
| 34 | 5, 33 | ax-mp 5 | . . . 4 ⊢ ((1 / 3)↑1) = (1 / 3) |
| 35 | 3cn 12274 | . . . . . 6 ⊢ 3 ∈ ℂ | |
| 36 | ax-1cn 11133 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 37 | 3ne0 12299 | . . . . . . 7 ⊢ 3 ≠ 0 | |
| 38 | 35, 37 | pm3.2i 470 | . . . . . 6 ⊢ (3 ∈ ℂ ∧ 3 ≠ 0) |
| 39 | divsubdir 11883 | . . . . . 6 ⊢ ((3 ∈ ℂ ∧ 1 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((3 − 1) / 3) = ((3 / 3) − (1 / 3))) | |
| 40 | 35, 36, 38, 39 | mp3an 1463 | . . . . 5 ⊢ ((3 − 1) / 3) = ((3 / 3) − (1 / 3)) |
| 41 | 3m1e2 12316 | . . . . . 6 ⊢ (3 − 1) = 2 | |
| 42 | 41 | oveq1i 7400 | . . . . 5 ⊢ ((3 − 1) / 3) = (2 / 3) |
| 43 | 35, 37 | dividi 11922 | . . . . . 6 ⊢ (3 / 3) = 1 |
| 44 | 43 | oveq1i 7400 | . . . . 5 ⊢ ((3 / 3) − (1 / 3)) = (1 − (1 / 3)) |
| 45 | 40, 42, 44 | 3eqtr3ri 2762 | . . . 4 ⊢ (1 − (1 / 3)) = (2 / 3) |
| 46 | 34, 45 | oveq12i 7402 | . . 3 ⊢ (((1 / 3)↑1) / (1 − (1 / 3))) = ((1 / 3) / (2 / 3)) |
| 47 | 2cnne0 12398 | . . . 4 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
| 48 | divcan7 11898 | . . . 4 ⊢ ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((1 / 3) / (2 / 3)) = (1 / 2)) | |
| 49 | 36, 47, 38, 48 | mp3an 1463 | . . 3 ⊢ ((1 / 3) / (2 / 3)) = (1 / 2) |
| 50 | 46, 49 | eqtri 2753 | . 2 ⊢ (((1 / 3)↑1) / (1 − (1 / 3))) = (1 / 2) |
| 51 | 32, 50 | breqtri 5135 | 1 ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2926 ⊆ wss 3917 ifcif 4491 𝒫 cpw 4566 class class class wbr 5110 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 < clt 11215 ≤ cle 11216 − cmin 11412 / cdiv 11842 ℕcn 12193 2c2 12248 3c3 12249 ℕ0cn0 12449 ℤ≥cuz 12800 seqcseq 13973 ↑cexp 14033 abscabs 15207 ⇝ cli 15457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-rlim 15462 df-sum 15660 |
| This theorem is referenced by: rpnnen2lem5 16193 rpnnen2lem12 16200 |
| Copyright terms: Public domain | W3C validator |