| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpnnen2lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for rpnnen2 16170. (Contributed by Mario Carneiro, 13-May-2013.) |
| Ref | Expression |
|---|---|
| rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
| Ref | Expression |
|---|---|
| rpnnen2lem3 | ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11150 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 2 | 3nn 12241 | . . . . . . 7 ⊢ 3 ∈ ℕ | |
| 3 | nndivre 12203 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | . . . . . 6 ⊢ (1 / 3) ∈ ℝ |
| 5 | 4 | recni 11164 | . . . . 5 ⊢ (1 / 3) ∈ ℂ |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (⊤ → (1 / 3) ∈ ℂ) |
| 7 | 0re 11152 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 8 | 3re 12242 | . . . . . . . . 9 ⊢ 3 ∈ ℝ | |
| 9 | 3pos 12267 | . . . . . . . . 9 ⊢ 0 < 3 | |
| 10 | 8, 9 | recgt0ii 12065 | . . . . . . . 8 ⊢ 0 < (1 / 3) |
| 11 | 7, 4, 10 | ltleii 11273 | . . . . . . 7 ⊢ 0 ≤ (1 / 3) |
| 12 | absid 15238 | . . . . . . 7 ⊢ (((1 / 3) ∈ ℝ ∧ 0 ≤ (1 / 3)) → (abs‘(1 / 3)) = (1 / 3)) | |
| 13 | 4, 11, 12 | mp2an 692 | . . . . . 6 ⊢ (abs‘(1 / 3)) = (1 / 3) |
| 14 | 1lt3 12330 | . . . . . . 7 ⊢ 1 < 3 | |
| 15 | recgt1 12055 | . . . . . . . 8 ⊢ ((3 ∈ ℝ ∧ 0 < 3) → (1 < 3 ↔ (1 / 3) < 1)) | |
| 16 | 8, 9, 15 | mp2an 692 | . . . . . . 7 ⊢ (1 < 3 ↔ (1 / 3) < 1) |
| 17 | 14, 16 | mpbi 230 | . . . . . 6 ⊢ (1 / 3) < 1 |
| 18 | 13, 17 | eqbrtri 5123 | . . . . 5 ⊢ (abs‘(1 / 3)) < 1 |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (⊤ → (abs‘(1 / 3)) < 1) |
| 20 | 1nn0 12434 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (⊤ → 1 ∈ ℕ0) |
| 22 | ssid 3966 | . . . . . 6 ⊢ ℕ ⊆ ℕ | |
| 23 | simpr 484 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → 𝑘 ∈ (ℤ≥‘1)) | |
| 24 | nnuz 12812 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
| 25 | 23, 24 | eleqtrrdi 2839 | . . . . . 6 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → 𝑘 ∈ ℕ) |
| 26 | rpnnen2.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
| 27 | 26 | rpnnen2lem1 16158 | . . . . . 6 ⊢ ((ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0)) |
| 28 | 22, 25, 27 | sylancr 587 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0)) |
| 29 | 25 | iftrued 4492 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0) = ((1 / 3)↑𝑘)) |
| 30 | 28, 29 | eqtrd 2764 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝐹‘ℕ)‘𝑘) = ((1 / 3)↑𝑘)) |
| 31 | 6, 19, 21, 30 | geolim2 15813 | . . 3 ⊢ (⊤ → seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3)))) |
| 32 | 31 | mptru 1547 | . 2 ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3))) |
| 33 | exp1 14008 | . . . . 5 ⊢ ((1 / 3) ∈ ℂ → ((1 / 3)↑1) = (1 / 3)) | |
| 34 | 5, 33 | ax-mp 5 | . . . 4 ⊢ ((1 / 3)↑1) = (1 / 3) |
| 35 | 3cn 12243 | . . . . . 6 ⊢ 3 ∈ ℂ | |
| 36 | ax-1cn 11102 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 37 | 3ne0 12268 | . . . . . . 7 ⊢ 3 ≠ 0 | |
| 38 | 35, 37 | pm3.2i 470 | . . . . . 6 ⊢ (3 ∈ ℂ ∧ 3 ≠ 0) |
| 39 | divsubdir 11852 | . . . . . 6 ⊢ ((3 ∈ ℂ ∧ 1 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((3 − 1) / 3) = ((3 / 3) − (1 / 3))) | |
| 40 | 35, 36, 38, 39 | mp3an 1463 | . . . . 5 ⊢ ((3 − 1) / 3) = ((3 / 3) − (1 / 3)) |
| 41 | 3m1e2 12285 | . . . . . 6 ⊢ (3 − 1) = 2 | |
| 42 | 41 | oveq1i 7379 | . . . . 5 ⊢ ((3 − 1) / 3) = (2 / 3) |
| 43 | 35, 37 | dividi 11891 | . . . . . 6 ⊢ (3 / 3) = 1 |
| 44 | 43 | oveq1i 7379 | . . . . 5 ⊢ ((3 / 3) − (1 / 3)) = (1 − (1 / 3)) |
| 45 | 40, 42, 44 | 3eqtr3ri 2761 | . . . 4 ⊢ (1 − (1 / 3)) = (2 / 3) |
| 46 | 34, 45 | oveq12i 7381 | . . 3 ⊢ (((1 / 3)↑1) / (1 − (1 / 3))) = ((1 / 3) / (2 / 3)) |
| 47 | 2cnne0 12367 | . . . 4 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
| 48 | divcan7 11867 | . . . 4 ⊢ ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((1 / 3) / (2 / 3)) = (1 / 2)) | |
| 49 | 36, 47, 38, 48 | mp3an 1463 | . . 3 ⊢ ((1 / 3) / (2 / 3)) = (1 / 2) |
| 50 | 46, 49 | eqtri 2752 | . 2 ⊢ (((1 / 3)↑1) / (1 − (1 / 3))) = (1 / 2) |
| 51 | 32, 50 | breqtri 5127 | 1 ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3911 ifcif 4484 𝒫 cpw 4559 class class class wbr 5102 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 < clt 11184 ≤ cle 11185 − cmin 11381 / cdiv 11811 ℕcn 12162 2c2 12217 3c3 12218 ℕ0cn0 12418 ℤ≥cuz 12769 seqcseq 13942 ↑cexp 14002 abscabs 15176 ⇝ cli 15426 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-fl 13730 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-rlim 15431 df-sum 15629 |
| This theorem is referenced by: rpnnen2lem5 16162 rpnnen2lem12 16169 |
| Copyright terms: Public domain | W3C validator |