| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpnnen2lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for rpnnen2 16244. (Contributed by Mario Carneiro, 13-May-2013.) |
| Ref | Expression |
|---|---|
| rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
| Ref | Expression |
|---|---|
| rpnnen2lem3 | ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11235 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 2 | 3nn 12319 | . . . . . . 7 ⊢ 3 ∈ ℕ | |
| 3 | nndivre 12281 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | . . . . . 6 ⊢ (1 / 3) ∈ ℝ |
| 5 | 4 | recni 11249 | . . . . 5 ⊢ (1 / 3) ∈ ℂ |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (⊤ → (1 / 3) ∈ ℂ) |
| 7 | 0re 11237 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 8 | 3re 12320 | . . . . . . . . 9 ⊢ 3 ∈ ℝ | |
| 9 | 3pos 12345 | . . . . . . . . 9 ⊢ 0 < 3 | |
| 10 | 8, 9 | recgt0ii 12148 | . . . . . . . 8 ⊢ 0 < (1 / 3) |
| 11 | 7, 4, 10 | ltleii 11358 | . . . . . . 7 ⊢ 0 ≤ (1 / 3) |
| 12 | absid 15315 | . . . . . . 7 ⊢ (((1 / 3) ∈ ℝ ∧ 0 ≤ (1 / 3)) → (abs‘(1 / 3)) = (1 / 3)) | |
| 13 | 4, 11, 12 | mp2an 692 | . . . . . 6 ⊢ (abs‘(1 / 3)) = (1 / 3) |
| 14 | 1lt3 12413 | . . . . . . 7 ⊢ 1 < 3 | |
| 15 | recgt1 12138 | . . . . . . . 8 ⊢ ((3 ∈ ℝ ∧ 0 < 3) → (1 < 3 ↔ (1 / 3) < 1)) | |
| 16 | 8, 9, 15 | mp2an 692 | . . . . . . 7 ⊢ (1 < 3 ↔ (1 / 3) < 1) |
| 17 | 14, 16 | mpbi 230 | . . . . . 6 ⊢ (1 / 3) < 1 |
| 18 | 13, 17 | eqbrtri 5140 | . . . . 5 ⊢ (abs‘(1 / 3)) < 1 |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (⊤ → (abs‘(1 / 3)) < 1) |
| 20 | 1nn0 12517 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (⊤ → 1 ∈ ℕ0) |
| 22 | ssid 3981 | . . . . . 6 ⊢ ℕ ⊆ ℕ | |
| 23 | simpr 484 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → 𝑘 ∈ (ℤ≥‘1)) | |
| 24 | nnuz 12895 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
| 25 | 23, 24 | eleqtrrdi 2845 | . . . . . 6 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → 𝑘 ∈ ℕ) |
| 26 | rpnnen2.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
| 27 | 26 | rpnnen2lem1 16232 | . . . . . 6 ⊢ ((ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0)) |
| 28 | 22, 25, 27 | sylancr 587 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0)) |
| 29 | 25 | iftrued 4508 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0) = ((1 / 3)↑𝑘)) |
| 30 | 28, 29 | eqtrd 2770 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝐹‘ℕ)‘𝑘) = ((1 / 3)↑𝑘)) |
| 31 | 6, 19, 21, 30 | geolim2 15887 | . . 3 ⊢ (⊤ → seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3)))) |
| 32 | 31 | mptru 1547 | . 2 ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3))) |
| 33 | exp1 14085 | . . . . 5 ⊢ ((1 / 3) ∈ ℂ → ((1 / 3)↑1) = (1 / 3)) | |
| 34 | 5, 33 | ax-mp 5 | . . . 4 ⊢ ((1 / 3)↑1) = (1 / 3) |
| 35 | 3cn 12321 | . . . . . 6 ⊢ 3 ∈ ℂ | |
| 36 | ax-1cn 11187 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 37 | 3ne0 12346 | . . . . . . 7 ⊢ 3 ≠ 0 | |
| 38 | 35, 37 | pm3.2i 470 | . . . . . 6 ⊢ (3 ∈ ℂ ∧ 3 ≠ 0) |
| 39 | divsubdir 11935 | . . . . . 6 ⊢ ((3 ∈ ℂ ∧ 1 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((3 − 1) / 3) = ((3 / 3) − (1 / 3))) | |
| 40 | 35, 36, 38, 39 | mp3an 1463 | . . . . 5 ⊢ ((3 − 1) / 3) = ((3 / 3) − (1 / 3)) |
| 41 | 3m1e2 12368 | . . . . . 6 ⊢ (3 − 1) = 2 | |
| 42 | 41 | oveq1i 7415 | . . . . 5 ⊢ ((3 − 1) / 3) = (2 / 3) |
| 43 | 35, 37 | dividi 11974 | . . . . . 6 ⊢ (3 / 3) = 1 |
| 44 | 43 | oveq1i 7415 | . . . . 5 ⊢ ((3 / 3) − (1 / 3)) = (1 − (1 / 3)) |
| 45 | 40, 42, 44 | 3eqtr3ri 2767 | . . . 4 ⊢ (1 − (1 / 3)) = (2 / 3) |
| 46 | 34, 45 | oveq12i 7417 | . . 3 ⊢ (((1 / 3)↑1) / (1 − (1 / 3))) = ((1 / 3) / (2 / 3)) |
| 47 | 2cnne0 12450 | . . . 4 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
| 48 | divcan7 11950 | . . . 4 ⊢ ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((1 / 3) / (2 / 3)) = (1 / 2)) | |
| 49 | 36, 47, 38, 48 | mp3an 1463 | . . 3 ⊢ ((1 / 3) / (2 / 3)) = (1 / 2) |
| 50 | 46, 49 | eqtri 2758 | . 2 ⊢ (((1 / 3)↑1) / (1 − (1 / 3))) = (1 / 2) |
| 51 | 32, 50 | breqtri 5144 | 1 ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ≠ wne 2932 ⊆ wss 3926 ifcif 4500 𝒫 cpw 4575 class class class wbr 5119 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 ℝcr 11128 0cc0 11129 1c1 11130 + caddc 11132 < clt 11269 ≤ cle 11270 − cmin 11466 / cdiv 11894 ℕcn 12240 2c2 12295 3c3 12296 ℕ0cn0 12501 ℤ≥cuz 12852 seqcseq 14019 ↑cexp 14079 abscabs 15253 ⇝ cli 15500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-rlim 15505 df-sum 15703 |
| This theorem is referenced by: rpnnen2lem5 16236 rpnnen2lem12 16243 |
| Copyright terms: Public domain | W3C validator |