![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpnnen2lem3 | Structured version Visualization version GIF version |
Description: Lemma for rpnnen2 16274. (Contributed by Mario Carneiro, 13-May-2013.) |
Ref | Expression |
---|---|
rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
Ref | Expression |
---|---|
rpnnen2lem3 | ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11290 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
2 | 3nn 12372 | . . . . . . 7 ⊢ 3 ∈ ℕ | |
3 | nndivre 12334 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ) | |
4 | 1, 2, 3 | mp2an 691 | . . . . . 6 ⊢ (1 / 3) ∈ ℝ |
5 | 4 | recni 11304 | . . . . 5 ⊢ (1 / 3) ∈ ℂ |
6 | 5 | a1i 11 | . . . 4 ⊢ (⊤ → (1 / 3) ∈ ℂ) |
7 | 0re 11292 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
8 | 3re 12373 | . . . . . . . . 9 ⊢ 3 ∈ ℝ | |
9 | 3pos 12398 | . . . . . . . . 9 ⊢ 0 < 3 | |
10 | 8, 9 | recgt0ii 12201 | . . . . . . . 8 ⊢ 0 < (1 / 3) |
11 | 7, 4, 10 | ltleii 11413 | . . . . . . 7 ⊢ 0 ≤ (1 / 3) |
12 | absid 15345 | . . . . . . 7 ⊢ (((1 / 3) ∈ ℝ ∧ 0 ≤ (1 / 3)) → (abs‘(1 / 3)) = (1 / 3)) | |
13 | 4, 11, 12 | mp2an 691 | . . . . . 6 ⊢ (abs‘(1 / 3)) = (1 / 3) |
14 | 1lt3 12466 | . . . . . . 7 ⊢ 1 < 3 | |
15 | recgt1 12191 | . . . . . . . 8 ⊢ ((3 ∈ ℝ ∧ 0 < 3) → (1 < 3 ↔ (1 / 3) < 1)) | |
16 | 8, 9, 15 | mp2an 691 | . . . . . . 7 ⊢ (1 < 3 ↔ (1 / 3) < 1) |
17 | 14, 16 | mpbi 230 | . . . . . 6 ⊢ (1 / 3) < 1 |
18 | 13, 17 | eqbrtri 5187 | . . . . 5 ⊢ (abs‘(1 / 3)) < 1 |
19 | 18 | a1i 11 | . . . 4 ⊢ (⊤ → (abs‘(1 / 3)) < 1) |
20 | 1nn0 12569 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
21 | 20 | a1i 11 | . . . 4 ⊢ (⊤ → 1 ∈ ℕ0) |
22 | ssid 4031 | . . . . . 6 ⊢ ℕ ⊆ ℕ | |
23 | simpr 484 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → 𝑘 ∈ (ℤ≥‘1)) | |
24 | nnuz 12946 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
25 | 23, 24 | eleqtrrdi 2855 | . . . . . 6 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → 𝑘 ∈ ℕ) |
26 | rpnnen2.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
27 | 26 | rpnnen2lem1 16262 | . . . . . 6 ⊢ ((ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0)) |
28 | 22, 25, 27 | sylancr 586 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0)) |
29 | 25 | iftrued 4556 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0) = ((1 / 3)↑𝑘)) |
30 | 28, 29 | eqtrd 2780 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝐹‘ℕ)‘𝑘) = ((1 / 3)↑𝑘)) |
31 | 6, 19, 21, 30 | geolim2 15919 | . . 3 ⊢ (⊤ → seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3)))) |
32 | 31 | mptru 1544 | . 2 ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3))) |
33 | exp1 14118 | . . . . 5 ⊢ ((1 / 3) ∈ ℂ → ((1 / 3)↑1) = (1 / 3)) | |
34 | 5, 33 | ax-mp 5 | . . . 4 ⊢ ((1 / 3)↑1) = (1 / 3) |
35 | 3cn 12374 | . . . . . 6 ⊢ 3 ∈ ℂ | |
36 | ax-1cn 11242 | . . . . . 6 ⊢ 1 ∈ ℂ | |
37 | 3ne0 12399 | . . . . . . 7 ⊢ 3 ≠ 0 | |
38 | 35, 37 | pm3.2i 470 | . . . . . 6 ⊢ (3 ∈ ℂ ∧ 3 ≠ 0) |
39 | divsubdir 11988 | . . . . . 6 ⊢ ((3 ∈ ℂ ∧ 1 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((3 − 1) / 3) = ((3 / 3) − (1 / 3))) | |
40 | 35, 36, 38, 39 | mp3an 1461 | . . . . 5 ⊢ ((3 − 1) / 3) = ((3 / 3) − (1 / 3)) |
41 | 3m1e2 12421 | . . . . . 6 ⊢ (3 − 1) = 2 | |
42 | 41 | oveq1i 7458 | . . . . 5 ⊢ ((3 − 1) / 3) = (2 / 3) |
43 | 35, 37 | dividi 12027 | . . . . . 6 ⊢ (3 / 3) = 1 |
44 | 43 | oveq1i 7458 | . . . . 5 ⊢ ((3 / 3) − (1 / 3)) = (1 − (1 / 3)) |
45 | 40, 42, 44 | 3eqtr3ri 2777 | . . . 4 ⊢ (1 − (1 / 3)) = (2 / 3) |
46 | 34, 45 | oveq12i 7460 | . . 3 ⊢ (((1 / 3)↑1) / (1 − (1 / 3))) = ((1 / 3) / (2 / 3)) |
47 | 2cnne0 12503 | . . . 4 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
48 | divcan7 12003 | . . . 4 ⊢ ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((1 / 3) / (2 / 3)) = (1 / 2)) | |
49 | 36, 47, 38, 48 | mp3an 1461 | . . 3 ⊢ ((1 / 3) / (2 / 3)) = (1 / 2) |
50 | 46, 49 | eqtri 2768 | . 2 ⊢ (((1 / 3)↑1) / (1 − (1 / 3))) = (1 / 2) |
51 | 32, 50 | breqtri 5191 | 1 ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 ≠ wne 2946 ⊆ wss 3976 ifcif 4548 𝒫 cpw 4622 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 < clt 11324 ≤ cle 11325 − cmin 11520 / cdiv 11947 ℕcn 12293 2c2 12348 3c3 12349 ℕ0cn0 12553 ℤ≥cuz 12903 seqcseq 14052 ↑cexp 14112 abscabs 15283 ⇝ cli 15530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-rlim 15535 df-sum 15735 |
This theorem is referenced by: rpnnen2lem5 16266 rpnnen2lem12 16273 |
Copyright terms: Public domain | W3C validator |