| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpnnen2lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for rpnnen2 16194. (Contributed by Mario Carneiro, 13-May-2013.) |
| Ref | Expression |
|---|---|
| rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
| Ref | Expression |
|---|---|
| rpnnen2lem3 | ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11174 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 2 | 3nn 12265 | . . . . . . 7 ⊢ 3 ∈ ℕ | |
| 3 | nndivre 12227 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | . . . . . 6 ⊢ (1 / 3) ∈ ℝ |
| 5 | 4 | recni 11188 | . . . . 5 ⊢ (1 / 3) ∈ ℂ |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (⊤ → (1 / 3) ∈ ℂ) |
| 7 | 0re 11176 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 8 | 3re 12266 | . . . . . . . . 9 ⊢ 3 ∈ ℝ | |
| 9 | 3pos 12291 | . . . . . . . . 9 ⊢ 0 < 3 | |
| 10 | 8, 9 | recgt0ii 12089 | . . . . . . . 8 ⊢ 0 < (1 / 3) |
| 11 | 7, 4, 10 | ltleii 11297 | . . . . . . 7 ⊢ 0 ≤ (1 / 3) |
| 12 | absid 15262 | . . . . . . 7 ⊢ (((1 / 3) ∈ ℝ ∧ 0 ≤ (1 / 3)) → (abs‘(1 / 3)) = (1 / 3)) | |
| 13 | 4, 11, 12 | mp2an 692 | . . . . . 6 ⊢ (abs‘(1 / 3)) = (1 / 3) |
| 14 | 1lt3 12354 | . . . . . . 7 ⊢ 1 < 3 | |
| 15 | recgt1 12079 | . . . . . . . 8 ⊢ ((3 ∈ ℝ ∧ 0 < 3) → (1 < 3 ↔ (1 / 3) < 1)) | |
| 16 | 8, 9, 15 | mp2an 692 | . . . . . . 7 ⊢ (1 < 3 ↔ (1 / 3) < 1) |
| 17 | 14, 16 | mpbi 230 | . . . . . 6 ⊢ (1 / 3) < 1 |
| 18 | 13, 17 | eqbrtri 5128 | . . . . 5 ⊢ (abs‘(1 / 3)) < 1 |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (⊤ → (abs‘(1 / 3)) < 1) |
| 20 | 1nn0 12458 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (⊤ → 1 ∈ ℕ0) |
| 22 | ssid 3969 | . . . . . 6 ⊢ ℕ ⊆ ℕ | |
| 23 | simpr 484 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → 𝑘 ∈ (ℤ≥‘1)) | |
| 24 | nnuz 12836 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
| 25 | 23, 24 | eleqtrrdi 2839 | . . . . . 6 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → 𝑘 ∈ ℕ) |
| 26 | rpnnen2.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
| 27 | 26 | rpnnen2lem1 16182 | . . . . . 6 ⊢ ((ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0)) |
| 28 | 22, 25, 27 | sylancr 587 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0)) |
| 29 | 25 | iftrued 4496 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0) = ((1 / 3)↑𝑘)) |
| 30 | 28, 29 | eqtrd 2764 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝐹‘ℕ)‘𝑘) = ((1 / 3)↑𝑘)) |
| 31 | 6, 19, 21, 30 | geolim2 15837 | . . 3 ⊢ (⊤ → seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3)))) |
| 32 | 31 | mptru 1547 | . 2 ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3))) |
| 33 | exp1 14032 | . . . . 5 ⊢ ((1 / 3) ∈ ℂ → ((1 / 3)↑1) = (1 / 3)) | |
| 34 | 5, 33 | ax-mp 5 | . . . 4 ⊢ ((1 / 3)↑1) = (1 / 3) |
| 35 | 3cn 12267 | . . . . . 6 ⊢ 3 ∈ ℂ | |
| 36 | ax-1cn 11126 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 37 | 3ne0 12292 | . . . . . . 7 ⊢ 3 ≠ 0 | |
| 38 | 35, 37 | pm3.2i 470 | . . . . . 6 ⊢ (3 ∈ ℂ ∧ 3 ≠ 0) |
| 39 | divsubdir 11876 | . . . . . 6 ⊢ ((3 ∈ ℂ ∧ 1 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((3 − 1) / 3) = ((3 / 3) − (1 / 3))) | |
| 40 | 35, 36, 38, 39 | mp3an 1463 | . . . . 5 ⊢ ((3 − 1) / 3) = ((3 / 3) − (1 / 3)) |
| 41 | 3m1e2 12309 | . . . . . 6 ⊢ (3 − 1) = 2 | |
| 42 | 41 | oveq1i 7397 | . . . . 5 ⊢ ((3 − 1) / 3) = (2 / 3) |
| 43 | 35, 37 | dividi 11915 | . . . . . 6 ⊢ (3 / 3) = 1 |
| 44 | 43 | oveq1i 7397 | . . . . 5 ⊢ ((3 / 3) − (1 / 3)) = (1 − (1 / 3)) |
| 45 | 40, 42, 44 | 3eqtr3ri 2761 | . . . 4 ⊢ (1 − (1 / 3)) = (2 / 3) |
| 46 | 34, 45 | oveq12i 7399 | . . 3 ⊢ (((1 / 3)↑1) / (1 − (1 / 3))) = ((1 / 3) / (2 / 3)) |
| 47 | 2cnne0 12391 | . . . 4 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
| 48 | divcan7 11891 | . . . 4 ⊢ ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((1 / 3) / (2 / 3)) = (1 / 2)) | |
| 49 | 36, 47, 38, 48 | mp3an 1463 | . . 3 ⊢ ((1 / 3) / (2 / 3)) = (1 / 2) |
| 50 | 46, 49 | eqtri 2752 | . 2 ⊢ (((1 / 3)↑1) / (1 − (1 / 3))) = (1 / 2) |
| 51 | 32, 50 | breqtri 5132 | 1 ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3914 ifcif 4488 𝒫 cpw 4563 class class class wbr 5107 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 < clt 11208 ≤ cle 11209 − cmin 11405 / cdiv 11835 ℕcn 12186 2c2 12241 3c3 12242 ℕ0cn0 12442 ℤ≥cuz 12793 seqcseq 13966 ↑cexp 14026 abscabs 15200 ⇝ cli 15450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-sum 15653 |
| This theorem is referenced by: rpnnen2lem5 16186 rpnnen2lem12 16193 |
| Copyright terms: Public domain | W3C validator |