| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpnnen2lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for rpnnen2 16135. (Contributed by Mario Carneiro, 13-May-2013.) |
| Ref | Expression |
|---|---|
| rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
| Ref | Expression |
|---|---|
| rpnnen2lem3 | ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11112 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 2 | 3nn 12204 | . . . . . . 7 ⊢ 3 ∈ ℕ | |
| 3 | nndivre 12166 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | . . . . . 6 ⊢ (1 / 3) ∈ ℝ |
| 5 | 4 | recni 11126 | . . . . 5 ⊢ (1 / 3) ∈ ℂ |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (⊤ → (1 / 3) ∈ ℂ) |
| 7 | 0re 11114 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 8 | 3re 12205 | . . . . . . . . 9 ⊢ 3 ∈ ℝ | |
| 9 | 3pos 12230 | . . . . . . . . 9 ⊢ 0 < 3 | |
| 10 | 8, 9 | recgt0ii 12028 | . . . . . . . 8 ⊢ 0 < (1 / 3) |
| 11 | 7, 4, 10 | ltleii 11236 | . . . . . . 7 ⊢ 0 ≤ (1 / 3) |
| 12 | absid 15203 | . . . . . . 7 ⊢ (((1 / 3) ∈ ℝ ∧ 0 ≤ (1 / 3)) → (abs‘(1 / 3)) = (1 / 3)) | |
| 13 | 4, 11, 12 | mp2an 692 | . . . . . 6 ⊢ (abs‘(1 / 3)) = (1 / 3) |
| 14 | 1lt3 12293 | . . . . . . 7 ⊢ 1 < 3 | |
| 15 | recgt1 12018 | . . . . . . . 8 ⊢ ((3 ∈ ℝ ∧ 0 < 3) → (1 < 3 ↔ (1 / 3) < 1)) | |
| 16 | 8, 9, 15 | mp2an 692 | . . . . . . 7 ⊢ (1 < 3 ↔ (1 / 3) < 1) |
| 17 | 14, 16 | mpbi 230 | . . . . . 6 ⊢ (1 / 3) < 1 |
| 18 | 13, 17 | eqbrtri 5110 | . . . . 5 ⊢ (abs‘(1 / 3)) < 1 |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (⊤ → (abs‘(1 / 3)) < 1) |
| 20 | 1nn0 12397 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (⊤ → 1 ∈ ℕ0) |
| 22 | ssid 3952 | . . . . . 6 ⊢ ℕ ⊆ ℕ | |
| 23 | simpr 484 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → 𝑘 ∈ (ℤ≥‘1)) | |
| 24 | nnuz 12775 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
| 25 | 23, 24 | eleqtrrdi 2842 | . . . . . 6 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → 𝑘 ∈ ℕ) |
| 26 | rpnnen2.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
| 27 | 26 | rpnnen2lem1 16123 | . . . . . 6 ⊢ ((ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0)) |
| 28 | 22, 25, 27 | sylancr 587 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0)) |
| 29 | 25 | iftrued 4480 | . . . . 5 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0) = ((1 / 3)↑𝑘)) |
| 30 | 28, 29 | eqtrd 2766 | . . . 4 ⊢ ((⊤ ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝐹‘ℕ)‘𝑘) = ((1 / 3)↑𝑘)) |
| 31 | 6, 19, 21, 30 | geolim2 15778 | . . 3 ⊢ (⊤ → seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3)))) |
| 32 | 31 | mptru 1548 | . 2 ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3))) |
| 33 | exp1 13974 | . . . . 5 ⊢ ((1 / 3) ∈ ℂ → ((1 / 3)↑1) = (1 / 3)) | |
| 34 | 5, 33 | ax-mp 5 | . . . 4 ⊢ ((1 / 3)↑1) = (1 / 3) |
| 35 | 3cn 12206 | . . . . . 6 ⊢ 3 ∈ ℂ | |
| 36 | ax-1cn 11064 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 37 | 3ne0 12231 | . . . . . . 7 ⊢ 3 ≠ 0 | |
| 38 | 35, 37 | pm3.2i 470 | . . . . . 6 ⊢ (3 ∈ ℂ ∧ 3 ≠ 0) |
| 39 | divsubdir 11815 | . . . . . 6 ⊢ ((3 ∈ ℂ ∧ 1 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((3 − 1) / 3) = ((3 / 3) − (1 / 3))) | |
| 40 | 35, 36, 38, 39 | mp3an 1463 | . . . . 5 ⊢ ((3 − 1) / 3) = ((3 / 3) − (1 / 3)) |
| 41 | 3m1e2 12248 | . . . . . 6 ⊢ (3 − 1) = 2 | |
| 42 | 41 | oveq1i 7356 | . . . . 5 ⊢ ((3 − 1) / 3) = (2 / 3) |
| 43 | 35, 37 | dividi 11854 | . . . . . 6 ⊢ (3 / 3) = 1 |
| 44 | 43 | oveq1i 7356 | . . . . 5 ⊢ ((3 / 3) − (1 / 3)) = (1 − (1 / 3)) |
| 45 | 40, 42, 44 | 3eqtr3ri 2763 | . . . 4 ⊢ (1 − (1 / 3)) = (2 / 3) |
| 46 | 34, 45 | oveq12i 7358 | . . 3 ⊢ (((1 / 3)↑1) / (1 − (1 / 3))) = ((1 / 3) / (2 / 3)) |
| 47 | 2cnne0 12330 | . . . 4 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
| 48 | divcan7 11830 | . . . 4 ⊢ ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((1 / 3) / (2 / 3)) = (1 / 2)) | |
| 49 | 36, 47, 38, 48 | mp3an 1463 | . . 3 ⊢ ((1 / 3) / (2 / 3)) = (1 / 2) |
| 50 | 46, 49 | eqtri 2754 | . 2 ⊢ (((1 / 3)↑1) / (1 − (1 / 3))) = (1 / 2) |
| 51 | 32, 50 | breqtri 5114 | 1 ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3897 ifcif 4472 𝒫 cpw 4547 class class class wbr 5089 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 < clt 11146 ≤ cle 11147 − cmin 11344 / cdiv 11774 ℕcn 12125 2c2 12180 3c3 12181 ℕ0cn0 12381 ℤ≥cuz 12732 seqcseq 13908 ↑cexp 13968 abscabs 15141 ⇝ cli 15391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 |
| This theorem is referenced by: rpnnen2lem5 16127 rpnnen2lem12 16134 |
| Copyright terms: Public domain | W3C validator |