MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem3 Structured version   Visualization version   GIF version

Theorem rpnnen2lem3 16264
Description: Lemma for rpnnen2 16274. (Contributed by Mario Carneiro, 13-May-2013.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem3 seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2)
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 1re 11290 . . . . . . 7 1 ∈ ℝ
2 3nn 12372 . . . . . . 7 3 ∈ ℕ
3 nndivre 12334 . . . . . . 7 ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ)
41, 2, 3mp2an 691 . . . . . 6 (1 / 3) ∈ ℝ
54recni 11304 . . . . 5 (1 / 3) ∈ ℂ
65a1i 11 . . . 4 (⊤ → (1 / 3) ∈ ℂ)
7 0re 11292 . . . . . . . 8 0 ∈ ℝ
8 3re 12373 . . . . . . . . 9 3 ∈ ℝ
9 3pos 12398 . . . . . . . . 9 0 < 3
108, 9recgt0ii 12201 . . . . . . . 8 0 < (1 / 3)
117, 4, 10ltleii 11413 . . . . . . 7 0 ≤ (1 / 3)
12 absid 15345 . . . . . . 7 (((1 / 3) ∈ ℝ ∧ 0 ≤ (1 / 3)) → (abs‘(1 / 3)) = (1 / 3))
134, 11, 12mp2an 691 . . . . . 6 (abs‘(1 / 3)) = (1 / 3)
14 1lt3 12466 . . . . . . 7 1 < 3
15 recgt1 12191 . . . . . . . 8 ((3 ∈ ℝ ∧ 0 < 3) → (1 < 3 ↔ (1 / 3) < 1))
168, 9, 15mp2an 691 . . . . . . 7 (1 < 3 ↔ (1 / 3) < 1)
1714, 16mpbi 230 . . . . . 6 (1 / 3) < 1
1813, 17eqbrtri 5187 . . . . 5 (abs‘(1 / 3)) < 1
1918a1i 11 . . . 4 (⊤ → (abs‘(1 / 3)) < 1)
20 1nn0 12569 . . . . 5 1 ∈ ℕ0
2120a1i 11 . . . 4 (⊤ → 1 ∈ ℕ0)
22 ssid 4031 . . . . . 6 ℕ ⊆ ℕ
23 simpr 484 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ (ℤ‘1))
24 nnuz 12946 . . . . . . 7 ℕ = (ℤ‘1)
2523, 24eleqtrrdi 2855 . . . . . 6 ((⊤ ∧ 𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℕ)
26 rpnnen2.1 . . . . . . 7 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
2726rpnnen2lem1 16262 . . . . . 6 ((ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0))
2822, 25, 27sylancr 586 . . . . 5 ((⊤ ∧ 𝑘 ∈ (ℤ‘1)) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0))
2925iftrued 4556 . . . . 5 ((⊤ ∧ 𝑘 ∈ (ℤ‘1)) → if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0) = ((1 / 3)↑𝑘))
3028, 29eqtrd 2780 . . . 4 ((⊤ ∧ 𝑘 ∈ (ℤ‘1)) → ((𝐹‘ℕ)‘𝑘) = ((1 / 3)↑𝑘))
316, 19, 21, 30geolim2 15919 . . 3 (⊤ → seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3))))
3231mptru 1544 . 2 seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3)))
33 exp1 14118 . . . . 5 ((1 / 3) ∈ ℂ → ((1 / 3)↑1) = (1 / 3))
345, 33ax-mp 5 . . . 4 ((1 / 3)↑1) = (1 / 3)
35 3cn 12374 . . . . . 6 3 ∈ ℂ
36 ax-1cn 11242 . . . . . 6 1 ∈ ℂ
37 3ne0 12399 . . . . . . 7 3 ≠ 0
3835, 37pm3.2i 470 . . . . . 6 (3 ∈ ℂ ∧ 3 ≠ 0)
39 divsubdir 11988 . . . . . 6 ((3 ∈ ℂ ∧ 1 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((3 − 1) / 3) = ((3 / 3) − (1 / 3)))
4035, 36, 38, 39mp3an 1461 . . . . 5 ((3 − 1) / 3) = ((3 / 3) − (1 / 3))
41 3m1e2 12421 . . . . . 6 (3 − 1) = 2
4241oveq1i 7458 . . . . 5 ((3 − 1) / 3) = (2 / 3)
4335, 37dividi 12027 . . . . . 6 (3 / 3) = 1
4443oveq1i 7458 . . . . 5 ((3 / 3) − (1 / 3)) = (1 − (1 / 3))
4540, 42, 443eqtr3ri 2777 . . . 4 (1 − (1 / 3)) = (2 / 3)
4634, 45oveq12i 7460 . . 3 (((1 / 3)↑1) / (1 − (1 / 3))) = ((1 / 3) / (2 / 3))
47 2cnne0 12503 . . . 4 (2 ∈ ℂ ∧ 2 ≠ 0)
48 divcan7 12003 . . . 4 ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((1 / 3) / (2 / 3)) = (1 / 2))
4936, 47, 38, 48mp3an 1461 . . 3 ((1 / 3) / (2 / 3)) = (1 / 2)
5046, 49eqtri 2768 . 2 (((1 / 3)↑1) / (1 − (1 / 3))) = (1 / 2)
5132, 50breqtri 5191 1 seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wtru 1538  wcel 2108  wne 2946  wss 3976  ifcif 4548  𝒫 cpw 4622   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  3c3 12349  0cn0 12553  cuz 12903  seqcseq 14052  cexp 14112  abscabs 15283  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735
This theorem is referenced by:  rpnnen2lem5  16266  rpnnen2lem12  16273
  Copyright terms: Public domain W3C validator