MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem3 Structured version   Visualization version   GIF version

Theorem rpnnen2lem3 16191
Description: Lemma for rpnnen2 16201. (Contributed by Mario Carneiro, 13-May-2013.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem3 seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2)
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 1re 11181 . . . . . . 7 1 ∈ ℝ
2 3nn 12272 . . . . . . 7 3 ∈ ℕ
3 nndivre 12234 . . . . . . 7 ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ)
41, 2, 3mp2an 692 . . . . . 6 (1 / 3) ∈ ℝ
54recni 11195 . . . . 5 (1 / 3) ∈ ℂ
65a1i 11 . . . 4 (⊤ → (1 / 3) ∈ ℂ)
7 0re 11183 . . . . . . . 8 0 ∈ ℝ
8 3re 12273 . . . . . . . . 9 3 ∈ ℝ
9 3pos 12298 . . . . . . . . 9 0 < 3
108, 9recgt0ii 12096 . . . . . . . 8 0 < (1 / 3)
117, 4, 10ltleii 11304 . . . . . . 7 0 ≤ (1 / 3)
12 absid 15269 . . . . . . 7 (((1 / 3) ∈ ℝ ∧ 0 ≤ (1 / 3)) → (abs‘(1 / 3)) = (1 / 3))
134, 11, 12mp2an 692 . . . . . 6 (abs‘(1 / 3)) = (1 / 3)
14 1lt3 12361 . . . . . . 7 1 < 3
15 recgt1 12086 . . . . . . . 8 ((3 ∈ ℝ ∧ 0 < 3) → (1 < 3 ↔ (1 / 3) < 1))
168, 9, 15mp2an 692 . . . . . . 7 (1 < 3 ↔ (1 / 3) < 1)
1714, 16mpbi 230 . . . . . 6 (1 / 3) < 1
1813, 17eqbrtri 5131 . . . . 5 (abs‘(1 / 3)) < 1
1918a1i 11 . . . 4 (⊤ → (abs‘(1 / 3)) < 1)
20 1nn0 12465 . . . . 5 1 ∈ ℕ0
2120a1i 11 . . . 4 (⊤ → 1 ∈ ℕ0)
22 ssid 3972 . . . . . 6 ℕ ⊆ ℕ
23 simpr 484 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ (ℤ‘1))
24 nnuz 12843 . . . . . . 7 ℕ = (ℤ‘1)
2523, 24eleqtrrdi 2840 . . . . . 6 ((⊤ ∧ 𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℕ)
26 rpnnen2.1 . . . . . . 7 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
2726rpnnen2lem1 16189 . . . . . 6 ((ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0))
2822, 25, 27sylancr 587 . . . . 5 ((⊤ ∧ 𝑘 ∈ (ℤ‘1)) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0))
2925iftrued 4499 . . . . 5 ((⊤ ∧ 𝑘 ∈ (ℤ‘1)) → if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0) = ((1 / 3)↑𝑘))
3028, 29eqtrd 2765 . . . 4 ((⊤ ∧ 𝑘 ∈ (ℤ‘1)) → ((𝐹‘ℕ)‘𝑘) = ((1 / 3)↑𝑘))
316, 19, 21, 30geolim2 15844 . . 3 (⊤ → seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3))))
3231mptru 1547 . 2 seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3)))
33 exp1 14039 . . . . 5 ((1 / 3) ∈ ℂ → ((1 / 3)↑1) = (1 / 3))
345, 33ax-mp 5 . . . 4 ((1 / 3)↑1) = (1 / 3)
35 3cn 12274 . . . . . 6 3 ∈ ℂ
36 ax-1cn 11133 . . . . . 6 1 ∈ ℂ
37 3ne0 12299 . . . . . . 7 3 ≠ 0
3835, 37pm3.2i 470 . . . . . 6 (3 ∈ ℂ ∧ 3 ≠ 0)
39 divsubdir 11883 . . . . . 6 ((3 ∈ ℂ ∧ 1 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((3 − 1) / 3) = ((3 / 3) − (1 / 3)))
4035, 36, 38, 39mp3an 1463 . . . . 5 ((3 − 1) / 3) = ((3 / 3) − (1 / 3))
41 3m1e2 12316 . . . . . 6 (3 − 1) = 2
4241oveq1i 7400 . . . . 5 ((3 − 1) / 3) = (2 / 3)
4335, 37dividi 11922 . . . . . 6 (3 / 3) = 1
4443oveq1i 7400 . . . . 5 ((3 / 3) − (1 / 3)) = (1 − (1 / 3))
4540, 42, 443eqtr3ri 2762 . . . 4 (1 − (1 / 3)) = (2 / 3)
4634, 45oveq12i 7402 . . 3 (((1 / 3)↑1) / (1 − (1 / 3))) = ((1 / 3) / (2 / 3))
47 2cnne0 12398 . . . 4 (2 ∈ ℂ ∧ 2 ≠ 0)
48 divcan7 11898 . . . 4 ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((1 / 3) / (2 / 3)) = (1 / 2))
4936, 47, 38, 48mp3an 1463 . . 3 ((1 / 3) / (2 / 3)) = (1 / 2)
5046, 49eqtri 2753 . 2 (((1 / 3)↑1) / (1 − (1 / 3))) = (1 / 2)
5132, 50breqtri 5135 1 seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2926  wss 3917  ifcif 4491  𝒫 cpw 4566   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  3c3 12249  0cn0 12449  cuz 12800  seqcseq 13973  cexp 14033  abscabs 15207  cli 15457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660
This theorem is referenced by:  rpnnen2lem5  16193  rpnnen2lem12  16200
  Copyright terms: Public domain W3C validator