Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 420gcd8e4 | Structured version Visualization version GIF version |
Description: The gcd of 420 and 8 is 4. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
420gcd8e4 | ⊢ (;;420 gcd 8) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn 11998 | . . . 4 ⊢ 8 ∈ ℕ | |
2 | 4nn 11986 | . . . 4 ⊢ 4 ∈ ℕ | |
3 | 5nn0 12183 | . . . . . 6 ⊢ 5 ∈ ℕ0 | |
4 | 2nn 11976 | . . . . . 6 ⊢ 2 ∈ ℕ | |
5 | 3, 4 | decnncl 12386 | . . . . 5 ⊢ ;52 ∈ ℕ |
6 | 5 | nnzi 12274 | . . . 4 ⊢ ;52 ∈ ℤ |
7 | 1, 2, 6 | gcdaddmzz2nncomi 39932 | . . 3 ⊢ (8 gcd 4) = (8 gcd ((;52 · 8) + 4)) |
8 | 4nn0 12182 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
9 | 1nn0 12179 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
10 | 8, 9 | deccl 12381 | . . . . . 6 ⊢ ;41 ∈ ℕ0 |
11 | 6nn0 12184 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
12 | 0nn0 12178 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
13 | eqid 2738 | . . . . . 6 ⊢ ;;416 = ;;416 | |
14 | 8 | dec0h 12388 | . . . . . 6 ⊢ 4 = ;04 |
15 | 1p1e2 12028 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
16 | 10 | nn0cni 12175 | . . . . . . . 8 ⊢ ;41 ∈ ℂ |
17 | 16 | addid1i 11092 | . . . . . . 7 ⊢ (;41 + 0) = ;41 |
18 | 8, 9, 15, 17 | decsuc 12397 | . . . . . 6 ⊢ ((;41 + 0) + 1) = ;42 |
19 | 6p4e10 12438 | . . . . . 6 ⊢ (6 + 4) = ;10 | |
20 | 10, 11, 12, 8, 13, 14, 18, 19 | decaddc2 12422 | . . . . 5 ⊢ (;;416 + 4) = ;;420 |
21 | 8nn0 12186 | . . . . . . . 8 ⊢ 8 ∈ ℕ0 | |
22 | 2nn0 12180 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
23 | eqid 2738 | . . . . . . . 8 ⊢ ;52 = ;52 | |
24 | 0p1e1 12025 | . . . . . . . . 9 ⊢ (0 + 1) = 1 | |
25 | 8t5e40 12484 | . . . . . . . . 9 ⊢ (8 · 5) = ;40 | |
26 | 8, 12, 24, 25 | decsuc 12397 | . . . . . . . 8 ⊢ ((8 · 5) + 1) = ;41 |
27 | 8t2e16 12481 | . . . . . . . 8 ⊢ (8 · 2) = ;16 | |
28 | 21, 3, 22, 23, 11, 9, 26, 27 | decmul2c 12432 | . . . . . . 7 ⊢ (8 · ;52) = ;;416 |
29 | 1, 5 | mulcomnni 39924 | . . . . . . 7 ⊢ (8 · ;52) = (;52 · 8) |
30 | 28, 29 | eqtr3i 2768 | . . . . . 6 ⊢ ;;416 = (;52 · 8) |
31 | 30 | oveq1i 7265 | . . . . 5 ⊢ (;;416 + 4) = ((;52 · 8) + 4) |
32 | 20, 31 | eqtr3i 2768 | . . . 4 ⊢ ;;420 = ((;52 · 8) + 4) |
33 | 32 | oveq2i 7266 | . . 3 ⊢ (8 gcd ;;420) = (8 gcd ((;52 · 8) + 4)) |
34 | 7, 33 | eqtr4i 2769 | . 2 ⊢ (8 gcd 4) = (8 gcd ;;420) |
35 | 1, 2 | gcdcomnni 39925 | . . 3 ⊢ (8 gcd 4) = (4 gcd 8) |
36 | 4t2e8 12071 | . . . . 5 ⊢ (4 · 2) = 8 | |
37 | 36 | oveq2i 7266 | . . . 4 ⊢ (4 gcd (4 · 2)) = (4 gcd 8) |
38 | 2, 4 | gcdmultiplei 39930 | . . . 4 ⊢ (4 gcd (4 · 2)) = 4 |
39 | 37, 38 | eqtr3i 2768 | . . 3 ⊢ (4 gcd 8) = 4 |
40 | 35, 39 | eqtri 2766 | . 2 ⊢ (8 gcd 4) = 4 |
41 | 8, 4 | decnncl 12386 | . . . 4 ⊢ ;42 ∈ ℕ |
42 | 41 | decnncl2 12390 | . . 3 ⊢ ;;420 ∈ ℕ |
43 | 1, 42 | gcdcomnni 39925 | . 2 ⊢ (8 gcd ;;420) = (;;420 gcd 8) |
44 | 34, 40, 43 | 3eqtr3ri 2775 | 1 ⊢ (;;420 gcd 8) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7255 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 2c2 11958 4c4 11960 5c5 11961 6c6 11962 8c8 11964 ;cdc 12366 gcd cgcd 16129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-gcd 16130 |
This theorem is referenced by: 420lcm8e840 39947 |
Copyright terms: Public domain | W3C validator |