![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 420gcd8e4 | Structured version Visualization version GIF version |
Description: The gcd of 420 and 8 is 4. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
420gcd8e4 | ⊢ (;;420 gcd 8) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn 12359 | . . . 4 ⊢ 8 ∈ ℕ | |
2 | 4nn 12347 | . . . 4 ⊢ 4 ∈ ℕ | |
3 | 5nn0 12544 | . . . . . 6 ⊢ 5 ∈ ℕ0 | |
4 | 2nn 12337 | . . . . . 6 ⊢ 2 ∈ ℕ | |
5 | 3, 4 | decnncl 12751 | . . . . 5 ⊢ ;52 ∈ ℕ |
6 | 5 | nnzi 12639 | . . . 4 ⊢ ;52 ∈ ℤ |
7 | 1, 2, 6 | gcdaddmzz2nncomi 41977 | . . 3 ⊢ (8 gcd 4) = (8 gcd ((;52 · 8) + 4)) |
8 | 4nn0 12543 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
9 | 1nn0 12540 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
10 | 8, 9 | deccl 12746 | . . . . . 6 ⊢ ;41 ∈ ℕ0 |
11 | 6nn0 12545 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
12 | 0nn0 12539 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
13 | eqid 2735 | . . . . . 6 ⊢ ;;416 = ;;416 | |
14 | 8 | dec0h 12753 | . . . . . 6 ⊢ 4 = ;04 |
15 | 1p1e2 12389 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
16 | 10 | nn0cni 12536 | . . . . . . . 8 ⊢ ;41 ∈ ℂ |
17 | 16 | addridi 11446 | . . . . . . 7 ⊢ (;41 + 0) = ;41 |
18 | 8, 9, 15, 17 | decsuc 12762 | . . . . . 6 ⊢ ((;41 + 0) + 1) = ;42 |
19 | 6p4e10 12803 | . . . . . 6 ⊢ (6 + 4) = ;10 | |
20 | 10, 11, 12, 8, 13, 14, 18, 19 | decaddc2 12787 | . . . . 5 ⊢ (;;416 + 4) = ;;420 |
21 | 8nn0 12547 | . . . . . . . 8 ⊢ 8 ∈ ℕ0 | |
22 | 2nn0 12541 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
23 | eqid 2735 | . . . . . . . 8 ⊢ ;52 = ;52 | |
24 | 0p1e1 12386 | . . . . . . . . 9 ⊢ (0 + 1) = 1 | |
25 | 8t5e40 12849 | . . . . . . . . 9 ⊢ (8 · 5) = ;40 | |
26 | 8, 12, 24, 25 | decsuc 12762 | . . . . . . . 8 ⊢ ((8 · 5) + 1) = ;41 |
27 | 8t2e16 12846 | . . . . . . . 8 ⊢ (8 · 2) = ;16 | |
28 | 21, 3, 22, 23, 11, 9, 26, 27 | decmul2c 12797 | . . . . . . 7 ⊢ (8 · ;52) = ;;416 |
29 | 1, 5 | mulcomnni 41969 | . . . . . . 7 ⊢ (8 · ;52) = (;52 · 8) |
30 | 28, 29 | eqtr3i 2765 | . . . . . 6 ⊢ ;;416 = (;52 · 8) |
31 | 30 | oveq1i 7441 | . . . . 5 ⊢ (;;416 + 4) = ((;52 · 8) + 4) |
32 | 20, 31 | eqtr3i 2765 | . . . 4 ⊢ ;;420 = ((;52 · 8) + 4) |
33 | 32 | oveq2i 7442 | . . 3 ⊢ (8 gcd ;;420) = (8 gcd ((;52 · 8) + 4)) |
34 | 7, 33 | eqtr4i 2766 | . 2 ⊢ (8 gcd 4) = (8 gcd ;;420) |
35 | 1, 2 | gcdcomnni 41970 | . . 3 ⊢ (8 gcd 4) = (4 gcd 8) |
36 | 4t2e8 12432 | . . . . 5 ⊢ (4 · 2) = 8 | |
37 | 36 | oveq2i 7442 | . . . 4 ⊢ (4 gcd (4 · 2)) = (4 gcd 8) |
38 | 2, 4 | gcdmultiplei 41975 | . . . 4 ⊢ (4 gcd (4 · 2)) = 4 |
39 | 37, 38 | eqtr3i 2765 | . . 3 ⊢ (4 gcd 8) = 4 |
40 | 35, 39 | eqtri 2763 | . 2 ⊢ (8 gcd 4) = 4 |
41 | 8, 4 | decnncl 12751 | . . . 4 ⊢ ;42 ∈ ℕ |
42 | 41 | decnncl2 12755 | . . 3 ⊢ ;;420 ∈ ℕ |
43 | 1, 42 | gcdcomnni 41970 | . 2 ⊢ (8 gcd ;;420) = (;;420 gcd 8) |
44 | 34, 40, 43 | 3eqtr3ri 2772 | 1 ⊢ (;;420 gcd 8) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7431 0cc0 11153 1c1 11154 + caddc 11156 · cmul 11158 2c2 12319 4c4 12321 5c5 12322 6c6 12323 8c8 12325 ;cdc 12731 gcd cgcd 16528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-rp 13033 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-dvds 16288 df-gcd 16529 |
This theorem is referenced by: 420lcm8e840 41993 |
Copyright terms: Public domain | W3C validator |