Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 420gcd8e4 | Structured version Visualization version GIF version |
Description: The gcd of 420 and 8 is 4. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
420gcd8e4 | ⊢ (;;420 gcd 8) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn 12068 | . . . 4 ⊢ 8 ∈ ℕ | |
2 | 4nn 12056 | . . . 4 ⊢ 4 ∈ ℕ | |
3 | 5nn0 12253 | . . . . . 6 ⊢ 5 ∈ ℕ0 | |
4 | 2nn 12046 | . . . . . 6 ⊢ 2 ∈ ℕ | |
5 | 3, 4 | decnncl 12457 | . . . . 5 ⊢ ;52 ∈ ℕ |
6 | 5 | nnzi 12344 | . . . 4 ⊢ ;52 ∈ ℤ |
7 | 1, 2, 6 | gcdaddmzz2nncomi 40004 | . . 3 ⊢ (8 gcd 4) = (8 gcd ((;52 · 8) + 4)) |
8 | 4nn0 12252 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
9 | 1nn0 12249 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
10 | 8, 9 | deccl 12452 | . . . . . 6 ⊢ ;41 ∈ ℕ0 |
11 | 6nn0 12254 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
12 | 0nn0 12248 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
13 | eqid 2738 | . . . . . 6 ⊢ ;;416 = ;;416 | |
14 | 8 | dec0h 12459 | . . . . . 6 ⊢ 4 = ;04 |
15 | 1p1e2 12098 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
16 | 10 | nn0cni 12245 | . . . . . . . 8 ⊢ ;41 ∈ ℂ |
17 | 16 | addid1i 11162 | . . . . . . 7 ⊢ (;41 + 0) = ;41 |
18 | 8, 9, 15, 17 | decsuc 12468 | . . . . . 6 ⊢ ((;41 + 0) + 1) = ;42 |
19 | 6p4e10 12509 | . . . . . 6 ⊢ (6 + 4) = ;10 | |
20 | 10, 11, 12, 8, 13, 14, 18, 19 | decaddc2 12493 | . . . . 5 ⊢ (;;416 + 4) = ;;420 |
21 | 8nn0 12256 | . . . . . . . 8 ⊢ 8 ∈ ℕ0 | |
22 | 2nn0 12250 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
23 | eqid 2738 | . . . . . . . 8 ⊢ ;52 = ;52 | |
24 | 0p1e1 12095 | . . . . . . . . 9 ⊢ (0 + 1) = 1 | |
25 | 8t5e40 12555 | . . . . . . . . 9 ⊢ (8 · 5) = ;40 | |
26 | 8, 12, 24, 25 | decsuc 12468 | . . . . . . . 8 ⊢ ((8 · 5) + 1) = ;41 |
27 | 8t2e16 12552 | . . . . . . . 8 ⊢ (8 · 2) = ;16 | |
28 | 21, 3, 22, 23, 11, 9, 26, 27 | decmul2c 12503 | . . . . . . 7 ⊢ (8 · ;52) = ;;416 |
29 | 1, 5 | mulcomnni 39996 | . . . . . . 7 ⊢ (8 · ;52) = (;52 · 8) |
30 | 28, 29 | eqtr3i 2768 | . . . . . 6 ⊢ ;;416 = (;52 · 8) |
31 | 30 | oveq1i 7285 | . . . . 5 ⊢ (;;416 + 4) = ((;52 · 8) + 4) |
32 | 20, 31 | eqtr3i 2768 | . . . 4 ⊢ ;;420 = ((;52 · 8) + 4) |
33 | 32 | oveq2i 7286 | . . 3 ⊢ (8 gcd ;;420) = (8 gcd ((;52 · 8) + 4)) |
34 | 7, 33 | eqtr4i 2769 | . 2 ⊢ (8 gcd 4) = (8 gcd ;;420) |
35 | 1, 2 | gcdcomnni 39997 | . . 3 ⊢ (8 gcd 4) = (4 gcd 8) |
36 | 4t2e8 12141 | . . . . 5 ⊢ (4 · 2) = 8 | |
37 | 36 | oveq2i 7286 | . . . 4 ⊢ (4 gcd (4 · 2)) = (4 gcd 8) |
38 | 2, 4 | gcdmultiplei 40002 | . . . 4 ⊢ (4 gcd (4 · 2)) = 4 |
39 | 37, 38 | eqtr3i 2768 | . . 3 ⊢ (4 gcd 8) = 4 |
40 | 35, 39 | eqtri 2766 | . 2 ⊢ (8 gcd 4) = 4 |
41 | 8, 4 | decnncl 12457 | . . . 4 ⊢ ;42 ∈ ℕ |
42 | 41 | decnncl2 12461 | . . 3 ⊢ ;;420 ∈ ℕ |
43 | 1, 42 | gcdcomnni 39997 | . 2 ⊢ (8 gcd ;;420) = (;;420 gcd 8) |
44 | 34, 40, 43 | 3eqtr3ri 2775 | 1 ⊢ (;;420 gcd 8) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 2c2 12028 4c4 12030 5c5 12031 6c6 12032 8c8 12034 ;cdc 12437 gcd cgcd 16201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-dvds 15964 df-gcd 16202 |
This theorem is referenced by: 420lcm8e840 40019 |
Copyright terms: Public domain | W3C validator |