| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 420gcd8e4 | Structured version Visualization version GIF version | ||
| Description: The gcd of 420 and 8 is 4. (Contributed by metakunt, 25-Apr-2024.) |
| Ref | Expression |
|---|---|
| 420gcd8e4 | ⊢ (;;420 gcd 8) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8nn 12215 | . . . 4 ⊢ 8 ∈ ℕ | |
| 2 | 4nn 12203 | . . . 4 ⊢ 4 ∈ ℕ | |
| 3 | 5nn0 12396 | . . . . . 6 ⊢ 5 ∈ ℕ0 | |
| 4 | 2nn 12193 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 5 | 3, 4 | decnncl 12603 | . . . . 5 ⊢ ;52 ∈ ℕ |
| 6 | 5 | nnzi 12491 | . . . 4 ⊢ ;52 ∈ ℤ |
| 7 | 1, 2, 6 | gcdaddmzz2nncomi 42028 | . . 3 ⊢ (8 gcd 4) = (8 gcd ((;52 · 8) + 4)) |
| 8 | 4nn0 12395 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
| 9 | 1nn0 12392 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 10 | 8, 9 | deccl 12598 | . . . . . 6 ⊢ ;41 ∈ ℕ0 |
| 11 | 6nn0 12397 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
| 12 | 0nn0 12391 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 13 | eqid 2731 | . . . . . 6 ⊢ ;;416 = ;;416 | |
| 14 | 8 | dec0h 12605 | . . . . . 6 ⊢ 4 = ;04 |
| 15 | 1p1e2 12240 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
| 16 | 10 | nn0cni 12388 | . . . . . . . 8 ⊢ ;41 ∈ ℂ |
| 17 | 16 | addridi 11295 | . . . . . . 7 ⊢ (;41 + 0) = ;41 |
| 18 | 8, 9, 15, 17 | decsuc 12614 | . . . . . 6 ⊢ ((;41 + 0) + 1) = ;42 |
| 19 | 6p4e10 12655 | . . . . . 6 ⊢ (6 + 4) = ;10 | |
| 20 | 10, 11, 12, 8, 13, 14, 18, 19 | decaddc2 12639 | . . . . 5 ⊢ (;;416 + 4) = ;;420 |
| 21 | 8nn0 12399 | . . . . . . . 8 ⊢ 8 ∈ ℕ0 | |
| 22 | 2nn0 12393 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
| 23 | eqid 2731 | . . . . . . . 8 ⊢ ;52 = ;52 | |
| 24 | 0p1e1 12237 | . . . . . . . . 9 ⊢ (0 + 1) = 1 | |
| 25 | 8t5e40 12701 | . . . . . . . . 9 ⊢ (8 · 5) = ;40 | |
| 26 | 8, 12, 24, 25 | decsuc 12614 | . . . . . . . 8 ⊢ ((8 · 5) + 1) = ;41 |
| 27 | 8t2e16 12698 | . . . . . . . 8 ⊢ (8 · 2) = ;16 | |
| 28 | 21, 3, 22, 23, 11, 9, 26, 27 | decmul2c 12649 | . . . . . . 7 ⊢ (8 · ;52) = ;;416 |
| 29 | 1, 5 | mulcomnni 42020 | . . . . . . 7 ⊢ (8 · ;52) = (;52 · 8) |
| 30 | 28, 29 | eqtr3i 2756 | . . . . . 6 ⊢ ;;416 = (;52 · 8) |
| 31 | 30 | oveq1i 7351 | . . . . 5 ⊢ (;;416 + 4) = ((;52 · 8) + 4) |
| 32 | 20, 31 | eqtr3i 2756 | . . . 4 ⊢ ;;420 = ((;52 · 8) + 4) |
| 33 | 32 | oveq2i 7352 | . . 3 ⊢ (8 gcd ;;420) = (8 gcd ((;52 · 8) + 4)) |
| 34 | 7, 33 | eqtr4i 2757 | . 2 ⊢ (8 gcd 4) = (8 gcd ;;420) |
| 35 | 1, 2 | gcdcomnni 42021 | . . 3 ⊢ (8 gcd 4) = (4 gcd 8) |
| 36 | 4t2e8 12283 | . . . . 5 ⊢ (4 · 2) = 8 | |
| 37 | 36 | oveq2i 7352 | . . . 4 ⊢ (4 gcd (4 · 2)) = (4 gcd 8) |
| 38 | 2, 4 | gcdmultiplei 42026 | . . . 4 ⊢ (4 gcd (4 · 2)) = 4 |
| 39 | 37, 38 | eqtr3i 2756 | . . 3 ⊢ (4 gcd 8) = 4 |
| 40 | 35, 39 | eqtri 2754 | . 2 ⊢ (8 gcd 4) = 4 |
| 41 | 8, 4 | decnncl 12603 | . . . 4 ⊢ ;42 ∈ ℕ |
| 42 | 41 | decnncl2 12607 | . . 3 ⊢ ;;420 ∈ ℕ |
| 43 | 1, 42 | gcdcomnni 42021 | . 2 ⊢ (8 gcd ;;420) = (;;420 gcd 8) |
| 44 | 34, 40, 43 | 3eqtr3ri 2763 | 1 ⊢ (;;420 gcd 8) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7341 0cc0 11001 1c1 11002 + caddc 11004 · cmul 11006 2c2 12175 4c4 12177 5c5 12178 6c6 12179 8c8 12181 ;cdc 12583 gcd cgcd 16400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-rp 12886 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-dvds 16159 df-gcd 16401 |
| This theorem is referenced by: 420lcm8e840 42044 |
| Copyright terms: Public domain | W3C validator |