| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 420gcd8e4 | Structured version Visualization version GIF version | ||
| Description: The gcd of 420 and 8 is 4. (Contributed by metakunt, 25-Apr-2024.) |
| Ref | Expression |
|---|---|
| 420gcd8e4 | ⊢ (;;420 gcd 8) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8nn 12335 | . . . 4 ⊢ 8 ∈ ℕ | |
| 2 | 4nn 12323 | . . . 4 ⊢ 4 ∈ ℕ | |
| 3 | 5nn0 12521 | . . . . . 6 ⊢ 5 ∈ ℕ0 | |
| 4 | 2nn 12313 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 5 | 3, 4 | decnncl 12728 | . . . . 5 ⊢ ;52 ∈ ℕ |
| 6 | 5 | nnzi 12616 | . . . 4 ⊢ ;52 ∈ ℤ |
| 7 | 1, 2, 6 | gcdaddmzz2nncomi 42008 | . . 3 ⊢ (8 gcd 4) = (8 gcd ((;52 · 8) + 4)) |
| 8 | 4nn0 12520 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
| 9 | 1nn0 12517 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 10 | 8, 9 | deccl 12723 | . . . . . 6 ⊢ ;41 ∈ ℕ0 |
| 11 | 6nn0 12522 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
| 12 | 0nn0 12516 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 13 | eqid 2735 | . . . . . 6 ⊢ ;;416 = ;;416 | |
| 14 | 8 | dec0h 12730 | . . . . . 6 ⊢ 4 = ;04 |
| 15 | 1p1e2 12365 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
| 16 | 10 | nn0cni 12513 | . . . . . . . 8 ⊢ ;41 ∈ ℂ |
| 17 | 16 | addridi 11422 | . . . . . . 7 ⊢ (;41 + 0) = ;41 |
| 18 | 8, 9, 15, 17 | decsuc 12739 | . . . . . 6 ⊢ ((;41 + 0) + 1) = ;42 |
| 19 | 6p4e10 12780 | . . . . . 6 ⊢ (6 + 4) = ;10 | |
| 20 | 10, 11, 12, 8, 13, 14, 18, 19 | decaddc2 12764 | . . . . 5 ⊢ (;;416 + 4) = ;;420 |
| 21 | 8nn0 12524 | . . . . . . . 8 ⊢ 8 ∈ ℕ0 | |
| 22 | 2nn0 12518 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
| 23 | eqid 2735 | . . . . . . . 8 ⊢ ;52 = ;52 | |
| 24 | 0p1e1 12362 | . . . . . . . . 9 ⊢ (0 + 1) = 1 | |
| 25 | 8t5e40 12826 | . . . . . . . . 9 ⊢ (8 · 5) = ;40 | |
| 26 | 8, 12, 24, 25 | decsuc 12739 | . . . . . . . 8 ⊢ ((8 · 5) + 1) = ;41 |
| 27 | 8t2e16 12823 | . . . . . . . 8 ⊢ (8 · 2) = ;16 | |
| 28 | 21, 3, 22, 23, 11, 9, 26, 27 | decmul2c 12774 | . . . . . . 7 ⊢ (8 · ;52) = ;;416 |
| 29 | 1, 5 | mulcomnni 42000 | . . . . . . 7 ⊢ (8 · ;52) = (;52 · 8) |
| 30 | 28, 29 | eqtr3i 2760 | . . . . . 6 ⊢ ;;416 = (;52 · 8) |
| 31 | 30 | oveq1i 7415 | . . . . 5 ⊢ (;;416 + 4) = ((;52 · 8) + 4) |
| 32 | 20, 31 | eqtr3i 2760 | . . . 4 ⊢ ;;420 = ((;52 · 8) + 4) |
| 33 | 32 | oveq2i 7416 | . . 3 ⊢ (8 gcd ;;420) = (8 gcd ((;52 · 8) + 4)) |
| 34 | 7, 33 | eqtr4i 2761 | . 2 ⊢ (8 gcd 4) = (8 gcd ;;420) |
| 35 | 1, 2 | gcdcomnni 42001 | . . 3 ⊢ (8 gcd 4) = (4 gcd 8) |
| 36 | 4t2e8 12408 | . . . . 5 ⊢ (4 · 2) = 8 | |
| 37 | 36 | oveq2i 7416 | . . . 4 ⊢ (4 gcd (4 · 2)) = (4 gcd 8) |
| 38 | 2, 4 | gcdmultiplei 42006 | . . . 4 ⊢ (4 gcd (4 · 2)) = 4 |
| 39 | 37, 38 | eqtr3i 2760 | . . 3 ⊢ (4 gcd 8) = 4 |
| 40 | 35, 39 | eqtri 2758 | . 2 ⊢ (8 gcd 4) = 4 |
| 41 | 8, 4 | decnncl 12728 | . . . 4 ⊢ ;42 ∈ ℕ |
| 42 | 41 | decnncl2 12732 | . . 3 ⊢ ;;420 ∈ ℕ |
| 43 | 1, 42 | gcdcomnni 42001 | . 2 ⊢ (8 gcd ;;420) = (;;420 gcd 8) |
| 44 | 34, 40, 43 | 3eqtr3ri 2767 | 1 ⊢ (;;420 gcd 8) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7405 0cc0 11129 1c1 11130 + caddc 11132 · cmul 11134 2c2 12295 4c4 12297 5c5 12298 6c6 12299 8c8 12301 ;cdc 12708 gcd cgcd 16513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-rp 13009 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-dvds 16273 df-gcd 16514 |
| This theorem is referenced by: 420lcm8e840 42024 |
| Copyright terms: Public domain | W3C validator |