![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 420gcd8e4 | Structured version Visualization version GIF version |
Description: The gcd of 420 and 8 is 4. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
420gcd8e4 | ⊢ (;;420 gcd 8) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn 12311 | . . . 4 ⊢ 8 ∈ ℕ | |
2 | 4nn 12299 | . . . 4 ⊢ 4 ∈ ℕ | |
3 | 5nn0 12496 | . . . . . 6 ⊢ 5 ∈ ℕ0 | |
4 | 2nn 12289 | . . . . . 6 ⊢ 2 ∈ ℕ | |
5 | 3, 4 | decnncl 12701 | . . . . 5 ⊢ ;52 ∈ ℕ |
6 | 5 | nnzi 12590 | . . . 4 ⊢ ;52 ∈ ℤ |
7 | 1, 2, 6 | gcdaddmzz2nncomi 41377 | . . 3 ⊢ (8 gcd 4) = (8 gcd ((;52 · 8) + 4)) |
8 | 4nn0 12495 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
9 | 1nn0 12492 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
10 | 8, 9 | deccl 12696 | . . . . . 6 ⊢ ;41 ∈ ℕ0 |
11 | 6nn0 12497 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
12 | 0nn0 12491 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
13 | eqid 2726 | . . . . . 6 ⊢ ;;416 = ;;416 | |
14 | 8 | dec0h 12703 | . . . . . 6 ⊢ 4 = ;04 |
15 | 1p1e2 12341 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
16 | 10 | nn0cni 12488 | . . . . . . . 8 ⊢ ;41 ∈ ℂ |
17 | 16 | addridi 11405 | . . . . . . 7 ⊢ (;41 + 0) = ;41 |
18 | 8, 9, 15, 17 | decsuc 12712 | . . . . . 6 ⊢ ((;41 + 0) + 1) = ;42 |
19 | 6p4e10 12753 | . . . . . 6 ⊢ (6 + 4) = ;10 | |
20 | 10, 11, 12, 8, 13, 14, 18, 19 | decaddc2 12737 | . . . . 5 ⊢ (;;416 + 4) = ;;420 |
21 | 8nn0 12499 | . . . . . . . 8 ⊢ 8 ∈ ℕ0 | |
22 | 2nn0 12493 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
23 | eqid 2726 | . . . . . . . 8 ⊢ ;52 = ;52 | |
24 | 0p1e1 12338 | . . . . . . . . 9 ⊢ (0 + 1) = 1 | |
25 | 8t5e40 12799 | . . . . . . . . 9 ⊢ (8 · 5) = ;40 | |
26 | 8, 12, 24, 25 | decsuc 12712 | . . . . . . . 8 ⊢ ((8 · 5) + 1) = ;41 |
27 | 8t2e16 12796 | . . . . . . . 8 ⊢ (8 · 2) = ;16 | |
28 | 21, 3, 22, 23, 11, 9, 26, 27 | decmul2c 12747 | . . . . . . 7 ⊢ (8 · ;52) = ;;416 |
29 | 1, 5 | mulcomnni 41369 | . . . . . . 7 ⊢ (8 · ;52) = (;52 · 8) |
30 | 28, 29 | eqtr3i 2756 | . . . . . 6 ⊢ ;;416 = (;52 · 8) |
31 | 30 | oveq1i 7415 | . . . . 5 ⊢ (;;416 + 4) = ((;52 · 8) + 4) |
32 | 20, 31 | eqtr3i 2756 | . . . 4 ⊢ ;;420 = ((;52 · 8) + 4) |
33 | 32 | oveq2i 7416 | . . 3 ⊢ (8 gcd ;;420) = (8 gcd ((;52 · 8) + 4)) |
34 | 7, 33 | eqtr4i 2757 | . 2 ⊢ (8 gcd 4) = (8 gcd ;;420) |
35 | 1, 2 | gcdcomnni 41370 | . . 3 ⊢ (8 gcd 4) = (4 gcd 8) |
36 | 4t2e8 12384 | . . . . 5 ⊢ (4 · 2) = 8 | |
37 | 36 | oveq2i 7416 | . . . 4 ⊢ (4 gcd (4 · 2)) = (4 gcd 8) |
38 | 2, 4 | gcdmultiplei 41375 | . . . 4 ⊢ (4 gcd (4 · 2)) = 4 |
39 | 37, 38 | eqtr3i 2756 | . . 3 ⊢ (4 gcd 8) = 4 |
40 | 35, 39 | eqtri 2754 | . 2 ⊢ (8 gcd 4) = 4 |
41 | 8, 4 | decnncl 12701 | . . . 4 ⊢ ;42 ∈ ℕ |
42 | 41 | decnncl2 12705 | . . 3 ⊢ ;;420 ∈ ℕ |
43 | 1, 42 | gcdcomnni 41370 | . 2 ⊢ (8 gcd ;;420) = (;;420 gcd 8) |
44 | 34, 40, 43 | 3eqtr3ri 2763 | 1 ⊢ (;;420 gcd 8) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 (class class class)co 7405 0cc0 11112 1c1 11113 + caddc 11115 · cmul 11117 2c2 12271 4c4 12273 5c5 12274 6c6 12275 8c8 12277 ;cdc 12681 gcd cgcd 16442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-rp 12981 df-seq 13973 df-exp 14033 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-dvds 16205 df-gcd 16443 |
This theorem is referenced by: 420lcm8e840 41392 |
Copyright terms: Public domain | W3C validator |