![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 420gcd8e4 | Structured version Visualization version GIF version |
Description: The gcd of 420 and 8 is 4. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
420gcd8e4 | ⊢ (;;420 gcd 8) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn 12307 | . . . 4 ⊢ 8 ∈ ℕ | |
2 | 4nn 12295 | . . . 4 ⊢ 4 ∈ ℕ | |
3 | 5nn0 12492 | . . . . . 6 ⊢ 5 ∈ ℕ0 | |
4 | 2nn 12285 | . . . . . 6 ⊢ 2 ∈ ℕ | |
5 | 3, 4 | decnncl 12697 | . . . . 5 ⊢ ;52 ∈ ℕ |
6 | 5 | nnzi 12586 | . . . 4 ⊢ ;52 ∈ ℤ |
7 | 1, 2, 6 | gcdaddmzz2nncomi 40861 | . . 3 ⊢ (8 gcd 4) = (8 gcd ((;52 · 8) + 4)) |
8 | 4nn0 12491 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
9 | 1nn0 12488 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
10 | 8, 9 | deccl 12692 | . . . . . 6 ⊢ ;41 ∈ ℕ0 |
11 | 6nn0 12493 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
12 | 0nn0 12487 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
13 | eqid 2733 | . . . . . 6 ⊢ ;;416 = ;;416 | |
14 | 8 | dec0h 12699 | . . . . . 6 ⊢ 4 = ;04 |
15 | 1p1e2 12337 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
16 | 10 | nn0cni 12484 | . . . . . . . 8 ⊢ ;41 ∈ ℂ |
17 | 16 | addridi 11401 | . . . . . . 7 ⊢ (;41 + 0) = ;41 |
18 | 8, 9, 15, 17 | decsuc 12708 | . . . . . 6 ⊢ ((;41 + 0) + 1) = ;42 |
19 | 6p4e10 12749 | . . . . . 6 ⊢ (6 + 4) = ;10 | |
20 | 10, 11, 12, 8, 13, 14, 18, 19 | decaddc2 12733 | . . . . 5 ⊢ (;;416 + 4) = ;;420 |
21 | 8nn0 12495 | . . . . . . . 8 ⊢ 8 ∈ ℕ0 | |
22 | 2nn0 12489 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
23 | eqid 2733 | . . . . . . . 8 ⊢ ;52 = ;52 | |
24 | 0p1e1 12334 | . . . . . . . . 9 ⊢ (0 + 1) = 1 | |
25 | 8t5e40 12795 | . . . . . . . . 9 ⊢ (8 · 5) = ;40 | |
26 | 8, 12, 24, 25 | decsuc 12708 | . . . . . . . 8 ⊢ ((8 · 5) + 1) = ;41 |
27 | 8t2e16 12792 | . . . . . . . 8 ⊢ (8 · 2) = ;16 | |
28 | 21, 3, 22, 23, 11, 9, 26, 27 | decmul2c 12743 | . . . . . . 7 ⊢ (8 · ;52) = ;;416 |
29 | 1, 5 | mulcomnni 40853 | . . . . . . 7 ⊢ (8 · ;52) = (;52 · 8) |
30 | 28, 29 | eqtr3i 2763 | . . . . . 6 ⊢ ;;416 = (;52 · 8) |
31 | 30 | oveq1i 7419 | . . . . 5 ⊢ (;;416 + 4) = ((;52 · 8) + 4) |
32 | 20, 31 | eqtr3i 2763 | . . . 4 ⊢ ;;420 = ((;52 · 8) + 4) |
33 | 32 | oveq2i 7420 | . . 3 ⊢ (8 gcd ;;420) = (8 gcd ((;52 · 8) + 4)) |
34 | 7, 33 | eqtr4i 2764 | . 2 ⊢ (8 gcd 4) = (8 gcd ;;420) |
35 | 1, 2 | gcdcomnni 40854 | . . 3 ⊢ (8 gcd 4) = (4 gcd 8) |
36 | 4t2e8 12380 | . . . . 5 ⊢ (4 · 2) = 8 | |
37 | 36 | oveq2i 7420 | . . . 4 ⊢ (4 gcd (4 · 2)) = (4 gcd 8) |
38 | 2, 4 | gcdmultiplei 40859 | . . . 4 ⊢ (4 gcd (4 · 2)) = 4 |
39 | 37, 38 | eqtr3i 2763 | . . 3 ⊢ (4 gcd 8) = 4 |
40 | 35, 39 | eqtri 2761 | . 2 ⊢ (8 gcd 4) = 4 |
41 | 8, 4 | decnncl 12697 | . . . 4 ⊢ ;42 ∈ ℕ |
42 | 41 | decnncl2 12701 | . . 3 ⊢ ;;420 ∈ ℕ |
43 | 1, 42 | gcdcomnni 40854 | . 2 ⊢ (8 gcd ;;420) = (;;420 gcd 8) |
44 | 34, 40, 43 | 3eqtr3ri 2770 | 1 ⊢ (;;420 gcd 8) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 (class class class)co 7409 0cc0 11110 1c1 11111 + caddc 11113 · cmul 11115 2c2 12267 4c4 12269 5c5 12270 6c6 12271 8c8 12273 ;cdc 12677 gcd cgcd 16435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-rp 12975 df-seq 13967 df-exp 14028 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-dvds 16198 df-gcd 16436 |
This theorem is referenced by: 420lcm8e840 40876 |
Copyright terms: Public domain | W3C validator |