| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 420gcd8e4 | Structured version Visualization version GIF version | ||
| Description: The gcd of 420 and 8 is 4. (Contributed by metakunt, 25-Apr-2024.) |
| Ref | Expression |
|---|---|
| 420gcd8e4 | ⊢ (;;420 gcd 8) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8nn 12231 | . . . 4 ⊢ 8 ∈ ℕ | |
| 2 | 4nn 12219 | . . . 4 ⊢ 4 ∈ ℕ | |
| 3 | 5nn0 12412 | . . . . . 6 ⊢ 5 ∈ ℕ0 | |
| 4 | 2nn 12209 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 5 | 3, 4 | decnncl 12618 | . . . . 5 ⊢ ;52 ∈ ℕ |
| 6 | 5 | nnzi 12506 | . . . 4 ⊢ ;52 ∈ ℤ |
| 7 | 1, 2, 6 | gcdaddmzz2nncomi 42161 | . . 3 ⊢ (8 gcd 4) = (8 gcd ((;52 · 8) + 4)) |
| 8 | 4nn0 12411 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
| 9 | 1nn0 12408 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 10 | 8, 9 | deccl 12613 | . . . . . 6 ⊢ ;41 ∈ ℕ0 |
| 11 | 6nn0 12413 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
| 12 | 0nn0 12407 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 13 | eqid 2733 | . . . . . 6 ⊢ ;;416 = ;;416 | |
| 14 | 8 | dec0h 12620 | . . . . . 6 ⊢ 4 = ;04 |
| 15 | 1p1e2 12256 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
| 16 | 10 | nn0cni 12404 | . . . . . . . 8 ⊢ ;41 ∈ ℂ |
| 17 | 16 | addridi 11311 | . . . . . . 7 ⊢ (;41 + 0) = ;41 |
| 18 | 8, 9, 15, 17 | decsuc 12629 | . . . . . 6 ⊢ ((;41 + 0) + 1) = ;42 |
| 19 | 6p4e10 12670 | . . . . . 6 ⊢ (6 + 4) = ;10 | |
| 20 | 10, 11, 12, 8, 13, 14, 18, 19 | decaddc2 12654 | . . . . 5 ⊢ (;;416 + 4) = ;;420 |
| 21 | 8nn0 12415 | . . . . . . . 8 ⊢ 8 ∈ ℕ0 | |
| 22 | 2nn0 12409 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
| 23 | eqid 2733 | . . . . . . . 8 ⊢ ;52 = ;52 | |
| 24 | 0p1e1 12253 | . . . . . . . . 9 ⊢ (0 + 1) = 1 | |
| 25 | 8t5e40 12716 | . . . . . . . . 9 ⊢ (8 · 5) = ;40 | |
| 26 | 8, 12, 24, 25 | decsuc 12629 | . . . . . . . 8 ⊢ ((8 · 5) + 1) = ;41 |
| 27 | 8t2e16 12713 | . . . . . . . 8 ⊢ (8 · 2) = ;16 | |
| 28 | 21, 3, 22, 23, 11, 9, 26, 27 | decmul2c 12664 | . . . . . . 7 ⊢ (8 · ;52) = ;;416 |
| 29 | 1, 5 | mulcomnni 42153 | . . . . . . 7 ⊢ (8 · ;52) = (;52 · 8) |
| 30 | 28, 29 | eqtr3i 2758 | . . . . . 6 ⊢ ;;416 = (;52 · 8) |
| 31 | 30 | oveq1i 7365 | . . . . 5 ⊢ (;;416 + 4) = ((;52 · 8) + 4) |
| 32 | 20, 31 | eqtr3i 2758 | . . . 4 ⊢ ;;420 = ((;52 · 8) + 4) |
| 33 | 32 | oveq2i 7366 | . . 3 ⊢ (8 gcd ;;420) = (8 gcd ((;52 · 8) + 4)) |
| 34 | 7, 33 | eqtr4i 2759 | . 2 ⊢ (8 gcd 4) = (8 gcd ;;420) |
| 35 | 1, 2 | gcdcomnni 42154 | . . 3 ⊢ (8 gcd 4) = (4 gcd 8) |
| 36 | 4t2e8 12299 | . . . . 5 ⊢ (4 · 2) = 8 | |
| 37 | 36 | oveq2i 7366 | . . . 4 ⊢ (4 gcd (4 · 2)) = (4 gcd 8) |
| 38 | 2, 4 | gcdmultiplei 42159 | . . . 4 ⊢ (4 gcd (4 · 2)) = 4 |
| 39 | 37, 38 | eqtr3i 2758 | . . 3 ⊢ (4 gcd 8) = 4 |
| 40 | 35, 39 | eqtri 2756 | . 2 ⊢ (8 gcd 4) = 4 |
| 41 | 8, 4 | decnncl 12618 | . . . 4 ⊢ ;42 ∈ ℕ |
| 42 | 41 | decnncl2 12622 | . . 3 ⊢ ;;420 ∈ ℕ |
| 43 | 1, 42 | gcdcomnni 42154 | . 2 ⊢ (8 gcd ;;420) = (;;420 gcd 8) |
| 44 | 34, 40, 43 | 3eqtr3ri 2765 | 1 ⊢ (;;420 gcd 8) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7355 0cc0 11017 1c1 11018 + caddc 11020 · cmul 11022 2c2 12191 4c4 12193 5c5 12194 6c6 12195 8c8 12197 ;cdc 12598 gcd cgcd 16412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9337 df-inf 9338 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-rp 12897 df-seq 13916 df-exp 13976 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-dvds 16171 df-gcd 16413 |
| This theorem is referenced by: 420lcm8e840 42177 |
| Copyright terms: Public domain | W3C validator |