| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 420gcd8e4 | Structured version Visualization version GIF version | ||
| Description: The gcd of 420 and 8 is 4. (Contributed by metakunt, 25-Apr-2024.) |
| Ref | Expression |
|---|---|
| 420gcd8e4 | ⊢ (;;420 gcd 8) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8nn 12281 | . . . 4 ⊢ 8 ∈ ℕ | |
| 2 | 4nn 12269 | . . . 4 ⊢ 4 ∈ ℕ | |
| 3 | 5nn0 12462 | . . . . . 6 ⊢ 5 ∈ ℕ0 | |
| 4 | 2nn 12259 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 5 | 3, 4 | decnncl 12669 | . . . . 5 ⊢ ;52 ∈ ℕ |
| 6 | 5 | nnzi 12557 | . . . 4 ⊢ ;52 ∈ ℤ |
| 7 | 1, 2, 6 | gcdaddmzz2nncomi 41983 | . . 3 ⊢ (8 gcd 4) = (8 gcd ((;52 · 8) + 4)) |
| 8 | 4nn0 12461 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
| 9 | 1nn0 12458 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 10 | 8, 9 | deccl 12664 | . . . . . 6 ⊢ ;41 ∈ ℕ0 |
| 11 | 6nn0 12463 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
| 12 | 0nn0 12457 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 13 | eqid 2729 | . . . . . 6 ⊢ ;;416 = ;;416 | |
| 14 | 8 | dec0h 12671 | . . . . . 6 ⊢ 4 = ;04 |
| 15 | 1p1e2 12306 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
| 16 | 10 | nn0cni 12454 | . . . . . . . 8 ⊢ ;41 ∈ ℂ |
| 17 | 16 | addridi 11361 | . . . . . . 7 ⊢ (;41 + 0) = ;41 |
| 18 | 8, 9, 15, 17 | decsuc 12680 | . . . . . 6 ⊢ ((;41 + 0) + 1) = ;42 |
| 19 | 6p4e10 12721 | . . . . . 6 ⊢ (6 + 4) = ;10 | |
| 20 | 10, 11, 12, 8, 13, 14, 18, 19 | decaddc2 12705 | . . . . 5 ⊢ (;;416 + 4) = ;;420 |
| 21 | 8nn0 12465 | . . . . . . . 8 ⊢ 8 ∈ ℕ0 | |
| 22 | 2nn0 12459 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
| 23 | eqid 2729 | . . . . . . . 8 ⊢ ;52 = ;52 | |
| 24 | 0p1e1 12303 | . . . . . . . . 9 ⊢ (0 + 1) = 1 | |
| 25 | 8t5e40 12767 | . . . . . . . . 9 ⊢ (8 · 5) = ;40 | |
| 26 | 8, 12, 24, 25 | decsuc 12680 | . . . . . . . 8 ⊢ ((8 · 5) + 1) = ;41 |
| 27 | 8t2e16 12764 | . . . . . . . 8 ⊢ (8 · 2) = ;16 | |
| 28 | 21, 3, 22, 23, 11, 9, 26, 27 | decmul2c 12715 | . . . . . . 7 ⊢ (8 · ;52) = ;;416 |
| 29 | 1, 5 | mulcomnni 41975 | . . . . . . 7 ⊢ (8 · ;52) = (;52 · 8) |
| 30 | 28, 29 | eqtr3i 2754 | . . . . . 6 ⊢ ;;416 = (;52 · 8) |
| 31 | 30 | oveq1i 7397 | . . . . 5 ⊢ (;;416 + 4) = ((;52 · 8) + 4) |
| 32 | 20, 31 | eqtr3i 2754 | . . . 4 ⊢ ;;420 = ((;52 · 8) + 4) |
| 33 | 32 | oveq2i 7398 | . . 3 ⊢ (8 gcd ;;420) = (8 gcd ((;52 · 8) + 4)) |
| 34 | 7, 33 | eqtr4i 2755 | . 2 ⊢ (8 gcd 4) = (8 gcd ;;420) |
| 35 | 1, 2 | gcdcomnni 41976 | . . 3 ⊢ (8 gcd 4) = (4 gcd 8) |
| 36 | 4t2e8 12349 | . . . . 5 ⊢ (4 · 2) = 8 | |
| 37 | 36 | oveq2i 7398 | . . . 4 ⊢ (4 gcd (4 · 2)) = (4 gcd 8) |
| 38 | 2, 4 | gcdmultiplei 41981 | . . . 4 ⊢ (4 gcd (4 · 2)) = 4 |
| 39 | 37, 38 | eqtr3i 2754 | . . 3 ⊢ (4 gcd 8) = 4 |
| 40 | 35, 39 | eqtri 2752 | . 2 ⊢ (8 gcd 4) = 4 |
| 41 | 8, 4 | decnncl 12669 | . . . 4 ⊢ ;42 ∈ ℕ |
| 42 | 41 | decnncl2 12673 | . . 3 ⊢ ;;420 ∈ ℕ |
| 43 | 1, 42 | gcdcomnni 41976 | . 2 ⊢ (8 gcd ;;420) = (;;420 gcd 8) |
| 44 | 34, 40, 43 | 3eqtr3ri 2761 | 1 ⊢ (;;420 gcd 8) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 2c2 12241 4c4 12243 5c5 12244 6c6 12245 8c8 12247 ;cdc 12649 gcd cgcd 16464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-dvds 16223 df-gcd 16465 |
| This theorem is referenced by: 420lcm8e840 41999 |
| Copyright terms: Public domain | W3C validator |