| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 420gcd8e4 | Structured version Visualization version GIF version | ||
| Description: The gcd of 420 and 8 is 4. (Contributed by metakunt, 25-Apr-2024.) |
| Ref | Expression |
|---|---|
| 420gcd8e4 | ⊢ (;;420 gcd 8) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 8nn 12257 | . . . 4 ⊢ 8 ∈ ℕ | |
| 2 | 4nn 12245 | . . . 4 ⊢ 4 ∈ ℕ | |
| 3 | 5nn0 12438 | . . . . . 6 ⊢ 5 ∈ ℕ0 | |
| 4 | 2nn 12235 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 5 | 3, 4 | decnncl 12645 | . . . . 5 ⊢ ;52 ∈ ℕ |
| 6 | 5 | nnzi 12533 | . . . 4 ⊢ ;52 ∈ ℤ |
| 7 | 1, 2, 6 | gcdaddmzz2nncomi 41956 | . . 3 ⊢ (8 gcd 4) = (8 gcd ((;52 · 8) + 4)) |
| 8 | 4nn0 12437 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
| 9 | 1nn0 12434 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 10 | 8, 9 | deccl 12640 | . . . . . 6 ⊢ ;41 ∈ ℕ0 |
| 11 | 6nn0 12439 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
| 12 | 0nn0 12433 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 13 | eqid 2729 | . . . . . 6 ⊢ ;;416 = ;;416 | |
| 14 | 8 | dec0h 12647 | . . . . . 6 ⊢ 4 = ;04 |
| 15 | 1p1e2 12282 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
| 16 | 10 | nn0cni 12430 | . . . . . . . 8 ⊢ ;41 ∈ ℂ |
| 17 | 16 | addridi 11337 | . . . . . . 7 ⊢ (;41 + 0) = ;41 |
| 18 | 8, 9, 15, 17 | decsuc 12656 | . . . . . 6 ⊢ ((;41 + 0) + 1) = ;42 |
| 19 | 6p4e10 12697 | . . . . . 6 ⊢ (6 + 4) = ;10 | |
| 20 | 10, 11, 12, 8, 13, 14, 18, 19 | decaddc2 12681 | . . . . 5 ⊢ (;;416 + 4) = ;;420 |
| 21 | 8nn0 12441 | . . . . . . . 8 ⊢ 8 ∈ ℕ0 | |
| 22 | 2nn0 12435 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
| 23 | eqid 2729 | . . . . . . . 8 ⊢ ;52 = ;52 | |
| 24 | 0p1e1 12279 | . . . . . . . . 9 ⊢ (0 + 1) = 1 | |
| 25 | 8t5e40 12743 | . . . . . . . . 9 ⊢ (8 · 5) = ;40 | |
| 26 | 8, 12, 24, 25 | decsuc 12656 | . . . . . . . 8 ⊢ ((8 · 5) + 1) = ;41 |
| 27 | 8t2e16 12740 | . . . . . . . 8 ⊢ (8 · 2) = ;16 | |
| 28 | 21, 3, 22, 23, 11, 9, 26, 27 | decmul2c 12691 | . . . . . . 7 ⊢ (8 · ;52) = ;;416 |
| 29 | 1, 5 | mulcomnni 41948 | . . . . . . 7 ⊢ (8 · ;52) = (;52 · 8) |
| 30 | 28, 29 | eqtr3i 2754 | . . . . . 6 ⊢ ;;416 = (;52 · 8) |
| 31 | 30 | oveq1i 7379 | . . . . 5 ⊢ (;;416 + 4) = ((;52 · 8) + 4) |
| 32 | 20, 31 | eqtr3i 2754 | . . . 4 ⊢ ;;420 = ((;52 · 8) + 4) |
| 33 | 32 | oveq2i 7380 | . . 3 ⊢ (8 gcd ;;420) = (8 gcd ((;52 · 8) + 4)) |
| 34 | 7, 33 | eqtr4i 2755 | . 2 ⊢ (8 gcd 4) = (8 gcd ;;420) |
| 35 | 1, 2 | gcdcomnni 41949 | . . 3 ⊢ (8 gcd 4) = (4 gcd 8) |
| 36 | 4t2e8 12325 | . . . . 5 ⊢ (4 · 2) = 8 | |
| 37 | 36 | oveq2i 7380 | . . . 4 ⊢ (4 gcd (4 · 2)) = (4 gcd 8) |
| 38 | 2, 4 | gcdmultiplei 41954 | . . . 4 ⊢ (4 gcd (4 · 2)) = 4 |
| 39 | 37, 38 | eqtr3i 2754 | . . 3 ⊢ (4 gcd 8) = 4 |
| 40 | 35, 39 | eqtri 2752 | . 2 ⊢ (8 gcd 4) = 4 |
| 41 | 8, 4 | decnncl 12645 | . . . 4 ⊢ ;42 ∈ ℕ |
| 42 | 41 | decnncl2 12649 | . . 3 ⊢ ;;420 ∈ ℕ |
| 43 | 1, 42 | gcdcomnni 41949 | . 2 ⊢ (8 gcd ;;420) = (;;420 gcd 8) |
| 44 | 34, 40, 43 | 3eqtr3ri 2761 | 1 ⊢ (;;420 gcd 8) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 2c2 12217 4c4 12219 5c5 12220 6c6 12221 8c8 12223 ;cdc 12625 gcd cgcd 16440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-gcd 16441 |
| This theorem is referenced by: 420lcm8e840 41972 |
| Copyright terms: Public domain | W3C validator |