Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 420gcd8e4 | Structured version Visualization version GIF version |
Description: The gcd of 420 and 8 is 4. (Contributed by metakunt, 25-Apr-2024.) |
Ref | Expression |
---|---|
420gcd8e4 | ⊢ (;;420 gcd 8) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn 12056 | . . . 4 ⊢ 8 ∈ ℕ | |
2 | 4nn 12044 | . . . 4 ⊢ 4 ∈ ℕ | |
3 | 5nn0 12241 | . . . . . 6 ⊢ 5 ∈ ℕ0 | |
4 | 2nn 12034 | . . . . . 6 ⊢ 2 ∈ ℕ | |
5 | 3, 4 | decnncl 12445 | . . . . 5 ⊢ ;52 ∈ ℕ |
6 | 5 | nnzi 12332 | . . . 4 ⊢ ;52 ∈ ℤ |
7 | 1, 2, 6 | gcdaddmzz2nncomi 39990 | . . 3 ⊢ (8 gcd 4) = (8 gcd ((;52 · 8) + 4)) |
8 | 4nn0 12240 | . . . . . . 7 ⊢ 4 ∈ ℕ0 | |
9 | 1nn0 12237 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
10 | 8, 9 | deccl 12440 | . . . . . 6 ⊢ ;41 ∈ ℕ0 |
11 | 6nn0 12242 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
12 | 0nn0 12236 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
13 | eqid 2738 | . . . . . 6 ⊢ ;;416 = ;;416 | |
14 | 8 | dec0h 12447 | . . . . . 6 ⊢ 4 = ;04 |
15 | 1p1e2 12086 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
16 | 10 | nn0cni 12233 | . . . . . . . 8 ⊢ ;41 ∈ ℂ |
17 | 16 | addid1i 11150 | . . . . . . 7 ⊢ (;41 + 0) = ;41 |
18 | 8, 9, 15, 17 | decsuc 12456 | . . . . . 6 ⊢ ((;41 + 0) + 1) = ;42 |
19 | 6p4e10 12497 | . . . . . 6 ⊢ (6 + 4) = ;10 | |
20 | 10, 11, 12, 8, 13, 14, 18, 19 | decaddc2 12481 | . . . . 5 ⊢ (;;416 + 4) = ;;420 |
21 | 8nn0 12244 | . . . . . . . 8 ⊢ 8 ∈ ℕ0 | |
22 | 2nn0 12238 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
23 | eqid 2738 | . . . . . . . 8 ⊢ ;52 = ;52 | |
24 | 0p1e1 12083 | . . . . . . . . 9 ⊢ (0 + 1) = 1 | |
25 | 8t5e40 12543 | . . . . . . . . 9 ⊢ (8 · 5) = ;40 | |
26 | 8, 12, 24, 25 | decsuc 12456 | . . . . . . . 8 ⊢ ((8 · 5) + 1) = ;41 |
27 | 8t2e16 12540 | . . . . . . . 8 ⊢ (8 · 2) = ;16 | |
28 | 21, 3, 22, 23, 11, 9, 26, 27 | decmul2c 12491 | . . . . . . 7 ⊢ (8 · ;52) = ;;416 |
29 | 1, 5 | mulcomnni 39982 | . . . . . . 7 ⊢ (8 · ;52) = (;52 · 8) |
30 | 28, 29 | eqtr3i 2768 | . . . . . 6 ⊢ ;;416 = (;52 · 8) |
31 | 30 | oveq1i 7278 | . . . . 5 ⊢ (;;416 + 4) = ((;52 · 8) + 4) |
32 | 20, 31 | eqtr3i 2768 | . . . 4 ⊢ ;;420 = ((;52 · 8) + 4) |
33 | 32 | oveq2i 7279 | . . 3 ⊢ (8 gcd ;;420) = (8 gcd ((;52 · 8) + 4)) |
34 | 7, 33 | eqtr4i 2769 | . 2 ⊢ (8 gcd 4) = (8 gcd ;;420) |
35 | 1, 2 | gcdcomnni 39983 | . . 3 ⊢ (8 gcd 4) = (4 gcd 8) |
36 | 4t2e8 12129 | . . . . 5 ⊢ (4 · 2) = 8 | |
37 | 36 | oveq2i 7279 | . . . 4 ⊢ (4 gcd (4 · 2)) = (4 gcd 8) |
38 | 2, 4 | gcdmultiplei 39988 | . . . 4 ⊢ (4 gcd (4 · 2)) = 4 |
39 | 37, 38 | eqtr3i 2768 | . . 3 ⊢ (4 gcd 8) = 4 |
40 | 35, 39 | eqtri 2766 | . 2 ⊢ (8 gcd 4) = 4 |
41 | 8, 4 | decnncl 12445 | . . . 4 ⊢ ;42 ∈ ℕ |
42 | 41 | decnncl2 12449 | . . 3 ⊢ ;;420 ∈ ℕ |
43 | 1, 42 | gcdcomnni 39983 | . 2 ⊢ (8 gcd ;;420) = (;;420 gcd 8) |
44 | 34, 40, 43 | 3eqtr3ri 2775 | 1 ⊢ (;;420 gcd 8) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7268 0cc0 10859 1c1 10860 + caddc 10862 · cmul 10864 2c2 12016 4c4 12018 5c5 12019 6c6 12020 8c8 12022 ;cdc 12425 gcd cgcd 16189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 ax-pre-sup 10937 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7704 df-2nd 7822 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-er 8486 df-en 8722 df-dom 8723 df-sdom 8724 df-sup 9189 df-inf 9190 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-div 11621 df-nn 11962 df-2 12024 df-3 12025 df-4 12026 df-5 12027 df-6 12028 df-7 12029 df-8 12030 df-9 12031 df-n0 12222 df-z 12308 df-dec 12426 df-uz 12571 df-rp 12719 df-seq 13710 df-exp 13771 df-cj 14798 df-re 14799 df-im 14800 df-sqrt 14934 df-abs 14935 df-dvds 15952 df-gcd 16190 |
This theorem is referenced by: 420lcm8e840 40005 |
Copyright terms: Public domain | W3C validator |