![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fcfneii | Structured version Visualization version GIF version |
Description: A neighborhood of a cluster point of a function contains a function value from every tail. (Contributed by Jeff Hankins, 27-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
Ref | Expression |
---|---|
fcfneii | ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐿)) → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcfnei 23860 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅))) | |
2 | ineq1 4205 | . . . . . . . 8 ⊢ (𝑛 = 𝑁 → (𝑛 ∩ (𝐹 “ 𝑠)) = (𝑁 ∩ (𝐹 “ 𝑠))) | |
3 | 2 | neeq1d 2999 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → ((𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ ↔ (𝑁 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
4 | imaeq2 6055 | . . . . . . . . 9 ⊢ (𝑠 = 𝑆 → (𝐹 “ 𝑠) = (𝐹 “ 𝑆)) | |
5 | 4 | ineq2d 4212 | . . . . . . . 8 ⊢ (𝑠 = 𝑆 → (𝑁 ∩ (𝐹 “ 𝑠)) = (𝑁 ∩ (𝐹 “ 𝑆))) |
6 | 5 | neeq1d 2999 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → ((𝑁 ∩ (𝐹 “ 𝑠)) ≠ ∅ ↔ (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅)) |
7 | 3, 6 | rspc2v 3622 | . . . . . 6 ⊢ ((𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐿) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅)) |
8 | 7 | ex 412 | . . . . 5 ⊢ (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆 ∈ 𝐿 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅))) |
9 | 8 | com3r 87 | . . . 4 ⊢ (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆 ∈ 𝐿 → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅))) |
10 | 9 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅) → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆 ∈ 𝐿 → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅))) |
11 | 1, 10 | syl6bi 253 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆 ∈ 𝐿 → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅)))) |
12 | 11 | 3imp2 1348 | 1 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐿)) → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∀wral 3060 ∩ cin 3947 ∅c0 4322 {csn 4628 “ cima 5679 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 TopOnctopon 22733 neicnei 22922 Filcfil 23670 fClusf cfcf 23762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-map 8828 df-fbas 21231 df-fg 21232 df-top 22717 df-topon 22734 df-cld 22844 df-ntr 22845 df-cls 22846 df-nei 22923 df-fil 23671 df-fm 23763 df-fcls 23766 df-fcf 23767 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |