| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fcfneii | Structured version Visualization version GIF version | ||
| Description: A neighborhood of a cluster point of a function contains a function value from every tail. (Contributed by Jeff Hankins, 27-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
| Ref | Expression |
|---|---|
| fcfneii | ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐿)) → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcfnei 23898 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅))) | |
| 2 | ineq1 4172 | . . . . . . . 8 ⊢ (𝑛 = 𝑁 → (𝑛 ∩ (𝐹 “ 𝑠)) = (𝑁 ∩ (𝐹 “ 𝑠))) | |
| 3 | 2 | neeq1d 2984 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → ((𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ ↔ (𝑁 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
| 4 | imaeq2 6016 | . . . . . . . . 9 ⊢ (𝑠 = 𝑆 → (𝐹 “ 𝑠) = (𝐹 “ 𝑆)) | |
| 5 | 4 | ineq2d 4179 | . . . . . . . 8 ⊢ (𝑠 = 𝑆 → (𝑁 ∩ (𝐹 “ 𝑠)) = (𝑁 ∩ (𝐹 “ 𝑆))) |
| 6 | 5 | neeq1d 2984 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → ((𝑁 ∩ (𝐹 “ 𝑠)) ≠ ∅ ↔ (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅)) |
| 7 | 3, 6 | rspc2v 3596 | . . . . . 6 ⊢ ((𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐿) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅)) |
| 8 | 7 | ex 412 | . . . . 5 ⊢ (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆 ∈ 𝐿 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅))) |
| 9 | 8 | com3r 87 | . . . 4 ⊢ (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆 ∈ 𝐿 → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅))) |
| 10 | 9 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅) → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆 ∈ 𝐿 → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅))) |
| 11 | 1, 10 | biimtrdi 253 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆 ∈ 𝐿 → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅)))) |
| 12 | 11 | 3imp2 1350 | 1 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐿)) → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∩ cin 3910 ∅c0 4292 {csn 4585 “ cima 5634 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 TopOnctopon 22773 neicnei 22960 Filcfil 23708 fClusf cfcf 23800 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-fbas 21237 df-fg 21238 df-top 22757 df-topon 22774 df-cld 22882 df-ntr 22883 df-cls 22884 df-nei 22961 df-fil 23709 df-fm 23801 df-fcls 23804 df-fcf 23805 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |