Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fcfneii | Structured version Visualization version GIF version |
Description: A neighborhood of a cluster point of a function contains a function value from every tail. (Contributed by Jeff Hankins, 27-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
Ref | Expression |
---|---|
fcfneii | ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐿)) → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcfnei 23186 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅))) | |
2 | ineq1 4139 | . . . . . . . 8 ⊢ (𝑛 = 𝑁 → (𝑛 ∩ (𝐹 “ 𝑠)) = (𝑁 ∩ (𝐹 “ 𝑠))) | |
3 | 2 | neeq1d 3003 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → ((𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ ↔ (𝑁 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
4 | imaeq2 5965 | . . . . . . . . 9 ⊢ (𝑠 = 𝑆 → (𝐹 “ 𝑠) = (𝐹 “ 𝑆)) | |
5 | 4 | ineq2d 4146 | . . . . . . . 8 ⊢ (𝑠 = 𝑆 → (𝑁 ∩ (𝐹 “ 𝑠)) = (𝑁 ∩ (𝐹 “ 𝑆))) |
6 | 5 | neeq1d 3003 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → ((𝑁 ∩ (𝐹 “ 𝑠)) ≠ ∅ ↔ (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅)) |
7 | 3, 6 | rspc2v 3570 | . . . . . 6 ⊢ ((𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐿) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅)) |
8 | 7 | ex 413 | . . . . 5 ⊢ (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆 ∈ 𝐿 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅))) |
9 | 8 | com3r 87 | . . . 4 ⊢ (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆 ∈ 𝐿 → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅))) |
10 | 9 | adantl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅) → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆 ∈ 𝐿 → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅))) |
11 | 1, 10 | syl6bi 252 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆 ∈ 𝐿 → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅)))) |
12 | 11 | 3imp2 1348 | 1 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐿)) → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∩ cin 3886 ∅c0 4256 {csn 4561 “ cima 5592 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 TopOnctopon 22059 neicnei 22248 Filcfil 22996 fClusf cfcf 23088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-fbas 20594 df-fg 20595 df-top 22043 df-topon 22060 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-fil 22997 df-fm 23089 df-fcls 23092 df-fcf 23093 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |