Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fcfneii | Structured version Visualization version GIF version |
Description: A neighborhood of a cluster point of a function contains a function value from every tail. (Contributed by Jeff Hankins, 27-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
Ref | Expression |
---|---|
fcfneii | ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐿)) → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcfnei 23197 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅))) | |
2 | ineq1 4145 | . . . . . . . 8 ⊢ (𝑛 = 𝑁 → (𝑛 ∩ (𝐹 “ 𝑠)) = (𝑁 ∩ (𝐹 “ 𝑠))) | |
3 | 2 | neeq1d 3005 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → ((𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ ↔ (𝑁 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
4 | imaeq2 5964 | . . . . . . . . 9 ⊢ (𝑠 = 𝑆 → (𝐹 “ 𝑠) = (𝐹 “ 𝑆)) | |
5 | 4 | ineq2d 4152 | . . . . . . . 8 ⊢ (𝑠 = 𝑆 → (𝑁 ∩ (𝐹 “ 𝑠)) = (𝑁 ∩ (𝐹 “ 𝑆))) |
6 | 5 | neeq1d 3005 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → ((𝑁 ∩ (𝐹 “ 𝑠)) ≠ ∅ ↔ (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅)) |
7 | 3, 6 | rspc2v 3571 | . . . . . 6 ⊢ ((𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐿) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅)) |
8 | 7 | ex 413 | . . . . 5 ⊢ (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆 ∈ 𝐿 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅))) |
9 | 8 | com3r 87 | . . . 4 ⊢ (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅ → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆 ∈ 𝐿 → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅))) |
10 | 9 | adantl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠 ∈ 𝐿 (𝑛 ∩ (𝐹 “ 𝑠)) ≠ ∅) → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆 ∈ 𝐿 → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅))) |
11 | 1, 10 | syl6bi 252 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆 ∈ 𝐿 → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅)))) |
12 | 11 | 3imp2 1348 | 1 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐿)) → (𝑁 ∩ (𝐹 “ 𝑆)) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ∀wral 3066 ∩ cin 3891 ∅c0 4262 {csn 4567 “ cima 5593 ⟶wf 6428 ‘cfv 6432 (class class class)co 7272 TopOnctopon 22070 neicnei 22259 Filcfil 23007 fClusf cfcf 23099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7275 df-oprab 7276 df-mpo 7277 df-map 8609 df-fbas 20605 df-fg 20606 df-top 22054 df-topon 22071 df-cld 22181 df-ntr 22182 df-cls 22183 df-nei 22260 df-fil 23008 df-fm 23100 df-fcls 23103 df-fcf 23104 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |