MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcfneii Structured version   Visualization version   GIF version

Theorem fcfneii 23900
Description: A neighborhood of a cluster point of a function contains a function value from every tail. (Contributed by Jeff Hankins, 27-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
fcfneii (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐿)) → (𝑁 ∩ (𝐹𝑆)) ≠ ∅)

Proof of Theorem fcfneii
Dummy variables 𝑛 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fcfnei 23898 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅)))
2 ineq1 4172 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛 ∩ (𝐹𝑠)) = (𝑁 ∩ (𝐹𝑠)))
32neeq1d 2984 . . . . . . 7 (𝑛 = 𝑁 → ((𝑛 ∩ (𝐹𝑠)) ≠ ∅ ↔ (𝑁 ∩ (𝐹𝑠)) ≠ ∅))
4 imaeq2 6016 . . . . . . . . 9 (𝑠 = 𝑆 → (𝐹𝑠) = (𝐹𝑆))
54ineq2d 4179 . . . . . . . 8 (𝑠 = 𝑆 → (𝑁 ∩ (𝐹𝑠)) = (𝑁 ∩ (𝐹𝑆)))
65neeq1d 2984 . . . . . . 7 (𝑠 = 𝑆 → ((𝑁 ∩ (𝐹𝑠)) ≠ ∅ ↔ (𝑁 ∩ (𝐹𝑆)) ≠ ∅))
73, 6rspc2v 3596 . . . . . 6 ((𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐿) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ → (𝑁 ∩ (𝐹𝑆)) ≠ ∅))
87ex 412 . . . . 5 (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆𝐿 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ → (𝑁 ∩ (𝐹𝑆)) ≠ ∅)))
98com3r 87 . . . 4 (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆𝐿 → (𝑁 ∩ (𝐹𝑆)) ≠ ∅)))
109adantl 481 . . 3 ((𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅) → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆𝐿 → (𝑁 ∩ (𝐹𝑆)) ≠ ∅)))
111, 10biimtrdi 253 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆𝐿 → (𝑁 ∩ (𝐹𝑆)) ≠ ∅))))
12113imp2 1350 1 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐿)) → (𝑁 ∩ (𝐹𝑆)) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  cin 3910  c0 4292  {csn 4585  cima 5634  wf 6495  cfv 6499  (class class class)co 7369  TopOnctopon 22773  neicnei 22960  Filcfil 23708   fClusf cfcf 23800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-fbas 21237  df-fg 21238  df-top 22757  df-topon 22774  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-fil 23709  df-fm 23801  df-fcls 23804  df-fcf 23805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator