MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcfneii Structured version   Visualization version   GIF version

Theorem fcfneii 23980
Description: A neighborhood of a cluster point of a function contains a function value from every tail. (Contributed by Jeff Hankins, 27-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
fcfneii (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐿)) → (𝑁 ∩ (𝐹𝑆)) ≠ ∅)

Proof of Theorem fcfneii
Dummy variables 𝑛 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fcfnei 23978 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅)))
2 ineq1 4193 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛 ∩ (𝐹𝑠)) = (𝑁 ∩ (𝐹𝑠)))
32neeq1d 2992 . . . . . . 7 (𝑛 = 𝑁 → ((𝑛 ∩ (𝐹𝑠)) ≠ ∅ ↔ (𝑁 ∩ (𝐹𝑠)) ≠ ∅))
4 imaeq2 6048 . . . . . . . . 9 (𝑠 = 𝑆 → (𝐹𝑠) = (𝐹𝑆))
54ineq2d 4200 . . . . . . . 8 (𝑠 = 𝑆 → (𝑁 ∩ (𝐹𝑠)) = (𝑁 ∩ (𝐹𝑆)))
65neeq1d 2992 . . . . . . 7 (𝑠 = 𝑆 → ((𝑁 ∩ (𝐹𝑠)) ≠ ∅ ↔ (𝑁 ∩ (𝐹𝑆)) ≠ ∅))
73, 6rspc2v 3617 . . . . . 6 ((𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐿) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ → (𝑁 ∩ (𝐹𝑆)) ≠ ∅))
87ex 412 . . . . 5 (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆𝐿 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ → (𝑁 ∩ (𝐹𝑆)) ≠ ∅)))
98com3r 87 . . . 4 (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅ → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆𝐿 → (𝑁 ∩ (𝐹𝑆)) ≠ ∅)))
109adantl 481 . . 3 ((𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∀𝑠𝐿 (𝑛 ∩ (𝐹𝑠)) ≠ ∅) → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆𝐿 → (𝑁 ∩ (𝐹𝑆)) ≠ ∅)))
111, 10biimtrdi 253 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) → (𝑆𝐿 → (𝑁 ∩ (𝐹𝑆)) ≠ ∅))))
12113imp2 1350 1 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐿)) → (𝑁 ∩ (𝐹𝑆)) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  cin 3930  c0 4313  {csn 4606  cima 5662  wf 6532  cfv 6536  (class class class)co 7410  TopOnctopon 22853  neicnei 23040  Filcfil 23788   fClusf cfcf 23880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-fbas 21317  df-fg 21318  df-top 22837  df-topon 22854  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-fil 23789  df-fm 23881  df-fcls 23884  df-fcf 23885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator