![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fcfneii | Structured version Visualization version GIF version |
Description: A neighborhood of a cluster point of a function contains a function value from every tail. (Contributed by Jeff Hankins, 27-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
Ref | Expression |
---|---|
fcfneii | β’ (((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β§ (π΄ β ((π½ fClusf πΏ)βπΉ) β§ π β ((neiβπ½)β{π΄}) β§ π β πΏ)) β (π β© (πΉ β π)) β β ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcfnei 23538 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β (π΄ β ((π½ fClusf πΏ)βπΉ) β (π΄ β π β§ βπ β ((neiβπ½)β{π΄})βπ β πΏ (π β© (πΉ β π )) β β ))) | |
2 | ineq1 4205 | . . . . . . . 8 β’ (π = π β (π β© (πΉ β π )) = (π β© (πΉ β π ))) | |
3 | 2 | neeq1d 3000 | . . . . . . 7 β’ (π = π β ((π β© (πΉ β π )) β β β (π β© (πΉ β π )) β β )) |
4 | imaeq2 6055 | . . . . . . . . 9 β’ (π = π β (πΉ β π ) = (πΉ β π)) | |
5 | 4 | ineq2d 4212 | . . . . . . . 8 β’ (π = π β (π β© (πΉ β π )) = (π β© (πΉ β π))) |
6 | 5 | neeq1d 3000 | . . . . . . 7 β’ (π = π β ((π β© (πΉ β π )) β β β (π β© (πΉ β π)) β β )) |
7 | 3, 6 | rspc2v 3622 | . . . . . 6 β’ ((π β ((neiβπ½)β{π΄}) β§ π β πΏ) β (βπ β ((neiβπ½)β{π΄})βπ β πΏ (π β© (πΉ β π )) β β β (π β© (πΉ β π)) β β )) |
8 | 7 | ex 413 | . . . . 5 β’ (π β ((neiβπ½)β{π΄}) β (π β πΏ β (βπ β ((neiβπ½)β{π΄})βπ β πΏ (π β© (πΉ β π )) β β β (π β© (πΉ β π)) β β ))) |
9 | 8 | com3r 87 | . . . 4 β’ (βπ β ((neiβπ½)β{π΄})βπ β πΏ (π β© (πΉ β π )) β β β (π β ((neiβπ½)β{π΄}) β (π β πΏ β (π β© (πΉ β π)) β β ))) |
10 | 9 | adantl 482 | . . 3 β’ ((π΄ β π β§ βπ β ((neiβπ½)β{π΄})βπ β πΏ (π β© (πΉ β π )) β β ) β (π β ((neiβπ½)β{π΄}) β (π β πΏ β (π β© (πΉ β π)) β β ))) |
11 | 1, 10 | syl6bi 252 | . 2 β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β (π΄ β ((π½ fClusf πΏ)βπΉ) β (π β ((neiβπ½)β{π΄}) β (π β πΏ β (π β© (πΉ β π)) β β )))) |
12 | 11 | 3imp2 1349 | 1 β’ (((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β§ (π΄ β ((π½ fClusf πΏ)βπΉ) β§ π β ((neiβπ½)β{π΄}) β§ π β πΏ)) β (π β© (πΉ β π)) β β ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 βwral 3061 β© cin 3947 β c0 4322 {csn 4628 β cima 5679 βΆwf 6539 βcfv 6543 (class class class)co 7408 TopOnctopon 22411 neicnei 22600 Filcfil 23348 fClusf cfcf 23440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-map 8821 df-fbas 20940 df-fg 20941 df-top 22395 df-topon 22412 df-cld 22522 df-ntr 22523 df-cls 22524 df-nei 22601 df-fil 23349 df-fm 23441 df-fcls 23444 df-fcf 23445 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |