Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdsplit2 Structured version   Visualization version   GIF version

Theorem dmdprdsplit2 19165
 Description: The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdsplit.2 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
dprdsplit.i (𝜑 → (𝐶𝐷) = ∅)
dprdsplit.u (𝜑𝐼 = (𝐶𝐷))
dmdprdsplit.z 𝑍 = (Cntz‘𝐺)
dmdprdsplit.0 0 = (0g𝐺)
dmdprdsplit2.1 (𝜑𝐺dom DProd (𝑆𝐶))
dmdprdsplit2.2 (𝜑𝐺dom DProd (𝑆𝐷))
dmdprdsplit2.3 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
dmdprdsplit2.4 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
Assertion
Ref Expression
dmdprdsplit2 (𝜑𝐺dom DProd 𝑆)

Proof of Theorem dmdprdsplit2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmdprdsplit.z . 2 𝑍 = (Cntz‘𝐺)
2 dmdprdsplit.0 . 2 0 = (0g𝐺)
3 eqid 2798 . 2 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 dmdprdsplit2.1 . . 3 (𝜑𝐺dom DProd (𝑆𝐶))
5 dprdgrp 19124 . . 3 (𝐺dom DProd (𝑆𝐶) → 𝐺 ∈ Grp)
64, 5syl 17 . 2 (𝜑𝐺 ∈ Grp)
7 dprdsplit.u . . 3 (𝜑𝐼 = (𝐶𝐷))
8 dprdsplit.2 . . . . . . 7 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
9 ssun1 4099 . . . . . . . 8 𝐶 ⊆ (𝐶𝐷)
109, 7sseqtrrid 3968 . . . . . . 7 (𝜑𝐶𝐼)
118, 10fssresd 6520 . . . . . 6 (𝜑 → (𝑆𝐶):𝐶⟶(SubGrp‘𝐺))
1211fdmd 6498 . . . . 5 (𝜑 → dom (𝑆𝐶) = 𝐶)
134, 12dprddomcld 19120 . . . 4 (𝜑𝐶 ∈ V)
14 dmdprdsplit2.2 . . . . 5 (𝜑𝐺dom DProd (𝑆𝐷))
15 ssun2 4100 . . . . . . . 8 𝐷 ⊆ (𝐶𝐷)
1615, 7sseqtrrid 3968 . . . . . . 7 (𝜑𝐷𝐼)
178, 16fssresd 6520 . . . . . 6 (𝜑 → (𝑆𝐷):𝐷⟶(SubGrp‘𝐺))
1817fdmd 6498 . . . . 5 (𝜑 → dom (𝑆𝐷) = 𝐷)
1914, 18dprddomcld 19120 . . . 4 (𝜑𝐷 ∈ V)
20 unexg 7455 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶𝐷) ∈ V)
2113, 19, 20syl2anc 587 . . 3 (𝜑 → (𝐶𝐷) ∈ V)
227, 21eqeltrd 2890 . 2 (𝜑𝐼 ∈ V)
237eleq2d 2875 . . . . 5 (𝜑 → (𝑥𝐼𝑥 ∈ (𝐶𝐷)))
24 elun 4076 . . . . 5 (𝑥 ∈ (𝐶𝐷) ↔ (𝑥𝐶𝑥𝐷))
2523, 24syl6bb 290 . . . 4 (𝜑 → (𝑥𝐼 ↔ (𝑥𝐶𝑥𝐷)))
26 dprdsplit.i . . . . . . . 8 (𝜑 → (𝐶𝐷) = ∅)
27 dmdprdsplit2.3 . . . . . . . 8 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
28 dmdprdsplit2.4 . . . . . . . 8 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
298, 26, 7, 1, 2, 4, 14, 27, 28, 3dmdprdsplit2lem 19164 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }))
30 incom 4128 . . . . . . . . 9 (𝐶𝐷) = (𝐷𝐶)
3130, 26syl5eqr 2847 . . . . . . . 8 (𝜑 → (𝐷𝐶) = ∅)
32 uncom 4080 . . . . . . . . 9 (𝐶𝐷) = (𝐷𝐶)
337, 32eqtrdi 2849 . . . . . . . 8 (𝜑𝐼 = (𝐷𝐶))
34 dprdsubg 19143 . . . . . . . . . 10 (𝐺dom DProd (𝑆𝐶) → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
354, 34syl 17 . . . . . . . . 9 (𝜑 → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
36 dprdsubg 19143 . . . . . . . . . 10 (𝐺dom DProd (𝑆𝐷) → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
3714, 36syl 17 . . . . . . . . 9 (𝜑 → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
381, 35, 37, 27cntzrecd 18800 . . . . . . . 8 (𝜑 → (𝐺 DProd (𝑆𝐷)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐶))))
39 incom 4128 . . . . . . . . 9 ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = ((𝐺 DProd (𝑆𝐷)) ∩ (𝐺 DProd (𝑆𝐶)))
4039, 28syl5eqr 2847 . . . . . . . 8 (𝜑 → ((𝐺 DProd (𝑆𝐷)) ∩ (𝐺 DProd (𝑆𝐶))) = { 0 })
418, 31, 33, 1, 2, 14, 4, 38, 40, 3dmdprdsplit2lem 19164 . . . . . . 7 ((𝜑𝑥𝐷) → ((𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }))
4229, 41jaodan 955 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑥𝐷)) → ((𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }))
4342simpld 498 . . . . 5 ((𝜑 ∧ (𝑥𝐶𝑥𝐷)) → (𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))))
4443ex 416 . . . 4 (𝜑 → ((𝑥𝐶𝑥𝐷) → (𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))))
4525, 44sylbid 243 . . 3 (𝜑 → (𝑥𝐼 → (𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))))
46453imp2 1346 . 2 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
4725biimpa 480 . . 3 ((𝜑𝑥𝐼) → (𝑥𝐶𝑥𝐷))
4829simprd 499 . . . 4 ((𝜑𝑥𝐶) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
4941simprd 499 . . . 4 ((𝜑𝑥𝐷) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
5048, 49jaodan 955 . . 3 ((𝜑 ∧ (𝑥𝐶𝑥𝐷)) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
5147, 50syldan 594 . 2 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
521, 2, 3, 6, 22, 8, 46, 51dmdprdd 19118 1 (𝜑𝐺dom DProd 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  Vcvv 3441   ∖ cdif 3878   ∪ cun 3879   ∩ cin 3880   ⊆ wss 3881  ∅c0 4243  {csn 4525  ∪ cuni 4801   class class class wbr 5031  dom cdm 5520   ↾ cres 5522   “ cima 5523  ⟶wf 6321  ‘cfv 6325  (class class class)co 7136  0gc0g 16708  mrClscmrc 16849  Grpcgrp 18098  SubGrpcsubg 18269  Cntzccntz 18441   DProd cdprd 19112 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-of 7391  df-om 7564  df-1st 7674  df-2nd 7675  df-supp 7817  df-tpos 7878  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-map 8394  df-ixp 8448  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fsupp 8821  df-oi 8961  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-2 11691  df-n0 11889  df-z 11973  df-uz 12235  df-fz 12889  df-fzo 13032  df-seq 13368  df-hash 13690  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-0g 16710  df-gsum 16711  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-mulg 18221  df-subg 18272  df-ghm 18352  df-gim 18395  df-cntz 18443  df-oppg 18470  df-lsm 18757  df-cmn 18904  df-dprd 19114 This theorem is referenced by:  dmdprdsplit  19166  pgpfaclem1  19200
 Copyright terms: Public domain W3C validator