MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdsplit2 Structured version   Visualization version   GIF version

Theorem dmdprdsplit2 19984
Description: The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdsplit.2 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
dprdsplit.i (𝜑 → (𝐶𝐷) = ∅)
dprdsplit.u (𝜑𝐼 = (𝐶𝐷))
dmdprdsplit.z 𝑍 = (Cntz‘𝐺)
dmdprdsplit.0 0 = (0g𝐺)
dmdprdsplit2.1 (𝜑𝐺dom DProd (𝑆𝐶))
dmdprdsplit2.2 (𝜑𝐺dom DProd (𝑆𝐷))
dmdprdsplit2.3 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
dmdprdsplit2.4 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
Assertion
Ref Expression
dmdprdsplit2 (𝜑𝐺dom DProd 𝑆)

Proof of Theorem dmdprdsplit2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmdprdsplit.z . 2 𝑍 = (Cntz‘𝐺)
2 dmdprdsplit.0 . 2 0 = (0g𝐺)
3 eqid 2730 . 2 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 dmdprdsplit2.1 . . 3 (𝜑𝐺dom DProd (𝑆𝐶))
5 dprdgrp 19943 . . 3 (𝐺dom DProd (𝑆𝐶) → 𝐺 ∈ Grp)
64, 5syl 17 . 2 (𝜑𝐺 ∈ Grp)
7 dprdsplit.u . . 3 (𝜑𝐼 = (𝐶𝐷))
8 dprdsplit.2 . . . . . . 7 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
9 ssun1 4149 . . . . . . . 8 𝐶 ⊆ (𝐶𝐷)
109, 7sseqtrrid 3998 . . . . . . 7 (𝜑𝐶𝐼)
118, 10fssresd 6734 . . . . . 6 (𝜑 → (𝑆𝐶):𝐶⟶(SubGrp‘𝐺))
1211fdmd 6705 . . . . 5 (𝜑 → dom (𝑆𝐶) = 𝐶)
134, 12dprddomcld 19939 . . . 4 (𝜑𝐶 ∈ V)
14 dmdprdsplit2.2 . . . . 5 (𝜑𝐺dom DProd (𝑆𝐷))
15 ssun2 4150 . . . . . . . 8 𝐷 ⊆ (𝐶𝐷)
1615, 7sseqtrrid 3998 . . . . . . 7 (𝜑𝐷𝐼)
178, 16fssresd 6734 . . . . . 6 (𝜑 → (𝑆𝐷):𝐷⟶(SubGrp‘𝐺))
1817fdmd 6705 . . . . 5 (𝜑 → dom (𝑆𝐷) = 𝐷)
1914, 18dprddomcld 19939 . . . 4 (𝜑𝐷 ∈ V)
20 unexg 7726 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶𝐷) ∈ V)
2113, 19, 20syl2anc 584 . . 3 (𝜑 → (𝐶𝐷) ∈ V)
227, 21eqeltrd 2829 . 2 (𝜑𝐼 ∈ V)
237eleq2d 2815 . . . . 5 (𝜑 → (𝑥𝐼𝑥 ∈ (𝐶𝐷)))
24 elun 4124 . . . . 5 (𝑥 ∈ (𝐶𝐷) ↔ (𝑥𝐶𝑥𝐷))
2523, 24bitrdi 287 . . . 4 (𝜑 → (𝑥𝐼 ↔ (𝑥𝐶𝑥𝐷)))
26 dprdsplit.i . . . . . . . 8 (𝜑 → (𝐶𝐷) = ∅)
27 dmdprdsplit2.3 . . . . . . . 8 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
28 dmdprdsplit2.4 . . . . . . . 8 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
298, 26, 7, 1, 2, 4, 14, 27, 28, 3dmdprdsplit2lem 19983 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }))
30 incom 4180 . . . . . . . . 9 (𝐶𝐷) = (𝐷𝐶)
3130, 26eqtr3id 2779 . . . . . . . 8 (𝜑 → (𝐷𝐶) = ∅)
32 uncom 4129 . . . . . . . . 9 (𝐶𝐷) = (𝐷𝐶)
337, 32eqtrdi 2781 . . . . . . . 8 (𝜑𝐼 = (𝐷𝐶))
34 dprdsubg 19962 . . . . . . . . . 10 (𝐺dom DProd (𝑆𝐶) → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
354, 34syl 17 . . . . . . . . 9 (𝜑 → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
36 dprdsubg 19962 . . . . . . . . . 10 (𝐺dom DProd (𝑆𝐷) → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
3714, 36syl 17 . . . . . . . . 9 (𝜑 → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
381, 35, 37, 27cntzrecd 19614 . . . . . . . 8 (𝜑 → (𝐺 DProd (𝑆𝐷)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐶))))
39 incom 4180 . . . . . . . . 9 ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = ((𝐺 DProd (𝑆𝐷)) ∩ (𝐺 DProd (𝑆𝐶)))
4039, 28eqtr3id 2779 . . . . . . . 8 (𝜑 → ((𝐺 DProd (𝑆𝐷)) ∩ (𝐺 DProd (𝑆𝐶))) = { 0 })
418, 31, 33, 1, 2, 14, 4, 38, 40, 3dmdprdsplit2lem 19983 . . . . . . 7 ((𝜑𝑥𝐷) → ((𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }))
4229, 41jaodan 959 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑥𝐷)) → ((𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }))
4342simpld 494 . . . . 5 ((𝜑 ∧ (𝑥𝐶𝑥𝐷)) → (𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))))
4443ex 412 . . . 4 (𝜑 → ((𝑥𝐶𝑥𝐷) → (𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))))
4525, 44sylbid 240 . . 3 (𝜑 → (𝑥𝐼 → (𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))))
46453imp2 1350 . 2 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
4725biimpa 476 . . 3 ((𝜑𝑥𝐼) → (𝑥𝐶𝑥𝐷))
4829simprd 495 . . . 4 ((𝜑𝑥𝐶) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
4941simprd 495 . . . 4 ((𝜑𝑥𝐷) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
5048, 49jaodan 959 . . 3 ((𝜑 ∧ (𝑥𝐶𝑥𝐷)) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
5147, 50syldan 591 . 2 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
521, 2, 3, 6, 22, 8, 46, 51dmdprdd 19937 1 (𝜑𝐺dom DProd 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2927  Vcvv 3455  cdif 3919  cun 3920  cin 3921  wss 3922  c0 4304  {csn 4597   cuni 4879   class class class wbr 5115  dom cdm 5646  cres 5648  cima 5649  wf 6515  cfv 6519  (class class class)co 7394  0gc0g 17408  mrClscmrc 17550  Grpcgrp 18871  SubGrpcsubg 19058  Cntzccntz 19253   DProd cdprd 19931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-iin 4966  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-se 5600  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-isom 6528  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7660  df-om 7851  df-1st 7977  df-2nd 7978  df-supp 8149  df-tpos 8214  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-2o 8444  df-er 8682  df-map 8805  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9331  df-oi 9481  df-card 9910  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-2 12260  df-n0 12459  df-z 12546  df-uz 12810  df-fz 13482  df-fzo 13629  df-seq 13977  df-hash 14306  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-0g 17410  df-gsum 17411  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-ghm 19151  df-gim 19197  df-cntz 19255  df-oppg 19284  df-lsm 19572  df-cmn 19718  df-dprd 19933
This theorem is referenced by:  dmdprdsplit  19985  pgpfaclem1  20019
  Copyright terms: Public domain W3C validator