| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmdprdsplit2 | Structured version Visualization version GIF version | ||
| Description: The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| Ref | Expression |
|---|---|
| dprdsplit.2 | ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| dprdsplit.i | ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) |
| dprdsplit.u | ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) |
| dmdprdsplit.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| dmdprdsplit.0 | ⊢ 0 = (0g‘𝐺) |
| dmdprdsplit2.1 | ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐶)) |
| dmdprdsplit2.2 | ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐷)) |
| dmdprdsplit2.3 | ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) |
| dmdprdsplit2.4 | ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) |
| Ref | Expression |
|---|---|
| dmdprdsplit2 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmdprdsplit.z | . 2 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 2 | dmdprdsplit.0 | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | eqid 2731 | . 2 ⊢ (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺)) | |
| 4 | dmdprdsplit2.1 | . . 3 ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐶)) | |
| 5 | dprdgrp 19914 | . . 3 ⊢ (𝐺dom DProd (𝑆 ↾ 𝐶) → 𝐺 ∈ Grp) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 7 | dprdsplit.u | . . 3 ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) | |
| 8 | dprdsplit.2 | . . . . . . 7 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) | |
| 9 | ssun1 4123 | . . . . . . . 8 ⊢ 𝐶 ⊆ (𝐶 ∪ 𝐷) | |
| 10 | 9, 7 | sseqtrrid 3973 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ⊆ 𝐼) |
| 11 | 8, 10 | fssresd 6685 | . . . . . 6 ⊢ (𝜑 → (𝑆 ↾ 𝐶):𝐶⟶(SubGrp‘𝐺)) |
| 12 | 11 | fdmd 6656 | . . . . 5 ⊢ (𝜑 → dom (𝑆 ↾ 𝐶) = 𝐶) |
| 13 | 4, 12 | dprddomcld 19910 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ V) |
| 14 | dmdprdsplit2.2 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐷)) | |
| 15 | ssun2 4124 | . . . . . . . 8 ⊢ 𝐷 ⊆ (𝐶 ∪ 𝐷) | |
| 16 | 15, 7 | sseqtrrid 3973 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ⊆ 𝐼) |
| 17 | 8, 16 | fssresd 6685 | . . . . . 6 ⊢ (𝜑 → (𝑆 ↾ 𝐷):𝐷⟶(SubGrp‘𝐺)) |
| 18 | 17 | fdmd 6656 | . . . . 5 ⊢ (𝜑 → dom (𝑆 ↾ 𝐷) = 𝐷) |
| 19 | 14, 18 | dprddomcld 19910 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ V) |
| 20 | unexg 7671 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 ∪ 𝐷) ∈ V) | |
| 21 | 13, 19, 20 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐶 ∪ 𝐷) ∈ V) |
| 22 | 7, 21 | eqeltrd 2831 | . 2 ⊢ (𝜑 → 𝐼 ∈ V) |
| 23 | 7 | eleq2d 2817 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↔ 𝑥 ∈ (𝐶 ∪ 𝐷))) |
| 24 | elun 4098 | . . . . 5 ⊢ (𝑥 ∈ (𝐶 ∪ 𝐷) ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) | |
| 25 | 23, 24 | bitrdi 287 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷))) |
| 26 | dprdsplit.i | . . . . . . . 8 ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) | |
| 27 | dmdprdsplit2.3 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) | |
| 28 | dmdprdsplit2.4 | . . . . . . . 8 ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) | |
| 29 | 8, 26, 7, 1, 2, 4, 14, 27, 28, 3 | dmdprdsplit2lem 19954 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })) |
| 30 | incom 4154 | . . . . . . . . 9 ⊢ (𝐶 ∩ 𝐷) = (𝐷 ∩ 𝐶) | |
| 31 | 30, 26 | eqtr3id 2780 | . . . . . . . 8 ⊢ (𝜑 → (𝐷 ∩ 𝐶) = ∅) |
| 32 | uncom 4103 | . . . . . . . . 9 ⊢ (𝐶 ∪ 𝐷) = (𝐷 ∪ 𝐶) | |
| 33 | 7, 32 | eqtrdi 2782 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 = (𝐷 ∪ 𝐶)) |
| 34 | dprdsubg 19933 | . . . . . . . . . 10 ⊢ (𝐺dom DProd (𝑆 ↾ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺)) | |
| 35 | 4, 34 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺)) |
| 36 | dprdsubg 19933 | . . . . . . . . . 10 ⊢ (𝐺dom DProd (𝑆 ↾ 𝐷) → (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) | |
| 37 | 14, 36 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) |
| 38 | 1, 35, 37, 27 | cntzrecd 19585 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐶)))) |
| 39 | incom 4154 | . . . . . . . . 9 ⊢ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = ((𝐺 DProd (𝑆 ↾ 𝐷)) ∩ (𝐺 DProd (𝑆 ↾ 𝐶))) | |
| 40 | 39, 28 | eqtr3id 2780 | . . . . . . . 8 ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐷)) ∩ (𝐺 DProd (𝑆 ↾ 𝐶))) = { 0 }) |
| 41 | 8, 31, 33, 1, 2, 14, 4, 38, 40, 3 | dmdprdsplit2lem 19954 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })) |
| 42 | 29, 41 | jaodan 959 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) → ((𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })) |
| 43 | 42 | simpld 494 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) → (𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦))))) |
| 44 | 43 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷) → (𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))))) |
| 45 | 25, 44 | sylbid 240 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 → (𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))))) |
| 46 | 45 | 3imp2 1350 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦)) → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦))) |
| 47 | 25 | biimpa 476 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) |
| 48 | 29 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }) |
| 49 | 41 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }) |
| 50 | 48, 49 | jaodan 959 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }) |
| 51 | 47, 50 | syldan 591 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }) |
| 52 | 1, 2, 3, 6, 22, 8, 46, 51 | dmdprdd 19908 | 1 ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∖ cdif 3894 ∪ cun 3895 ∩ cin 3896 ⊆ wss 3897 ∅c0 4278 {csn 4571 ∪ cuni 4854 class class class wbr 5086 dom cdm 5611 ↾ cres 5613 “ cima 5614 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 0gc0g 17338 mrClscmrc 17480 Grpcgrp 18841 SubGrpcsubg 19028 Cntzccntz 19222 DProd cdprd 19902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-hash 14233 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-0g 17340 df-gsum 17341 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19120 df-gim 19166 df-cntz 19224 df-oppg 19253 df-lsm 19543 df-cmn 19689 df-dprd 19904 |
| This theorem is referenced by: dmdprdsplit 19956 pgpfaclem1 19990 |
| Copyright terms: Public domain | W3C validator |