![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmdprdsplit2 | Structured version Visualization version GIF version |
Description: The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprdsplit.2 | ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
dprdsplit.i | ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) |
dprdsplit.u | ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) |
dmdprdsplit.z | ⊢ 𝑍 = (Cntz‘𝐺) |
dmdprdsplit.0 | ⊢ 0 = (0g‘𝐺) |
dmdprdsplit2.1 | ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐶)) |
dmdprdsplit2.2 | ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐷)) |
dmdprdsplit2.3 | ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) |
dmdprdsplit2.4 | ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) |
Ref | Expression |
---|---|
dmdprdsplit2 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmdprdsplit.z | . 2 ⊢ 𝑍 = (Cntz‘𝐺) | |
2 | dmdprdsplit.0 | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | eqid 2795 | . 2 ⊢ (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺)) | |
4 | dmdprdsplit2.1 | . . 3 ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐶)) | |
5 | dprdgrp 18849 | . . 3 ⊢ (𝐺dom DProd (𝑆 ↾ 𝐶) → 𝐺 ∈ Grp) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) |
7 | dprdsplit.u | . . 3 ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) | |
8 | dprdsplit.2 | . . . . . . 7 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) | |
9 | ssun1 4073 | . . . . . . . 8 ⊢ 𝐶 ⊆ (𝐶 ∪ 𝐷) | |
10 | 9, 7 | sseqtrrid 3945 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ⊆ 𝐼) |
11 | 8, 10 | fssresd 6418 | . . . . . 6 ⊢ (𝜑 → (𝑆 ↾ 𝐶):𝐶⟶(SubGrp‘𝐺)) |
12 | 11 | fdmd 6396 | . . . . 5 ⊢ (𝜑 → dom (𝑆 ↾ 𝐶) = 𝐶) |
13 | 4, 12 | dprddomcld 18845 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ V) |
14 | dmdprdsplit2.2 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐷)) | |
15 | ssun2 4074 | . . . . . . . 8 ⊢ 𝐷 ⊆ (𝐶 ∪ 𝐷) | |
16 | 15, 7 | sseqtrrid 3945 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ⊆ 𝐼) |
17 | 8, 16 | fssresd 6418 | . . . . . 6 ⊢ (𝜑 → (𝑆 ↾ 𝐷):𝐷⟶(SubGrp‘𝐺)) |
18 | 17 | fdmd 6396 | . . . . 5 ⊢ (𝜑 → dom (𝑆 ↾ 𝐷) = 𝐷) |
19 | 14, 18 | dprddomcld 18845 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ V) |
20 | unexg 7334 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 ∪ 𝐷) ∈ V) | |
21 | 13, 19, 20 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐶 ∪ 𝐷) ∈ V) |
22 | 7, 21 | eqeltrd 2883 | . 2 ⊢ (𝜑 → 𝐼 ∈ V) |
23 | 7 | eleq2d 2868 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↔ 𝑥 ∈ (𝐶 ∪ 𝐷))) |
24 | elun 4050 | . . . . 5 ⊢ (𝑥 ∈ (𝐶 ∪ 𝐷) ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) | |
25 | 23, 24 | syl6bb 288 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷))) |
26 | dprdsplit.i | . . . . . . . 8 ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) | |
27 | dmdprdsplit2.3 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) | |
28 | dmdprdsplit2.4 | . . . . . . . 8 ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) | |
29 | 8, 26, 7, 1, 2, 4, 14, 27, 28, 3 | dmdprdsplit2lem 18889 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })) |
30 | incom 4103 | . . . . . . . . 9 ⊢ (𝐶 ∩ 𝐷) = (𝐷 ∩ 𝐶) | |
31 | 30, 26 | syl5eqr 2845 | . . . . . . . 8 ⊢ (𝜑 → (𝐷 ∩ 𝐶) = ∅) |
32 | uncom 4054 | . . . . . . . . 9 ⊢ (𝐶 ∪ 𝐷) = (𝐷 ∪ 𝐶) | |
33 | 7, 32 | syl6eq 2847 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 = (𝐷 ∪ 𝐶)) |
34 | dprdsubg 18868 | . . . . . . . . . 10 ⊢ (𝐺dom DProd (𝑆 ↾ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺)) | |
35 | 4, 34 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺)) |
36 | dprdsubg 18868 | . . . . . . . . . 10 ⊢ (𝐺dom DProd (𝑆 ↾ 𝐷) → (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) | |
37 | 14, 36 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) |
38 | 1, 35, 37, 27 | cntzrecd 18536 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐶)))) |
39 | incom 4103 | . . . . . . . . 9 ⊢ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = ((𝐺 DProd (𝑆 ↾ 𝐷)) ∩ (𝐺 DProd (𝑆 ↾ 𝐶))) | |
40 | 39, 28 | syl5eqr 2845 | . . . . . . . 8 ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐷)) ∩ (𝐺 DProd (𝑆 ↾ 𝐶))) = { 0 }) |
41 | 8, 31, 33, 1, 2, 14, 4, 38, 40, 3 | dmdprdsplit2lem 18889 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })) |
42 | 29, 41 | jaodan 952 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) → ((𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })) |
43 | 42 | simpld 495 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) → (𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦))))) |
44 | 43 | ex 413 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷) → (𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))))) |
45 | 25, 44 | sylbid 241 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 → (𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))))) |
46 | 45 | 3imp2 1342 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦)) → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦))) |
47 | 25 | biimpa 477 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) |
48 | 29 | simprd 496 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }) |
49 | 41 | simprd 496 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }) |
50 | 48, 49 | jaodan 952 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }) |
51 | 47, 50 | syldan 591 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }) |
52 | 1, 2, 3, 6, 22, 8, 46, 51 | dmdprdd 18843 | 1 ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 842 = wceq 1522 ∈ wcel 2081 ≠ wne 2984 Vcvv 3437 ∖ cdif 3860 ∪ cun 3861 ∩ cin 3862 ⊆ wss 3863 ∅c0 4215 {csn 4476 ∪ cuni 4749 class class class wbr 4966 dom cdm 5448 ↾ cres 5450 “ cima 5451 ⟶wf 6226 ‘cfv 6230 (class class class)co 7021 0gc0g 16547 mrClscmrc 16688 Grpcgrp 17866 SubGrpcsubg 18032 Cntzccntz 18191 DProd cdprd 18837 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5086 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 ax-cnex 10444 ax-resscn 10445 ax-1cn 10446 ax-icn 10447 ax-addcl 10448 ax-addrcl 10449 ax-mulcl 10450 ax-mulrcl 10451 ax-mulcom 10452 ax-addass 10453 ax-mulass 10454 ax-distr 10455 ax-i2m1 10456 ax-1ne0 10457 ax-1rid 10458 ax-rnegex 10459 ax-rrecex 10460 ax-cnre 10461 ax-pre-lttri 10462 ax-pre-lttrn 10463 ax-pre-ltadd 10464 ax-pre-mulgt0 10465 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-pss 3880 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-tp 4481 df-op 4483 df-uni 4750 df-int 4787 df-iun 4831 df-iin 4832 df-br 4967 df-opab 5029 df-mpt 5046 df-tr 5069 df-id 5353 df-eprel 5358 df-po 5367 df-so 5368 df-fr 5407 df-se 5408 df-we 5409 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-pred 6028 df-ord 6074 df-on 6075 df-lim 6076 df-suc 6077 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-isom 6239 df-riota 6982 df-ov 7024 df-oprab 7025 df-mpo 7026 df-of 7272 df-om 7442 df-1st 7550 df-2nd 7551 df-supp 7687 df-tpos 7748 df-wrecs 7803 df-recs 7865 df-rdg 7903 df-1o 7958 df-oadd 7962 df-er 8144 df-map 8263 df-ixp 8316 df-en 8363 df-dom 8364 df-sdom 8365 df-fin 8366 df-fsupp 8685 df-oi 8825 df-card 9219 df-pnf 10528 df-mnf 10529 df-xr 10530 df-ltxr 10531 df-le 10532 df-sub 10724 df-neg 10725 df-nn 11492 df-2 11553 df-n0 11751 df-z 11835 df-uz 12099 df-fz 12748 df-fzo 12889 df-seq 13225 df-hash 13546 df-ndx 16320 df-slot 16321 df-base 16323 df-sets 16324 df-ress 16325 df-plusg 16412 df-0g 16549 df-gsum 16550 df-mre 16691 df-mrc 16692 df-acs 16694 df-mgm 17686 df-sgrp 17728 df-mnd 17739 df-mhm 17779 df-submnd 17780 df-grp 17869 df-minusg 17870 df-sbg 17871 df-mulg 17987 df-subg 18035 df-ghm 18102 df-gim 18145 df-cntz 18193 df-oppg 18220 df-lsm 18496 df-cmn 18640 df-dprd 18839 |
This theorem is referenced by: dmdprdsplit 18891 pgpfaclem1 18925 |
Copyright terms: Public domain | W3C validator |