MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdsplit2 Structured version   Visualization version   GIF version

Theorem dmdprdsplit2 19784
Description: The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdsplit.2 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
dprdsplit.i (𝜑 → (𝐶𝐷) = ∅)
dprdsplit.u (𝜑𝐼 = (𝐶𝐷))
dmdprdsplit.z 𝑍 = (Cntz‘𝐺)
dmdprdsplit.0 0 = (0g𝐺)
dmdprdsplit2.1 (𝜑𝐺dom DProd (𝑆𝐶))
dmdprdsplit2.2 (𝜑𝐺dom DProd (𝑆𝐷))
dmdprdsplit2.3 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
dmdprdsplit2.4 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
Assertion
Ref Expression
dmdprdsplit2 (𝜑𝐺dom DProd 𝑆)

Proof of Theorem dmdprdsplit2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmdprdsplit.z . 2 𝑍 = (Cntz‘𝐺)
2 dmdprdsplit.0 . 2 0 = (0g𝐺)
3 eqid 2738 . 2 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 dmdprdsplit2.1 . . 3 (𝜑𝐺dom DProd (𝑆𝐶))
5 dprdgrp 19743 . . 3 (𝐺dom DProd (𝑆𝐶) → 𝐺 ∈ Grp)
64, 5syl 17 . 2 (𝜑𝐺 ∈ Grp)
7 dprdsplit.u . . 3 (𝜑𝐼 = (𝐶𝐷))
8 dprdsplit.2 . . . . . . 7 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
9 ssun1 4131 . . . . . . . 8 𝐶 ⊆ (𝐶𝐷)
109, 7sseqtrrid 3996 . . . . . . 7 (𝜑𝐶𝐼)
118, 10fssresd 6707 . . . . . 6 (𝜑 → (𝑆𝐶):𝐶⟶(SubGrp‘𝐺))
1211fdmd 6677 . . . . 5 (𝜑 → dom (𝑆𝐶) = 𝐶)
134, 12dprddomcld 19739 . . . 4 (𝜑𝐶 ∈ V)
14 dmdprdsplit2.2 . . . . 5 (𝜑𝐺dom DProd (𝑆𝐷))
15 ssun2 4132 . . . . . . . 8 𝐷 ⊆ (𝐶𝐷)
1615, 7sseqtrrid 3996 . . . . . . 7 (𝜑𝐷𝐼)
178, 16fssresd 6707 . . . . . 6 (𝜑 → (𝑆𝐷):𝐷⟶(SubGrp‘𝐺))
1817fdmd 6677 . . . . 5 (𝜑 → dom (𝑆𝐷) = 𝐷)
1914, 18dprddomcld 19739 . . . 4 (𝜑𝐷 ∈ V)
20 unexg 7676 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶𝐷) ∈ V)
2113, 19, 20syl2anc 585 . . 3 (𝜑 → (𝐶𝐷) ∈ V)
227, 21eqeltrd 2839 . 2 (𝜑𝐼 ∈ V)
237eleq2d 2824 . . . . 5 (𝜑 → (𝑥𝐼𝑥 ∈ (𝐶𝐷)))
24 elun 4107 . . . . 5 (𝑥 ∈ (𝐶𝐷) ↔ (𝑥𝐶𝑥𝐷))
2523, 24bitrdi 287 . . . 4 (𝜑 → (𝑥𝐼 ↔ (𝑥𝐶𝑥𝐷)))
26 dprdsplit.i . . . . . . . 8 (𝜑 → (𝐶𝐷) = ∅)
27 dmdprdsplit2.3 . . . . . . . 8 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
28 dmdprdsplit2.4 . . . . . . . 8 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
298, 26, 7, 1, 2, 4, 14, 27, 28, 3dmdprdsplit2lem 19783 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }))
30 incom 4160 . . . . . . . . 9 (𝐶𝐷) = (𝐷𝐶)
3130, 26eqtr3id 2792 . . . . . . . 8 (𝜑 → (𝐷𝐶) = ∅)
32 uncom 4112 . . . . . . . . 9 (𝐶𝐷) = (𝐷𝐶)
337, 32eqtrdi 2794 . . . . . . . 8 (𝜑𝐼 = (𝐷𝐶))
34 dprdsubg 19762 . . . . . . . . . 10 (𝐺dom DProd (𝑆𝐶) → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
354, 34syl 17 . . . . . . . . 9 (𝜑 → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
36 dprdsubg 19762 . . . . . . . . . 10 (𝐺dom DProd (𝑆𝐷) → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
3714, 36syl 17 . . . . . . . . 9 (𝜑 → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
381, 35, 37, 27cntzrecd 19419 . . . . . . . 8 (𝜑 → (𝐺 DProd (𝑆𝐷)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐶))))
39 incom 4160 . . . . . . . . 9 ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = ((𝐺 DProd (𝑆𝐷)) ∩ (𝐺 DProd (𝑆𝐶)))
4039, 28eqtr3id 2792 . . . . . . . 8 (𝜑 → ((𝐺 DProd (𝑆𝐷)) ∩ (𝐺 DProd (𝑆𝐶))) = { 0 })
418, 31, 33, 1, 2, 14, 4, 38, 40, 3dmdprdsplit2lem 19783 . . . . . . 7 ((𝜑𝑥𝐷) → ((𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }))
4229, 41jaodan 957 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑥𝐷)) → ((𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }))
4342simpld 496 . . . . 5 ((𝜑 ∧ (𝑥𝐶𝑥𝐷)) → (𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))))
4443ex 414 . . . 4 (𝜑 → ((𝑥𝐶𝑥𝐷) → (𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))))
4525, 44sylbid 239 . . 3 (𝜑 → (𝑥𝐼 → (𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))))
46453imp2 1350 . 2 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
4725biimpa 478 . . 3 ((𝜑𝑥𝐼) → (𝑥𝐶𝑥𝐷))
4829simprd 497 . . . 4 ((𝜑𝑥𝐶) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
4941simprd 497 . . . 4 ((𝜑𝑥𝐷) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
5048, 49jaodan 957 . . 3 ((𝜑 ∧ (𝑥𝐶𝑥𝐷)) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
5147, 50syldan 592 . 2 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
521, 2, 3, 6, 22, 8, 46, 51dmdprdd 19737 1 (𝜑𝐺dom DProd 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wo 846   = wceq 1542  wcel 2107  wne 2942  Vcvv 3444  cdif 3906  cun 3907  cin 3908  wss 3909  c0 4281  {csn 4585   cuni 4864   class class class wbr 5104  dom cdm 5632  cres 5634  cima 5635  wf 6490  cfv 6494  (class class class)co 7352  0gc0g 17281  mrClscmrc 17423  Grpcgrp 18708  SubGrpcsubg 18881  Cntzccntz 19054   DProd cdprd 19731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7665  ax-cnex 11066  ax-resscn 11067  ax-1cn 11068  ax-icn 11069  ax-addcl 11070  ax-addrcl 11071  ax-mulcl 11072  ax-mulrcl 11073  ax-mulcom 11074  ax-addass 11075  ax-mulass 11076  ax-distr 11077  ax-i2m1 11078  ax-1ne0 11079  ax-1rid 11080  ax-rnegex 11081  ax-rrecex 11082  ax-cnre 11083  ax-pre-lttri 11084  ax-pre-lttrn 11085  ax-pre-ltadd 11086  ax-pre-mulgt0 11087
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-iin 4956  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-se 5588  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-isom 6503  df-riota 7308  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7610  df-om 7796  df-1st 7914  df-2nd 7915  df-supp 8086  df-tpos 8150  df-frecs 8205  df-wrecs 8236  df-recs 8310  df-rdg 8349  df-1o 8405  df-er 8607  df-map 8726  df-ixp 8795  df-en 8843  df-dom 8844  df-sdom 8845  df-fin 8846  df-fsupp 9265  df-oi 9405  df-card 9834  df-pnf 11150  df-mnf 11151  df-xr 11152  df-ltxr 11153  df-le 11154  df-sub 11346  df-neg 11347  df-nn 12113  df-2 12175  df-n0 12373  df-z 12459  df-uz 12723  df-fz 13380  df-fzo 13523  df-seq 13862  df-hash 14185  df-sets 16996  df-slot 17014  df-ndx 17026  df-base 17044  df-ress 17073  df-plusg 17106  df-0g 17283  df-gsum 17284  df-mre 17426  df-mrc 17427  df-acs 17429  df-mgm 18457  df-sgrp 18506  df-mnd 18517  df-mhm 18561  df-submnd 18562  df-grp 18711  df-minusg 18712  df-sbg 18713  df-mulg 18832  df-subg 18884  df-ghm 18965  df-gim 19008  df-cntz 19056  df-oppg 19083  df-lsm 19377  df-cmn 19523  df-dprd 19733
This theorem is referenced by:  dmdprdsplit  19785  pgpfaclem1  19819
  Copyright terms: Public domain W3C validator