| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmdprdsplit2 | Structured version Visualization version GIF version | ||
| Description: The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| Ref | Expression |
|---|---|
| dprdsplit.2 | ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| dprdsplit.i | ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) |
| dprdsplit.u | ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) |
| dmdprdsplit.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| dmdprdsplit.0 | ⊢ 0 = (0g‘𝐺) |
| dmdprdsplit2.1 | ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐶)) |
| dmdprdsplit2.2 | ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐷)) |
| dmdprdsplit2.3 | ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) |
| dmdprdsplit2.4 | ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) |
| Ref | Expression |
|---|---|
| dmdprdsplit2 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmdprdsplit.z | . 2 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 2 | dmdprdsplit.0 | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | eqid 2729 | . 2 ⊢ (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺)) | |
| 4 | dmdprdsplit2.1 | . . 3 ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐶)) | |
| 5 | dprdgrp 19913 | . . 3 ⊢ (𝐺dom DProd (𝑆 ↾ 𝐶) → 𝐺 ∈ Grp) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 7 | dprdsplit.u | . . 3 ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) | |
| 8 | dprdsplit.2 | . . . . . . 7 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) | |
| 9 | ssun1 4137 | . . . . . . . 8 ⊢ 𝐶 ⊆ (𝐶 ∪ 𝐷) | |
| 10 | 9, 7 | sseqtrrid 3987 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ⊆ 𝐼) |
| 11 | 8, 10 | fssresd 6709 | . . . . . 6 ⊢ (𝜑 → (𝑆 ↾ 𝐶):𝐶⟶(SubGrp‘𝐺)) |
| 12 | 11 | fdmd 6680 | . . . . 5 ⊢ (𝜑 → dom (𝑆 ↾ 𝐶) = 𝐶) |
| 13 | 4, 12 | dprddomcld 19909 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ V) |
| 14 | dmdprdsplit2.2 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐷)) | |
| 15 | ssun2 4138 | . . . . . . . 8 ⊢ 𝐷 ⊆ (𝐶 ∪ 𝐷) | |
| 16 | 15, 7 | sseqtrrid 3987 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ⊆ 𝐼) |
| 17 | 8, 16 | fssresd 6709 | . . . . . 6 ⊢ (𝜑 → (𝑆 ↾ 𝐷):𝐷⟶(SubGrp‘𝐺)) |
| 18 | 17 | fdmd 6680 | . . . . 5 ⊢ (𝜑 → dom (𝑆 ↾ 𝐷) = 𝐷) |
| 19 | 14, 18 | dprddomcld 19909 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ V) |
| 20 | unexg 7699 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 ∪ 𝐷) ∈ V) | |
| 21 | 13, 19, 20 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐶 ∪ 𝐷) ∈ V) |
| 22 | 7, 21 | eqeltrd 2828 | . 2 ⊢ (𝜑 → 𝐼 ∈ V) |
| 23 | 7 | eleq2d 2814 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↔ 𝑥 ∈ (𝐶 ∪ 𝐷))) |
| 24 | elun 4112 | . . . . 5 ⊢ (𝑥 ∈ (𝐶 ∪ 𝐷) ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) | |
| 25 | 23, 24 | bitrdi 287 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷))) |
| 26 | dprdsplit.i | . . . . . . . 8 ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) | |
| 27 | dmdprdsplit2.3 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) | |
| 28 | dmdprdsplit2.4 | . . . . . . . 8 ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) | |
| 29 | 8, 26, 7, 1, 2, 4, 14, 27, 28, 3 | dmdprdsplit2lem 19953 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })) |
| 30 | incom 4168 | . . . . . . . . 9 ⊢ (𝐶 ∩ 𝐷) = (𝐷 ∩ 𝐶) | |
| 31 | 30, 26 | eqtr3id 2778 | . . . . . . . 8 ⊢ (𝜑 → (𝐷 ∩ 𝐶) = ∅) |
| 32 | uncom 4117 | . . . . . . . . 9 ⊢ (𝐶 ∪ 𝐷) = (𝐷 ∪ 𝐶) | |
| 33 | 7, 32 | eqtrdi 2780 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 = (𝐷 ∪ 𝐶)) |
| 34 | dprdsubg 19932 | . . . . . . . . . 10 ⊢ (𝐺dom DProd (𝑆 ↾ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺)) | |
| 35 | 4, 34 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺)) |
| 36 | dprdsubg 19932 | . . . . . . . . . 10 ⊢ (𝐺dom DProd (𝑆 ↾ 𝐷) → (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) | |
| 37 | 14, 36 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) |
| 38 | 1, 35, 37, 27 | cntzrecd 19584 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐶)))) |
| 39 | incom 4168 | . . . . . . . . 9 ⊢ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = ((𝐺 DProd (𝑆 ↾ 𝐷)) ∩ (𝐺 DProd (𝑆 ↾ 𝐶))) | |
| 40 | 39, 28 | eqtr3id 2778 | . . . . . . . 8 ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐷)) ∩ (𝐺 DProd (𝑆 ↾ 𝐶))) = { 0 }) |
| 41 | 8, 31, 33, 1, 2, 14, 4, 38, 40, 3 | dmdprdsplit2lem 19953 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })) |
| 42 | 29, 41 | jaodan 959 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) → ((𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })) |
| 43 | 42 | simpld 494 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) → (𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦))))) |
| 44 | 43 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷) → (𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))))) |
| 45 | 25, 44 | sylbid 240 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 → (𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))))) |
| 46 | 45 | 3imp2 1350 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦)) → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦))) |
| 47 | 25 | biimpa 476 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) |
| 48 | 29 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }) |
| 49 | 41 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }) |
| 50 | 48, 49 | jaodan 959 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }) |
| 51 | 47, 50 | syldan 591 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }) |
| 52 | 1, 2, 3, 6, 22, 8, 46, 51 | dmdprdd 19907 | 1 ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 ∖ cdif 3908 ∪ cun 3909 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 {csn 4585 ∪ cuni 4867 class class class wbr 5102 dom cdm 5631 ↾ cres 5633 “ cima 5634 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 0gc0g 17378 mrClscmrc 17520 Grpcgrp 18841 SubGrpcsubg 19028 Cntzccntz 19223 DProd cdprd 19901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-0g 17380 df-gsum 17381 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19121 df-gim 19167 df-cntz 19225 df-oppg 19254 df-lsm 19542 df-cmn 19688 df-dprd 19903 |
| This theorem is referenced by: dmdprdsplit 19955 pgpfaclem1 19989 |
| Copyright terms: Public domain | W3C validator |