Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmdprdsplit2 | Structured version Visualization version GIF version |
Description: The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprdsplit.2 | ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
dprdsplit.i | ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) |
dprdsplit.u | ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) |
dmdprdsplit.z | ⊢ 𝑍 = (Cntz‘𝐺) |
dmdprdsplit.0 | ⊢ 0 = (0g‘𝐺) |
dmdprdsplit2.1 | ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐶)) |
dmdprdsplit2.2 | ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐷)) |
dmdprdsplit2.3 | ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) |
dmdprdsplit2.4 | ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) |
Ref | Expression |
---|---|
dmdprdsplit2 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmdprdsplit.z | . 2 ⊢ 𝑍 = (Cntz‘𝐺) | |
2 | dmdprdsplit.0 | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | eqid 2738 | . 2 ⊢ (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺)) | |
4 | dmdprdsplit2.1 | . . 3 ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐶)) | |
5 | dprdgrp 19523 | . . 3 ⊢ (𝐺dom DProd (𝑆 ↾ 𝐶) → 𝐺 ∈ Grp) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) |
7 | dprdsplit.u | . . 3 ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) | |
8 | dprdsplit.2 | . . . . . . 7 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) | |
9 | ssun1 4102 | . . . . . . . 8 ⊢ 𝐶 ⊆ (𝐶 ∪ 𝐷) | |
10 | 9, 7 | sseqtrrid 3970 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ⊆ 𝐼) |
11 | 8, 10 | fssresd 6625 | . . . . . 6 ⊢ (𝜑 → (𝑆 ↾ 𝐶):𝐶⟶(SubGrp‘𝐺)) |
12 | 11 | fdmd 6595 | . . . . 5 ⊢ (𝜑 → dom (𝑆 ↾ 𝐶) = 𝐶) |
13 | 4, 12 | dprddomcld 19519 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ V) |
14 | dmdprdsplit2.2 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐷)) | |
15 | ssun2 4103 | . . . . . . . 8 ⊢ 𝐷 ⊆ (𝐶 ∪ 𝐷) | |
16 | 15, 7 | sseqtrrid 3970 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ⊆ 𝐼) |
17 | 8, 16 | fssresd 6625 | . . . . . 6 ⊢ (𝜑 → (𝑆 ↾ 𝐷):𝐷⟶(SubGrp‘𝐺)) |
18 | 17 | fdmd 6595 | . . . . 5 ⊢ (𝜑 → dom (𝑆 ↾ 𝐷) = 𝐷) |
19 | 14, 18 | dprddomcld 19519 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ V) |
20 | unexg 7577 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 ∪ 𝐷) ∈ V) | |
21 | 13, 19, 20 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐶 ∪ 𝐷) ∈ V) |
22 | 7, 21 | eqeltrd 2839 | . 2 ⊢ (𝜑 → 𝐼 ∈ V) |
23 | 7 | eleq2d 2824 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↔ 𝑥 ∈ (𝐶 ∪ 𝐷))) |
24 | elun 4079 | . . . . 5 ⊢ (𝑥 ∈ (𝐶 ∪ 𝐷) ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) | |
25 | 23, 24 | bitrdi 286 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷))) |
26 | dprdsplit.i | . . . . . . . 8 ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) | |
27 | dmdprdsplit2.3 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) | |
28 | dmdprdsplit2.4 | . . . . . . . 8 ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) | |
29 | 8, 26, 7, 1, 2, 4, 14, 27, 28, 3 | dmdprdsplit2lem 19563 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })) |
30 | incom 4131 | . . . . . . . . 9 ⊢ (𝐶 ∩ 𝐷) = (𝐷 ∩ 𝐶) | |
31 | 30, 26 | eqtr3id 2793 | . . . . . . . 8 ⊢ (𝜑 → (𝐷 ∩ 𝐶) = ∅) |
32 | uncom 4083 | . . . . . . . . 9 ⊢ (𝐶 ∪ 𝐷) = (𝐷 ∪ 𝐶) | |
33 | 7, 32 | eqtrdi 2795 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 = (𝐷 ∪ 𝐶)) |
34 | dprdsubg 19542 | . . . . . . . . . 10 ⊢ (𝐺dom DProd (𝑆 ↾ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺)) | |
35 | 4, 34 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺)) |
36 | dprdsubg 19542 | . . . . . . . . . 10 ⊢ (𝐺dom DProd (𝑆 ↾ 𝐷) → (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) | |
37 | 14, 36 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) |
38 | 1, 35, 37, 27 | cntzrecd 19199 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐶)))) |
39 | incom 4131 | . . . . . . . . 9 ⊢ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = ((𝐺 DProd (𝑆 ↾ 𝐷)) ∩ (𝐺 DProd (𝑆 ↾ 𝐶))) | |
40 | 39, 28 | eqtr3id 2793 | . . . . . . . 8 ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐷)) ∩ (𝐺 DProd (𝑆 ↾ 𝐶))) = { 0 }) |
41 | 8, 31, 33, 1, 2, 14, 4, 38, 40, 3 | dmdprdsplit2lem 19563 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })) |
42 | 29, 41 | jaodan 954 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) → ((𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })) |
43 | 42 | simpld 494 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) → (𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦))))) |
44 | 43 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷) → (𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))))) |
45 | 25, 44 | sylbid 239 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 → (𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))))) |
46 | 45 | 3imp2 1347 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦)) → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦))) |
47 | 25 | biimpa 476 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) |
48 | 29 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }) |
49 | 41 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }) |
50 | 48, 49 | jaodan 954 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }) |
51 | 47, 50 | syldan 590 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }) |
52 | 1, 2, 3, 6, 22, 8, 46, 51 | dmdprdd 19517 | 1 ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∖ cdif 3880 ∪ cun 3881 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 {csn 4558 ∪ cuni 4836 class class class wbr 5070 dom cdm 5580 ↾ cres 5582 “ cima 5583 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 0gc0g 17067 mrClscmrc 17209 Grpcgrp 18492 SubGrpcsubg 18664 Cntzccntz 18836 DProd cdprd 19511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-0g 17069 df-gsum 17070 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-gim 18790 df-cntz 18838 df-oppg 18865 df-lsm 19156 df-cmn 19303 df-dprd 19513 |
This theorem is referenced by: dmdprdsplit 19565 pgpfaclem1 19599 |
Copyright terms: Public domain | W3C validator |