MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdsplit2 Structured version   Visualization version   GIF version

Theorem dmdprdsplit2 18890
Description: The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdsplit.2 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
dprdsplit.i (𝜑 → (𝐶𝐷) = ∅)
dprdsplit.u (𝜑𝐼 = (𝐶𝐷))
dmdprdsplit.z 𝑍 = (Cntz‘𝐺)
dmdprdsplit.0 0 = (0g𝐺)
dmdprdsplit2.1 (𝜑𝐺dom DProd (𝑆𝐶))
dmdprdsplit2.2 (𝜑𝐺dom DProd (𝑆𝐷))
dmdprdsplit2.3 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
dmdprdsplit2.4 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
Assertion
Ref Expression
dmdprdsplit2 (𝜑𝐺dom DProd 𝑆)

Proof of Theorem dmdprdsplit2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmdprdsplit.z . 2 𝑍 = (Cntz‘𝐺)
2 dmdprdsplit.0 . 2 0 = (0g𝐺)
3 eqid 2795 . 2 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 dmdprdsplit2.1 . . 3 (𝜑𝐺dom DProd (𝑆𝐶))
5 dprdgrp 18849 . . 3 (𝐺dom DProd (𝑆𝐶) → 𝐺 ∈ Grp)
64, 5syl 17 . 2 (𝜑𝐺 ∈ Grp)
7 dprdsplit.u . . 3 (𝜑𝐼 = (𝐶𝐷))
8 dprdsplit.2 . . . . . . 7 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
9 ssun1 4073 . . . . . . . 8 𝐶 ⊆ (𝐶𝐷)
109, 7sseqtrrid 3945 . . . . . . 7 (𝜑𝐶𝐼)
118, 10fssresd 6418 . . . . . 6 (𝜑 → (𝑆𝐶):𝐶⟶(SubGrp‘𝐺))
1211fdmd 6396 . . . . 5 (𝜑 → dom (𝑆𝐶) = 𝐶)
134, 12dprddomcld 18845 . . . 4 (𝜑𝐶 ∈ V)
14 dmdprdsplit2.2 . . . . 5 (𝜑𝐺dom DProd (𝑆𝐷))
15 ssun2 4074 . . . . . . . 8 𝐷 ⊆ (𝐶𝐷)
1615, 7sseqtrrid 3945 . . . . . . 7 (𝜑𝐷𝐼)
178, 16fssresd 6418 . . . . . 6 (𝜑 → (𝑆𝐷):𝐷⟶(SubGrp‘𝐺))
1817fdmd 6396 . . . . 5 (𝜑 → dom (𝑆𝐷) = 𝐷)
1914, 18dprddomcld 18845 . . . 4 (𝜑𝐷 ∈ V)
20 unexg 7334 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶𝐷) ∈ V)
2113, 19, 20syl2anc 584 . . 3 (𝜑 → (𝐶𝐷) ∈ V)
227, 21eqeltrd 2883 . 2 (𝜑𝐼 ∈ V)
237eleq2d 2868 . . . . 5 (𝜑 → (𝑥𝐼𝑥 ∈ (𝐶𝐷)))
24 elun 4050 . . . . 5 (𝑥 ∈ (𝐶𝐷) ↔ (𝑥𝐶𝑥𝐷))
2523, 24syl6bb 288 . . . 4 (𝜑 → (𝑥𝐼 ↔ (𝑥𝐶𝑥𝐷)))
26 dprdsplit.i . . . . . . . 8 (𝜑 → (𝐶𝐷) = ∅)
27 dmdprdsplit2.3 . . . . . . . 8 (𝜑 → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
28 dmdprdsplit2.4 . . . . . . . 8 (𝜑 → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
298, 26, 7, 1, 2, 4, 14, 27, 28, 3dmdprdsplit2lem 18889 . . . . . . 7 ((𝜑𝑥𝐶) → ((𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }))
30 incom 4103 . . . . . . . . 9 (𝐶𝐷) = (𝐷𝐶)
3130, 26syl5eqr 2845 . . . . . . . 8 (𝜑 → (𝐷𝐶) = ∅)
32 uncom 4054 . . . . . . . . 9 (𝐶𝐷) = (𝐷𝐶)
337, 32syl6eq 2847 . . . . . . . 8 (𝜑𝐼 = (𝐷𝐶))
34 dprdsubg 18868 . . . . . . . . . 10 (𝐺dom DProd (𝑆𝐶) → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
354, 34syl 17 . . . . . . . . 9 (𝜑 → (𝐺 DProd (𝑆𝐶)) ∈ (SubGrp‘𝐺))
36 dprdsubg 18868 . . . . . . . . . 10 (𝐺dom DProd (𝑆𝐷) → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
3714, 36syl 17 . . . . . . . . 9 (𝜑 → (𝐺 DProd (𝑆𝐷)) ∈ (SubGrp‘𝐺))
381, 35, 37, 27cntzrecd 18536 . . . . . . . 8 (𝜑 → (𝐺 DProd (𝑆𝐷)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐶))))
39 incom 4103 . . . . . . . . 9 ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = ((𝐺 DProd (𝑆𝐷)) ∩ (𝐺 DProd (𝑆𝐶)))
4039, 28syl5eqr 2845 . . . . . . . 8 (𝜑 → ((𝐺 DProd (𝑆𝐷)) ∩ (𝐺 DProd (𝑆𝐶))) = { 0 })
418, 31, 33, 1, 2, 14, 4, 38, 40, 3dmdprdsplit2lem 18889 . . . . . . 7 ((𝜑𝑥𝐷) → ((𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }))
4229, 41jaodan 952 . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑥𝐷)) → ((𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))) ∧ ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }))
4342simpld 495 . . . . 5 ((𝜑 ∧ (𝑥𝐶𝑥𝐷)) → (𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))))
4443ex 413 . . . 4 (𝜑 → ((𝑥𝐶𝑥𝐷) → (𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))))
4525, 44sylbid 241 . . 3 (𝜑 → (𝑥𝐼 → (𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))))
46453imp2 1342 . 2 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
4725biimpa 477 . . 3 ((𝜑𝑥𝐼) → (𝑥𝐶𝑥𝐷))
4829simprd 496 . . . 4 ((𝜑𝑥𝐶) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
4941simprd 496 . . . 4 ((𝜑𝑥𝐷) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
5048, 49jaodan 952 . . 3 ((𝜑 ∧ (𝑥𝐶𝑥𝐷)) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
5147, 50syldan 591 . 2 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
521, 2, 3, 6, 22, 8, 46, 51dmdprdd 18843 1 (𝜑𝐺dom DProd 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 842   = wceq 1522  wcel 2081  wne 2984  Vcvv 3437  cdif 3860  cun 3861  cin 3862  wss 3863  c0 4215  {csn 4476   cuni 4749   class class class wbr 4966  dom cdm 5448  cres 5450  cima 5451  wf 6226  cfv 6230  (class class class)co 7021  0gc0g 16547  mrClscmrc 16688  Grpcgrp 17866  SubGrpcsubg 18032  Cntzccntz 18191   DProd cdprd 18837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-int 4787  df-iun 4831  df-iin 4832  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-se 5408  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-isom 6239  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-of 7272  df-om 7442  df-1st 7550  df-2nd 7551  df-supp 7687  df-tpos 7748  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-1o 7958  df-oadd 7962  df-er 8144  df-map 8263  df-ixp 8316  df-en 8363  df-dom 8364  df-sdom 8365  df-fin 8366  df-fsupp 8685  df-oi 8825  df-card 9219  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-nn 11492  df-2 11553  df-n0 11751  df-z 11835  df-uz 12099  df-fz 12748  df-fzo 12889  df-seq 13225  df-hash 13546  df-ndx 16320  df-slot 16321  df-base 16323  df-sets 16324  df-ress 16325  df-plusg 16412  df-0g 16549  df-gsum 16550  df-mre 16691  df-mrc 16692  df-acs 16694  df-mgm 17686  df-sgrp 17728  df-mnd 17739  df-mhm 17779  df-submnd 17780  df-grp 17869  df-minusg 17870  df-sbg 17871  df-mulg 17987  df-subg 18035  df-ghm 18102  df-gim 18145  df-cntz 18193  df-oppg 18220  df-lsm 18496  df-cmn 18640  df-dprd 18839
This theorem is referenced by:  dmdprdsplit  18891  pgpfaclem1  18925
  Copyright terms: Public domain W3C validator