| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmdprdsplit2 | Structured version Visualization version GIF version | ||
| Description: The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| Ref | Expression |
|---|---|
| dprdsplit.2 | ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| dprdsplit.i | ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) |
| dprdsplit.u | ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) |
| dmdprdsplit.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| dmdprdsplit.0 | ⊢ 0 = (0g‘𝐺) |
| dmdprdsplit2.1 | ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐶)) |
| dmdprdsplit2.2 | ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐷)) |
| dmdprdsplit2.3 | ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) |
| dmdprdsplit2.4 | ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) |
| Ref | Expression |
|---|---|
| dmdprdsplit2 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmdprdsplit.z | . 2 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 2 | dmdprdsplit.0 | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | eqid 2733 | . 2 ⊢ (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺)) | |
| 4 | dmdprdsplit2.1 | . . 3 ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐶)) | |
| 5 | dprdgrp 19927 | . . 3 ⊢ (𝐺dom DProd (𝑆 ↾ 𝐶) → 𝐺 ∈ Grp) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 7 | dprdsplit.u | . . 3 ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) | |
| 8 | dprdsplit.2 | . . . . . . 7 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) | |
| 9 | ssun1 4127 | . . . . . . . 8 ⊢ 𝐶 ⊆ (𝐶 ∪ 𝐷) | |
| 10 | 9, 7 | sseqtrrid 3974 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ⊆ 𝐼) |
| 11 | 8, 10 | fssresd 6698 | . . . . . 6 ⊢ (𝜑 → (𝑆 ↾ 𝐶):𝐶⟶(SubGrp‘𝐺)) |
| 12 | 11 | fdmd 6669 | . . . . 5 ⊢ (𝜑 → dom (𝑆 ↾ 𝐶) = 𝐶) |
| 13 | 4, 12 | dprddomcld 19923 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ V) |
| 14 | dmdprdsplit2.2 | . . . . 5 ⊢ (𝜑 → 𝐺dom DProd (𝑆 ↾ 𝐷)) | |
| 15 | ssun2 4128 | . . . . . . . 8 ⊢ 𝐷 ⊆ (𝐶 ∪ 𝐷) | |
| 16 | 15, 7 | sseqtrrid 3974 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ⊆ 𝐼) |
| 17 | 8, 16 | fssresd 6698 | . . . . . 6 ⊢ (𝜑 → (𝑆 ↾ 𝐷):𝐷⟶(SubGrp‘𝐺)) |
| 18 | 17 | fdmd 6669 | . . . . 5 ⊢ (𝜑 → dom (𝑆 ↾ 𝐷) = 𝐷) |
| 19 | 14, 18 | dprddomcld 19923 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ V) |
| 20 | unexg 7685 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 ∪ 𝐷) ∈ V) | |
| 21 | 13, 19, 20 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐶 ∪ 𝐷) ∈ V) |
| 22 | 7, 21 | eqeltrd 2833 | . 2 ⊢ (𝜑 → 𝐼 ∈ V) |
| 23 | 7 | eleq2d 2819 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↔ 𝑥 ∈ (𝐶 ∪ 𝐷))) |
| 24 | elun 4102 | . . . . 5 ⊢ (𝑥 ∈ (𝐶 ∪ 𝐷) ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) | |
| 25 | 23, 24 | bitrdi 287 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↔ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷))) |
| 26 | dprdsplit.i | . . . . . . . 8 ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) | |
| 27 | dmdprdsplit2.3 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) | |
| 28 | dmdprdsplit2.4 | . . . . . . . 8 ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) | |
| 29 | 8, 26, 7, 1, 2, 4, 14, 27, 28, 3 | dmdprdsplit2lem 19967 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })) |
| 30 | incom 4158 | . . . . . . . . 9 ⊢ (𝐶 ∩ 𝐷) = (𝐷 ∩ 𝐶) | |
| 31 | 30, 26 | eqtr3id 2782 | . . . . . . . 8 ⊢ (𝜑 → (𝐷 ∩ 𝐶) = ∅) |
| 32 | uncom 4107 | . . . . . . . . 9 ⊢ (𝐶 ∪ 𝐷) = (𝐷 ∪ 𝐶) | |
| 33 | 7, 32 | eqtrdi 2784 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 = (𝐷 ∪ 𝐶)) |
| 34 | dprdsubg 19946 | . . . . . . . . . 10 ⊢ (𝐺dom DProd (𝑆 ↾ 𝐶) → (𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺)) | |
| 35 | 4, 34 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐶)) ∈ (SubGrp‘𝐺)) |
| 36 | dprdsubg 19946 | . . . . . . . . . 10 ⊢ (𝐺dom DProd (𝑆 ↾ 𝐷) → (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) | |
| 37 | 14, 36 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐷)) ∈ (SubGrp‘𝐺)) |
| 38 | 1, 35, 37, 27 | cntzrecd 19598 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐶)))) |
| 39 | incom 4158 | . . . . . . . . 9 ⊢ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = ((𝐺 DProd (𝑆 ↾ 𝐷)) ∩ (𝐺 DProd (𝑆 ↾ 𝐶))) | |
| 40 | 39, 28 | eqtr3id 2782 | . . . . . . . 8 ⊢ (𝜑 → ((𝐺 DProd (𝑆 ↾ 𝐷)) ∩ (𝐺 DProd (𝑆 ↾ 𝐶))) = { 0 }) |
| 41 | 8, 31, 33, 1, 2, 14, 4, 38, 40, 3 | dmdprdsplit2lem 19967 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })) |
| 42 | 29, 41 | jaodan 959 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) → ((𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))) ∧ ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })) |
| 43 | 42 | simpld 494 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) → (𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦))))) |
| 44 | 43 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷) → (𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))))) |
| 45 | 25, 44 | sylbid 240 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 → (𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))))) |
| 46 | 45 | 3imp2 1350 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦)) → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦))) |
| 47 | 25 | biimpa 476 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) |
| 48 | 29 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }) |
| 49 | 41 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }) |
| 50 | 48, 49 | jaodan 959 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐷)) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }) |
| 51 | 47, 50 | syldan 591 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑆‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }) |
| 52 | 1, 2, 3, 6, 22, 8, 46, 51 | dmdprdd 19921 | 1 ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ∖ cdif 3895 ∪ cun 3896 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 {csn 4577 ∪ cuni 4860 class class class wbr 5095 dom cdm 5621 ↾ cres 5623 “ cima 5624 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 0gc0g 17350 mrClscmrc 17493 Grpcgrp 18854 SubGrpcsubg 19041 Cntzccntz 19235 DProd cdprd 19915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-fzo 13562 df-seq 13916 df-hash 14245 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-0g 17352 df-gsum 17353 df-mre 17496 df-mrc 17497 df-acs 17499 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mhm 18699 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-mulg 18989 df-subg 19044 df-ghm 19133 df-gim 19179 df-cntz 19237 df-oppg 19266 df-lsm 19556 df-cmn 19702 df-dprd 19917 |
| This theorem is referenced by: dmdprdsplit 19969 pgpfaclem1 20003 |
| Copyright terms: Public domain | W3C validator |