Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmnnzd Structured version   Visualization version   GIF version

Theorem dmnnzd 35399
 Description: A domain has no zero-divisors (besides zero). (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
dmnnzd.1 𝐺 = (1st𝑅)
dmnnzd.2 𝐻 = (2nd𝑅)
dmnnzd.3 𝑋 = ran 𝐺
dmnnzd.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
dmnnzd ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐻𝐵) = 𝑍)) → (𝐴 = 𝑍𝐵 = 𝑍))

Proof of Theorem dmnnzd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmnnzd.1 . . . . . 6 𝐺 = (1st𝑅)
2 dmnnzd.2 . . . . . 6 𝐻 = (2nd𝑅)
3 dmnnzd.3 . . . . . 6 𝑋 = ran 𝐺
4 dmnnzd.4 . . . . . 6 𝑍 = (GId‘𝐺)
5 eqid 2821 . . . . . 6 (GId‘𝐻) = (GId‘𝐻)
61, 2, 3, 4, 5isdmn3 35398 . . . . 5 (𝑅 ∈ Dmn ↔ (𝑅 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍))))
76simp3bi 1144 . . . 4 (𝑅 ∈ Dmn → ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)))
8 oveq1 7137 . . . . . . 7 (𝑎 = 𝐴 → (𝑎𝐻𝑏) = (𝐴𝐻𝑏))
98eqeq1d 2823 . . . . . 6 (𝑎 = 𝐴 → ((𝑎𝐻𝑏) = 𝑍 ↔ (𝐴𝐻𝑏) = 𝑍))
10 eqeq1 2825 . . . . . . 7 (𝑎 = 𝐴 → (𝑎 = 𝑍𝐴 = 𝑍))
1110orbi1d 914 . . . . . 6 (𝑎 = 𝐴 → ((𝑎 = 𝑍𝑏 = 𝑍) ↔ (𝐴 = 𝑍𝑏 = 𝑍)))
129, 11imbi12d 348 . . . . 5 (𝑎 = 𝐴 → (((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)) ↔ ((𝐴𝐻𝑏) = 𝑍 → (𝐴 = 𝑍𝑏 = 𝑍))))
13 oveq2 7138 . . . . . . 7 (𝑏 = 𝐵 → (𝐴𝐻𝑏) = (𝐴𝐻𝐵))
1413eqeq1d 2823 . . . . . 6 (𝑏 = 𝐵 → ((𝐴𝐻𝑏) = 𝑍 ↔ (𝐴𝐻𝐵) = 𝑍))
15 eqeq1 2825 . . . . . . 7 (𝑏 = 𝐵 → (𝑏 = 𝑍𝐵 = 𝑍))
1615orbi2d 913 . . . . . 6 (𝑏 = 𝐵 → ((𝐴 = 𝑍𝑏 = 𝑍) ↔ (𝐴 = 𝑍𝐵 = 𝑍)))
1714, 16imbi12d 348 . . . . 5 (𝑏 = 𝐵 → (((𝐴𝐻𝑏) = 𝑍 → (𝐴 = 𝑍𝑏 = 𝑍)) ↔ ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍𝐵 = 𝑍))))
1812, 17rspc2v 3610 . . . 4 ((𝐴𝑋𝐵𝑋) → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)) → ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍𝐵 = 𝑍))))
197, 18syl5com 31 . . 3 (𝑅 ∈ Dmn → ((𝐴𝑋𝐵𝑋) → ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍𝐵 = 𝑍))))
2019expd 419 . 2 (𝑅 ∈ Dmn → (𝐴𝑋 → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍𝐵 = 𝑍)))))
21203imp2 1346 1 ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐻𝐵) = 𝑍)) → (𝐴 = 𝑍𝐵 = 𝑍))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ≠ wne 3007  ∀wral 3126  ran crn 5529  ‘cfv 6328  (class class class)co 7130  1st c1st 7662  2nd c2nd 7663  GIdcgi 28252  CRingOpsccring 35317  Dmncdmn 35371 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-1o 8077  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-grpo 28255  df-gid 28256  df-ginv 28257  df-ablo 28307  df-ass 35167  df-exid 35169  df-mgmOLD 35173  df-sgrOLD 35185  df-mndo 35191  df-rngo 35219  df-com2 35314  df-crngo 35318  df-idl 35334  df-pridl 35335  df-prrngo 35372  df-dmn 35373  df-igen 35384 This theorem is referenced by:  dmncan1  35400
 Copyright terms: Public domain W3C validator