| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmnnzd | Structured version Visualization version GIF version | ||
| Description: A domain has no zero-divisors (besides zero). (Contributed by Jeff Madsen, 19-Jun-2010.) |
| Ref | Expression |
|---|---|
| dmnnzd.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| dmnnzd.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| dmnnzd.3 | ⊢ 𝑋 = ran 𝐺 |
| dmnnzd.4 | ⊢ 𝑍 = (GId‘𝐺) |
| Ref | Expression |
|---|---|
| dmnnzd | ⊢ ((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) = 𝑍)) → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmnnzd.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | dmnnzd.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 3 | dmnnzd.3 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
| 4 | dmnnzd.4 | . . . . . 6 ⊢ 𝑍 = (GId‘𝐺) | |
| 5 | eqid 2729 | . . . . . 6 ⊢ (GId‘𝐻) = (GId‘𝐻) | |
| 6 | 1, 2, 3, 4, 5 | isdmn3 38061 | . . . . 5 ⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍 ∨ 𝑏 = 𝑍)))) |
| 7 | 6 | simp3bi 1147 | . . . 4 ⊢ (𝑅 ∈ Dmn → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍 ∨ 𝑏 = 𝑍))) |
| 8 | oveq1 7376 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑎𝐻𝑏) = (𝐴𝐻𝑏)) | |
| 9 | 8 | eqeq1d 2731 | . . . . . 6 ⊢ (𝑎 = 𝐴 → ((𝑎𝐻𝑏) = 𝑍 ↔ (𝐴𝐻𝑏) = 𝑍)) |
| 10 | eqeq1 2733 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑎 = 𝑍 ↔ 𝐴 = 𝑍)) | |
| 11 | 10 | orbi1d 916 | . . . . . 6 ⊢ (𝑎 = 𝐴 → ((𝑎 = 𝑍 ∨ 𝑏 = 𝑍) ↔ (𝐴 = 𝑍 ∨ 𝑏 = 𝑍))) |
| 12 | 9, 11 | imbi12d 344 | . . . . 5 ⊢ (𝑎 = 𝐴 → (((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍 ∨ 𝑏 = 𝑍)) ↔ ((𝐴𝐻𝑏) = 𝑍 → (𝐴 = 𝑍 ∨ 𝑏 = 𝑍)))) |
| 13 | oveq2 7377 | . . . . . . 7 ⊢ (𝑏 = 𝐵 → (𝐴𝐻𝑏) = (𝐴𝐻𝐵)) | |
| 14 | 13 | eqeq1d 2731 | . . . . . 6 ⊢ (𝑏 = 𝐵 → ((𝐴𝐻𝑏) = 𝑍 ↔ (𝐴𝐻𝐵) = 𝑍)) |
| 15 | eqeq1 2733 | . . . . . . 7 ⊢ (𝑏 = 𝐵 → (𝑏 = 𝑍 ↔ 𝐵 = 𝑍)) | |
| 16 | 15 | orbi2d 915 | . . . . . 6 ⊢ (𝑏 = 𝐵 → ((𝐴 = 𝑍 ∨ 𝑏 = 𝑍) ↔ (𝐴 = 𝑍 ∨ 𝐵 = 𝑍))) |
| 17 | 14, 16 | imbi12d 344 | . . . . 5 ⊢ (𝑏 = 𝐵 → (((𝐴𝐻𝑏) = 𝑍 → (𝐴 = 𝑍 ∨ 𝑏 = 𝑍)) ↔ ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍)))) |
| 18 | 12, 17 | rspc2v 3596 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍 ∨ 𝑏 = 𝑍)) → ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍)))) |
| 19 | 7, 18 | syl5com 31 | . . 3 ⊢ (𝑅 ∈ Dmn → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍)))) |
| 20 | 19 | expd 415 | . 2 ⊢ (𝑅 ∈ Dmn → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍))))) |
| 21 | 20 | 3imp2 1350 | 1 ⊢ ((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) = 𝑍)) → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ran crn 5632 ‘cfv 6499 (class class class)co 7369 1st c1st 7945 2nd c2nd 7946 GIdcgi 30469 CRingOpsccring 37980 Dmncdmn 38034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-1o 8411 df-en 8896 df-grpo 30472 df-gid 30473 df-ginv 30474 df-ablo 30524 df-ass 37830 df-exid 37832 df-mgmOLD 37836 df-sgrOLD 37848 df-mndo 37854 df-rngo 37882 df-com2 37977 df-crngo 37981 df-idl 37997 df-pridl 37998 df-prrngo 38035 df-dmn 38036 df-igen 38047 |
| This theorem is referenced by: dmncan1 38063 |
| Copyright terms: Public domain | W3C validator |