![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmnnzd | Structured version Visualization version GIF version |
Description: A domain has no zero-divisors (besides zero). (Contributed by Jeff Madsen, 19-Jun-2010.) |
Ref | Expression |
---|---|
dmnnzd.1 | ⊢ 𝐺 = (1st ‘𝑅) |
dmnnzd.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
dmnnzd.3 | ⊢ 𝑋 = ran 𝐺 |
dmnnzd.4 | ⊢ 𝑍 = (GId‘𝐺) |
Ref | Expression |
---|---|
dmnnzd | ⊢ ((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) = 𝑍)) → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmnnzd.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | dmnnzd.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
3 | dmnnzd.3 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
4 | dmnnzd.4 | . . . . . 6 ⊢ 𝑍 = (GId‘𝐺) | |
5 | eqid 2740 | . . . . . 6 ⊢ (GId‘𝐻) = (GId‘𝐻) | |
6 | 1, 2, 3, 4, 5 | isdmn3 38034 | . . . . 5 ⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍 ∨ 𝑏 = 𝑍)))) |
7 | 6 | simp3bi 1147 | . . . 4 ⊢ (𝑅 ∈ Dmn → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍 ∨ 𝑏 = 𝑍))) |
8 | oveq1 7455 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑎𝐻𝑏) = (𝐴𝐻𝑏)) | |
9 | 8 | eqeq1d 2742 | . . . . . 6 ⊢ (𝑎 = 𝐴 → ((𝑎𝐻𝑏) = 𝑍 ↔ (𝐴𝐻𝑏) = 𝑍)) |
10 | eqeq1 2744 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑎 = 𝑍 ↔ 𝐴 = 𝑍)) | |
11 | 10 | orbi1d 915 | . . . . . 6 ⊢ (𝑎 = 𝐴 → ((𝑎 = 𝑍 ∨ 𝑏 = 𝑍) ↔ (𝐴 = 𝑍 ∨ 𝑏 = 𝑍))) |
12 | 9, 11 | imbi12d 344 | . . . . 5 ⊢ (𝑎 = 𝐴 → (((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍 ∨ 𝑏 = 𝑍)) ↔ ((𝐴𝐻𝑏) = 𝑍 → (𝐴 = 𝑍 ∨ 𝑏 = 𝑍)))) |
13 | oveq2 7456 | . . . . . . 7 ⊢ (𝑏 = 𝐵 → (𝐴𝐻𝑏) = (𝐴𝐻𝐵)) | |
14 | 13 | eqeq1d 2742 | . . . . . 6 ⊢ (𝑏 = 𝐵 → ((𝐴𝐻𝑏) = 𝑍 ↔ (𝐴𝐻𝐵) = 𝑍)) |
15 | eqeq1 2744 | . . . . . . 7 ⊢ (𝑏 = 𝐵 → (𝑏 = 𝑍 ↔ 𝐵 = 𝑍)) | |
16 | 15 | orbi2d 914 | . . . . . 6 ⊢ (𝑏 = 𝐵 → ((𝐴 = 𝑍 ∨ 𝑏 = 𝑍) ↔ (𝐴 = 𝑍 ∨ 𝐵 = 𝑍))) |
17 | 14, 16 | imbi12d 344 | . . . . 5 ⊢ (𝑏 = 𝐵 → (((𝐴𝐻𝑏) = 𝑍 → (𝐴 = 𝑍 ∨ 𝑏 = 𝑍)) ↔ ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍)))) |
18 | 12, 17 | rspc2v 3646 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍 ∨ 𝑏 = 𝑍)) → ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍)))) |
19 | 7, 18 | syl5com 31 | . . 3 ⊢ (𝑅 ∈ Dmn → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍)))) |
20 | 19 | expd 415 | . 2 ⊢ (𝑅 ∈ Dmn → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍))))) |
21 | 20 | 3imp2 1349 | 1 ⊢ ((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) = 𝑍)) → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ran crn 5701 ‘cfv 6573 (class class class)co 7448 1st c1st 8028 2nd c2nd 8029 GIdcgi 30522 CRingOpsccring 37953 Dmncdmn 38007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-1o 8522 df-en 9004 df-grpo 30525 df-gid 30526 df-ginv 30527 df-ablo 30577 df-ass 37803 df-exid 37805 df-mgmOLD 37809 df-sgrOLD 37821 df-mndo 37827 df-rngo 37855 df-com2 37950 df-crngo 37954 df-idl 37970 df-pridl 37971 df-prrngo 38008 df-dmn 38009 df-igen 38020 |
This theorem is referenced by: dmncan1 38036 |
Copyright terms: Public domain | W3C validator |