Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmnnzd Structured version   Visualization version   GIF version

Theorem dmnnzd 38069
Description: A domain has no zero-divisors (besides zero). (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
dmnnzd.1 𝐺 = (1st𝑅)
dmnnzd.2 𝐻 = (2nd𝑅)
dmnnzd.3 𝑋 = ran 𝐺
dmnnzd.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
dmnnzd ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐻𝐵) = 𝑍)) → (𝐴 = 𝑍𝐵 = 𝑍))

Proof of Theorem dmnnzd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmnnzd.1 . . . . . 6 𝐺 = (1st𝑅)
2 dmnnzd.2 . . . . . 6 𝐻 = (2nd𝑅)
3 dmnnzd.3 . . . . . 6 𝑋 = ran 𝐺
4 dmnnzd.4 . . . . . 6 𝑍 = (GId‘𝐺)
5 eqid 2729 . . . . . 6 (GId‘𝐻) = (GId‘𝐻)
61, 2, 3, 4, 5isdmn3 38068 . . . . 5 (𝑅 ∈ Dmn ↔ (𝑅 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍))))
76simp3bi 1147 . . . 4 (𝑅 ∈ Dmn → ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)))
8 oveq1 7394 . . . . . . 7 (𝑎 = 𝐴 → (𝑎𝐻𝑏) = (𝐴𝐻𝑏))
98eqeq1d 2731 . . . . . 6 (𝑎 = 𝐴 → ((𝑎𝐻𝑏) = 𝑍 ↔ (𝐴𝐻𝑏) = 𝑍))
10 eqeq1 2733 . . . . . . 7 (𝑎 = 𝐴 → (𝑎 = 𝑍𝐴 = 𝑍))
1110orbi1d 916 . . . . . 6 (𝑎 = 𝐴 → ((𝑎 = 𝑍𝑏 = 𝑍) ↔ (𝐴 = 𝑍𝑏 = 𝑍)))
129, 11imbi12d 344 . . . . 5 (𝑎 = 𝐴 → (((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)) ↔ ((𝐴𝐻𝑏) = 𝑍 → (𝐴 = 𝑍𝑏 = 𝑍))))
13 oveq2 7395 . . . . . . 7 (𝑏 = 𝐵 → (𝐴𝐻𝑏) = (𝐴𝐻𝐵))
1413eqeq1d 2731 . . . . . 6 (𝑏 = 𝐵 → ((𝐴𝐻𝑏) = 𝑍 ↔ (𝐴𝐻𝐵) = 𝑍))
15 eqeq1 2733 . . . . . . 7 (𝑏 = 𝐵 → (𝑏 = 𝑍𝐵 = 𝑍))
1615orbi2d 915 . . . . . 6 (𝑏 = 𝐵 → ((𝐴 = 𝑍𝑏 = 𝑍) ↔ (𝐴 = 𝑍𝐵 = 𝑍)))
1714, 16imbi12d 344 . . . . 5 (𝑏 = 𝐵 → (((𝐴𝐻𝑏) = 𝑍 → (𝐴 = 𝑍𝑏 = 𝑍)) ↔ ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍𝐵 = 𝑍))))
1812, 17rspc2v 3599 . . . 4 ((𝐴𝑋𝐵𝑋) → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)) → ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍𝐵 = 𝑍))))
197, 18syl5com 31 . . 3 (𝑅 ∈ Dmn → ((𝐴𝑋𝐵𝑋) → ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍𝐵 = 𝑍))))
2019expd 415 . 2 (𝑅 ∈ Dmn → (𝐴𝑋 → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍𝐵 = 𝑍)))))
21203imp2 1350 1 ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐻𝐵) = 𝑍)) → (𝐴 = 𝑍𝐵 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  ran crn 5639  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  GIdcgi 30419  CRingOpsccring 37987  Dmncdmn 38041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-1o 8434  df-en 8919  df-grpo 30422  df-gid 30423  df-ginv 30424  df-ablo 30474  df-ass 37837  df-exid 37839  df-mgmOLD 37843  df-sgrOLD 37855  df-mndo 37861  df-rngo 37889  df-com2 37984  df-crngo 37988  df-idl 38004  df-pridl 38005  df-prrngo 38042  df-dmn 38043  df-igen 38054
This theorem is referenced by:  dmncan1  38070
  Copyright terms: Public domain W3C validator