Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmnnzd Structured version   Visualization version   GIF version

Theorem dmnnzd 38099
Description: A domain has no zero-divisors (besides zero). (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
dmnnzd.1 𝐺 = (1st𝑅)
dmnnzd.2 𝐻 = (2nd𝑅)
dmnnzd.3 𝑋 = ran 𝐺
dmnnzd.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
dmnnzd ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐻𝐵) = 𝑍)) → (𝐴 = 𝑍𝐵 = 𝑍))

Proof of Theorem dmnnzd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmnnzd.1 . . . . . 6 𝐺 = (1st𝑅)
2 dmnnzd.2 . . . . . 6 𝐻 = (2nd𝑅)
3 dmnnzd.3 . . . . . 6 𝑋 = ran 𝐺
4 dmnnzd.4 . . . . . 6 𝑍 = (GId‘𝐺)
5 eqid 2735 . . . . . 6 (GId‘𝐻) = (GId‘𝐻)
61, 2, 3, 4, 5isdmn3 38098 . . . . 5 (𝑅 ∈ Dmn ↔ (𝑅 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍))))
76simp3bi 1147 . . . 4 (𝑅 ∈ Dmn → ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)))
8 oveq1 7412 . . . . . . 7 (𝑎 = 𝐴 → (𝑎𝐻𝑏) = (𝐴𝐻𝑏))
98eqeq1d 2737 . . . . . 6 (𝑎 = 𝐴 → ((𝑎𝐻𝑏) = 𝑍 ↔ (𝐴𝐻𝑏) = 𝑍))
10 eqeq1 2739 . . . . . . 7 (𝑎 = 𝐴 → (𝑎 = 𝑍𝐴 = 𝑍))
1110orbi1d 916 . . . . . 6 (𝑎 = 𝐴 → ((𝑎 = 𝑍𝑏 = 𝑍) ↔ (𝐴 = 𝑍𝑏 = 𝑍)))
129, 11imbi12d 344 . . . . 5 (𝑎 = 𝐴 → (((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)) ↔ ((𝐴𝐻𝑏) = 𝑍 → (𝐴 = 𝑍𝑏 = 𝑍))))
13 oveq2 7413 . . . . . . 7 (𝑏 = 𝐵 → (𝐴𝐻𝑏) = (𝐴𝐻𝐵))
1413eqeq1d 2737 . . . . . 6 (𝑏 = 𝐵 → ((𝐴𝐻𝑏) = 𝑍 ↔ (𝐴𝐻𝐵) = 𝑍))
15 eqeq1 2739 . . . . . . 7 (𝑏 = 𝐵 → (𝑏 = 𝑍𝐵 = 𝑍))
1615orbi2d 915 . . . . . 6 (𝑏 = 𝐵 → ((𝐴 = 𝑍𝑏 = 𝑍) ↔ (𝐴 = 𝑍𝐵 = 𝑍)))
1714, 16imbi12d 344 . . . . 5 (𝑏 = 𝐵 → (((𝐴𝐻𝑏) = 𝑍 → (𝐴 = 𝑍𝑏 = 𝑍)) ↔ ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍𝐵 = 𝑍))))
1812, 17rspc2v 3612 . . . 4 ((𝐴𝑋𝐵𝑋) → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍𝑏 = 𝑍)) → ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍𝐵 = 𝑍))))
197, 18syl5com 31 . . 3 (𝑅 ∈ Dmn → ((𝐴𝑋𝐵𝑋) → ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍𝐵 = 𝑍))))
2019expd 415 . 2 (𝑅 ∈ Dmn → (𝐴𝑋 → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍𝐵 = 𝑍)))))
21203imp2 1350 1 ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐻𝐵) = 𝑍)) → (𝐴 = 𝑍𝐵 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  ran crn 5655  cfv 6531  (class class class)co 7405  1st c1st 7986  2nd c2nd 7987  GIdcgi 30471  CRingOpsccring 38017  Dmncdmn 38071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-1o 8480  df-en 8960  df-grpo 30474  df-gid 30475  df-ginv 30476  df-ablo 30526  df-ass 37867  df-exid 37869  df-mgmOLD 37873  df-sgrOLD 37885  df-mndo 37891  df-rngo 37919  df-com2 38014  df-crngo 38018  df-idl 38034  df-pridl 38035  df-prrngo 38072  df-dmn 38073  df-igen 38084
This theorem is referenced by:  dmncan1  38100
  Copyright terms: Public domain W3C validator