| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmnnzd | Structured version Visualization version GIF version | ||
| Description: A domain has no zero-divisors (besides zero). (Contributed by Jeff Madsen, 19-Jun-2010.) |
| Ref | Expression |
|---|---|
| dmnnzd.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| dmnnzd.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| dmnnzd.3 | ⊢ 𝑋 = ran 𝐺 |
| dmnnzd.4 | ⊢ 𝑍 = (GId‘𝐺) |
| Ref | Expression |
|---|---|
| dmnnzd | ⊢ ((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) = 𝑍)) → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmnnzd.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | dmnnzd.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 3 | dmnnzd.3 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
| 4 | dmnnzd.4 | . . . . . 6 ⊢ 𝑍 = (GId‘𝐺) | |
| 5 | eqid 2731 | . . . . . 6 ⊢ (GId‘𝐻) = (GId‘𝐻) | |
| 6 | 1, 2, 3, 4, 5 | isdmn3 38113 | . . . . 5 ⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍 ∨ 𝑏 = 𝑍)))) |
| 7 | 6 | simp3bi 1147 | . . . 4 ⊢ (𝑅 ∈ Dmn → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍 ∨ 𝑏 = 𝑍))) |
| 8 | oveq1 7353 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑎𝐻𝑏) = (𝐴𝐻𝑏)) | |
| 9 | 8 | eqeq1d 2733 | . . . . . 6 ⊢ (𝑎 = 𝐴 → ((𝑎𝐻𝑏) = 𝑍 ↔ (𝐴𝐻𝑏) = 𝑍)) |
| 10 | eqeq1 2735 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑎 = 𝑍 ↔ 𝐴 = 𝑍)) | |
| 11 | 10 | orbi1d 916 | . . . . . 6 ⊢ (𝑎 = 𝐴 → ((𝑎 = 𝑍 ∨ 𝑏 = 𝑍) ↔ (𝐴 = 𝑍 ∨ 𝑏 = 𝑍))) |
| 12 | 9, 11 | imbi12d 344 | . . . . 5 ⊢ (𝑎 = 𝐴 → (((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍 ∨ 𝑏 = 𝑍)) ↔ ((𝐴𝐻𝑏) = 𝑍 → (𝐴 = 𝑍 ∨ 𝑏 = 𝑍)))) |
| 13 | oveq2 7354 | . . . . . . 7 ⊢ (𝑏 = 𝐵 → (𝐴𝐻𝑏) = (𝐴𝐻𝐵)) | |
| 14 | 13 | eqeq1d 2733 | . . . . . 6 ⊢ (𝑏 = 𝐵 → ((𝐴𝐻𝑏) = 𝑍 ↔ (𝐴𝐻𝐵) = 𝑍)) |
| 15 | eqeq1 2735 | . . . . . . 7 ⊢ (𝑏 = 𝐵 → (𝑏 = 𝑍 ↔ 𝐵 = 𝑍)) | |
| 16 | 15 | orbi2d 915 | . . . . . 6 ⊢ (𝑏 = 𝐵 → ((𝐴 = 𝑍 ∨ 𝑏 = 𝑍) ↔ (𝐴 = 𝑍 ∨ 𝐵 = 𝑍))) |
| 17 | 14, 16 | imbi12d 344 | . . . . 5 ⊢ (𝑏 = 𝐵 → (((𝐴𝐻𝑏) = 𝑍 → (𝐴 = 𝑍 ∨ 𝑏 = 𝑍)) ↔ ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍)))) |
| 18 | 12, 17 | rspc2v 3583 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍 ∨ 𝑏 = 𝑍)) → ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍)))) |
| 19 | 7, 18 | syl5com 31 | . . 3 ⊢ (𝑅 ∈ Dmn → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍)))) |
| 20 | 19 | expd 415 | . 2 ⊢ (𝑅 ∈ Dmn → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍))))) |
| 21 | 20 | 3imp2 1350 | 1 ⊢ ((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) = 𝑍)) → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ran crn 5615 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 GIdcgi 30470 CRingOpsccring 38032 Dmncdmn 38086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-1o 8385 df-en 8870 df-grpo 30473 df-gid 30474 df-ginv 30475 df-ablo 30525 df-ass 37882 df-exid 37884 df-mgmOLD 37888 df-sgrOLD 37900 df-mndo 37906 df-rngo 37934 df-com2 38029 df-crngo 38033 df-idl 38049 df-pridl 38050 df-prrngo 38087 df-dmn 38088 df-igen 38099 |
| This theorem is referenced by: dmncan1 38115 |
| Copyright terms: Public domain | W3C validator |