![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmnnzd | Structured version Visualization version GIF version |
Description: A domain has no zero-divisors (besides zero). (Contributed by Jeff Madsen, 19-Jun-2010.) |
Ref | Expression |
---|---|
dmnnzd.1 | ⊢ 𝐺 = (1st ‘𝑅) |
dmnnzd.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
dmnnzd.3 | ⊢ 𝑋 = ran 𝐺 |
dmnnzd.4 | ⊢ 𝑍 = (GId‘𝐺) |
Ref | Expression |
---|---|
dmnnzd | ⊢ ((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) = 𝑍)) → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmnnzd.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | dmnnzd.2 | . . . . . 6 ⊢ 𝐻 = (2nd ‘𝑅) | |
3 | dmnnzd.3 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
4 | dmnnzd.4 | . . . . . 6 ⊢ 𝑍 = (GId‘𝐺) | |
5 | eqid 2726 | . . . . . 6 ⊢ (GId‘𝐻) = (GId‘𝐻) | |
6 | 1, 2, 3, 4, 5 | isdmn3 37777 | . . . . 5 ⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ CRingOps ∧ (GId‘𝐻) ≠ 𝑍 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍 ∨ 𝑏 = 𝑍)))) |
7 | 6 | simp3bi 1144 | . . . 4 ⊢ (𝑅 ∈ Dmn → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍 ∨ 𝑏 = 𝑍))) |
8 | oveq1 7433 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑎𝐻𝑏) = (𝐴𝐻𝑏)) | |
9 | 8 | eqeq1d 2728 | . . . . . 6 ⊢ (𝑎 = 𝐴 → ((𝑎𝐻𝑏) = 𝑍 ↔ (𝐴𝐻𝑏) = 𝑍)) |
10 | eqeq1 2730 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (𝑎 = 𝑍 ↔ 𝐴 = 𝑍)) | |
11 | 10 | orbi1d 914 | . . . . . 6 ⊢ (𝑎 = 𝐴 → ((𝑎 = 𝑍 ∨ 𝑏 = 𝑍) ↔ (𝐴 = 𝑍 ∨ 𝑏 = 𝑍))) |
12 | 9, 11 | imbi12d 343 | . . . . 5 ⊢ (𝑎 = 𝐴 → (((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍 ∨ 𝑏 = 𝑍)) ↔ ((𝐴𝐻𝑏) = 𝑍 → (𝐴 = 𝑍 ∨ 𝑏 = 𝑍)))) |
13 | oveq2 7434 | . . . . . . 7 ⊢ (𝑏 = 𝐵 → (𝐴𝐻𝑏) = (𝐴𝐻𝐵)) | |
14 | 13 | eqeq1d 2728 | . . . . . 6 ⊢ (𝑏 = 𝐵 → ((𝐴𝐻𝑏) = 𝑍 ↔ (𝐴𝐻𝐵) = 𝑍)) |
15 | eqeq1 2730 | . . . . . . 7 ⊢ (𝑏 = 𝐵 → (𝑏 = 𝑍 ↔ 𝐵 = 𝑍)) | |
16 | 15 | orbi2d 913 | . . . . . 6 ⊢ (𝑏 = 𝐵 → ((𝐴 = 𝑍 ∨ 𝑏 = 𝑍) ↔ (𝐴 = 𝑍 ∨ 𝐵 = 𝑍))) |
17 | 14, 16 | imbi12d 343 | . . . . 5 ⊢ (𝑏 = 𝐵 → (((𝐴𝐻𝑏) = 𝑍 → (𝐴 = 𝑍 ∨ 𝑏 = 𝑍)) ↔ ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍)))) |
18 | 12, 17 | rspc2v 3619 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍 ∨ 𝑏 = 𝑍)) → ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍)))) |
19 | 7, 18 | syl5com 31 | . . 3 ⊢ (𝑅 ∈ Dmn → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍)))) |
20 | 19 | expd 414 | . 2 ⊢ (𝑅 ∈ Dmn → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐵) = 𝑍 → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍))))) |
21 | 20 | 3imp2 1346 | 1 ⊢ ((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) = 𝑍)) → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 845 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∀wral 3051 ran crn 5685 ‘cfv 6556 (class class class)co 7426 1st c1st 8003 2nd c2nd 8004 GIdcgi 30426 CRingOpsccring 37696 Dmncdmn 37750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5292 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-int 4957 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-id 5582 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-1st 8005 df-2nd 8006 df-1o 8498 df-en 8977 df-grpo 30429 df-gid 30430 df-ginv 30431 df-ablo 30481 df-ass 37546 df-exid 37548 df-mgmOLD 37552 df-sgrOLD 37564 df-mndo 37570 df-rngo 37598 df-com2 37693 df-crngo 37697 df-idl 37713 df-pridl 37714 df-prrngo 37751 df-dmn 37752 df-igen 37763 |
This theorem is referenced by: dmncan1 37779 |
Copyright terms: Public domain | W3C validator |