Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem5 Structured version   Visualization version   GIF version

Theorem paddasslem5 37838
Description: Lemma for paddass 37852. Show 𝑠𝑧 by contradiction. (Contributed by NM, 8-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l = (le‘𝐾)
paddasslem.j = (join‘𝐾)
paddasslem.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
paddasslem5 (((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦))) → 𝑠𝑧)

Proof of Theorem paddasslem5
StepHypRef Expression
1 breq1 5077 . . . . . . . . 9 (𝑠 = 𝑧 → (𝑠 (𝑥 𝑦) ↔ 𝑧 (𝑥 𝑦)))
21biimpac 479 . . . . . . . 8 ((𝑠 (𝑥 𝑦) ∧ 𝑠 = 𝑧) → 𝑧 (𝑥 𝑦))
3 eqid 2738 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
4 paddasslem.l . . . . . . . . . 10 = (le‘𝐾)
5 simpll1 1211 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝐾 ∈ HL)
65hllatd 37378 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝐾 ∈ Lat)
7 simpll2 1212 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑟𝐴)
8 paddasslem.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
93, 8atbase 37303 . . . . . . . . . . 11 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
107, 9syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑟 ∈ (Base‘𝐾))
11 simp32 1209 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → 𝑦𝐴)
1211ad2antrr 723 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑦𝐴)
133, 8atbase 37303 . . . . . . . . . . . 12 (𝑦𝐴𝑦 ∈ (Base‘𝐾))
1412, 13syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑦 ∈ (Base‘𝐾))
15 simp33 1210 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → 𝑧𝐴)
1615ad2antrr 723 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑧𝐴)
173, 8atbase 37303 . . . . . . . . . . . 12 (𝑧𝐴𝑧 ∈ (Base‘𝐾))
1816, 17syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑧 ∈ (Base‘𝐾))
19 paddasslem.j . . . . . . . . . . . 12 = (join‘𝐾)
203, 19latjcl 18157 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑦 𝑧) ∈ (Base‘𝐾))
216, 14, 18, 20syl3anc 1370 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → (𝑦 𝑧) ∈ (Base‘𝐾))
22 simp31 1208 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → 𝑥𝐴)
2322ad2antrr 723 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑥𝐴)
243, 8atbase 37303 . . . . . . . . . . . 12 (𝑥𝐴𝑥 ∈ (Base‘𝐾))
2523, 24syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑥 ∈ (Base‘𝐾))
263, 19latjcl 18157 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥 𝑦) ∈ (Base‘𝐾))
276, 25, 14, 26syl3anc 1370 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → (𝑥 𝑦) ∈ (Base‘𝐾))
28 simplr 766 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑟 (𝑦 𝑧))
294, 19, 8hlatlej2 37390 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑥𝐴𝑦𝐴) → 𝑦 (𝑥 𝑦))
305, 23, 12, 29syl3anc 1370 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑦 (𝑥 𝑦))
31 simpr 485 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑧 (𝑥 𝑦))
323, 4, 19latjle12 18168 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾) ∧ (𝑥 𝑦) ∈ (Base‘𝐾))) → ((𝑦 (𝑥 𝑦) ∧ 𝑧 (𝑥 𝑦)) ↔ (𝑦 𝑧) (𝑥 𝑦)))
3332biimpd 228 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾) ∧ (𝑥 𝑦) ∈ (Base‘𝐾))) → ((𝑦 (𝑥 𝑦) ∧ 𝑧 (𝑥 𝑦)) → (𝑦 𝑧) (𝑥 𝑦)))
346, 14, 18, 27, 33syl13anc 1371 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → ((𝑦 (𝑥 𝑦) ∧ 𝑧 (𝑥 𝑦)) → (𝑦 𝑧) (𝑥 𝑦)))
3530, 31, 34mp2and 696 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → (𝑦 𝑧) (𝑥 𝑦))
363, 4, 6, 10, 21, 27, 28, 35lattrd 18164 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑟 (𝑥 𝑦))
3736ex 413 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) → (𝑧 (𝑥 𝑦) → 𝑟 (𝑥 𝑦)))
382, 37syl5 34 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) → ((𝑠 (𝑥 𝑦) ∧ 𝑠 = 𝑧) → 𝑟 (𝑥 𝑦)))
3938expdimp 453 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑠 (𝑥 𝑦)) → (𝑠 = 𝑧𝑟 (𝑥 𝑦)))
4039necon3bd 2957 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑠 (𝑥 𝑦)) → (¬ 𝑟 (𝑥 𝑦) → 𝑠𝑧))
4140exp31 420 . . . 4 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑟 (𝑦 𝑧) → (𝑠 (𝑥 𝑦) → (¬ 𝑟 (𝑥 𝑦) → 𝑠𝑧))))
4241com23 86 . . 3 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑠 (𝑥 𝑦) → (𝑟 (𝑦 𝑧) → (¬ 𝑟 (𝑥 𝑦) → 𝑠𝑧))))
4342com24 95 . 2 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (¬ 𝑟 (𝑥 𝑦) → (𝑟 (𝑦 𝑧) → (𝑠 (𝑥 𝑦) → 𝑠𝑧))))
44433imp2 1348 1 (((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦))) → 𝑠𝑧)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  Latclat 18149  Atomscatm 37277  HLchlt 37364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-poset 18031  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-lat 18150  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365
This theorem is referenced by:  paddasslem7  37840
  Copyright terms: Public domain W3C validator