Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem5 Structured version   Visualization version   GIF version

Theorem paddasslem5 39807
Description: Lemma for paddass 39821. Show 𝑠𝑧 by contradiction. (Contributed by NM, 8-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l = (le‘𝐾)
paddasslem.j = (join‘𝐾)
paddasslem.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
paddasslem5 (((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦))) → 𝑠𝑧)

Proof of Theorem paddasslem5
StepHypRef Expression
1 breq1 5151 . . . . . . . . 9 (𝑠 = 𝑧 → (𝑠 (𝑥 𝑦) ↔ 𝑧 (𝑥 𝑦)))
21biimpac 478 . . . . . . . 8 ((𝑠 (𝑥 𝑦) ∧ 𝑠 = 𝑧) → 𝑧 (𝑥 𝑦))
3 eqid 2735 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
4 paddasslem.l . . . . . . . . . 10 = (le‘𝐾)
5 simpll1 1211 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝐾 ∈ HL)
65hllatd 39346 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝐾 ∈ Lat)
7 simpll2 1212 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑟𝐴)
8 paddasslem.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
93, 8atbase 39271 . . . . . . . . . . 11 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
107, 9syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑟 ∈ (Base‘𝐾))
11 simp32 1209 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → 𝑦𝐴)
1211ad2antrr 726 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑦𝐴)
133, 8atbase 39271 . . . . . . . . . . . 12 (𝑦𝐴𝑦 ∈ (Base‘𝐾))
1412, 13syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑦 ∈ (Base‘𝐾))
15 simp33 1210 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → 𝑧𝐴)
1615ad2antrr 726 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑧𝐴)
173, 8atbase 39271 . . . . . . . . . . . 12 (𝑧𝐴𝑧 ∈ (Base‘𝐾))
1816, 17syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑧 ∈ (Base‘𝐾))
19 paddasslem.j . . . . . . . . . . . 12 = (join‘𝐾)
203, 19latjcl 18497 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑦 𝑧) ∈ (Base‘𝐾))
216, 14, 18, 20syl3anc 1370 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → (𝑦 𝑧) ∈ (Base‘𝐾))
22 simp31 1208 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → 𝑥𝐴)
2322ad2antrr 726 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑥𝐴)
243, 8atbase 39271 . . . . . . . . . . . 12 (𝑥𝐴𝑥 ∈ (Base‘𝐾))
2523, 24syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑥 ∈ (Base‘𝐾))
263, 19latjcl 18497 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥 𝑦) ∈ (Base‘𝐾))
276, 25, 14, 26syl3anc 1370 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → (𝑥 𝑦) ∈ (Base‘𝐾))
28 simplr 769 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑟 (𝑦 𝑧))
294, 19, 8hlatlej2 39358 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑥𝐴𝑦𝐴) → 𝑦 (𝑥 𝑦))
305, 23, 12, 29syl3anc 1370 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑦 (𝑥 𝑦))
31 simpr 484 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑧 (𝑥 𝑦))
323, 4, 19latjle12 18508 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾) ∧ (𝑥 𝑦) ∈ (Base‘𝐾))) → ((𝑦 (𝑥 𝑦) ∧ 𝑧 (𝑥 𝑦)) ↔ (𝑦 𝑧) (𝑥 𝑦)))
3332biimpd 229 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾) ∧ (𝑥 𝑦) ∈ (Base‘𝐾))) → ((𝑦 (𝑥 𝑦) ∧ 𝑧 (𝑥 𝑦)) → (𝑦 𝑧) (𝑥 𝑦)))
346, 14, 18, 27, 33syl13anc 1371 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → ((𝑦 (𝑥 𝑦) ∧ 𝑧 (𝑥 𝑦)) → (𝑦 𝑧) (𝑥 𝑦)))
3530, 31, 34mp2and 699 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → (𝑦 𝑧) (𝑥 𝑦))
363, 4, 6, 10, 21, 27, 28, 35lattrd 18504 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑟 (𝑥 𝑦))
3736ex 412 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) → (𝑧 (𝑥 𝑦) → 𝑟 (𝑥 𝑦)))
382, 37syl5 34 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) → ((𝑠 (𝑥 𝑦) ∧ 𝑠 = 𝑧) → 𝑟 (𝑥 𝑦)))
3938expdimp 452 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑠 (𝑥 𝑦)) → (𝑠 = 𝑧𝑟 (𝑥 𝑦)))
4039necon3bd 2952 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑠 (𝑥 𝑦)) → (¬ 𝑟 (𝑥 𝑦) → 𝑠𝑧))
4140exp31 419 . . . 4 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑟 (𝑦 𝑧) → (𝑠 (𝑥 𝑦) → (¬ 𝑟 (𝑥 𝑦) → 𝑠𝑧))))
4241com23 86 . . 3 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑠 (𝑥 𝑦) → (𝑟 (𝑦 𝑧) → (¬ 𝑟 (𝑥 𝑦) → 𝑠𝑧))))
4342com24 95 . 2 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (¬ 𝑟 (𝑥 𝑦) → (𝑟 (𝑦 𝑧) → (𝑠 (𝑥 𝑦) → 𝑠𝑧))))
44433imp2 1348 1 (((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦))) → 𝑠𝑧)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  lecple 17305  joincjn 18369  Latclat 18489  Atomscatm 39245  HLchlt 39332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-poset 18371  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-lat 18490  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333
This theorem is referenced by:  paddasslem7  39809
  Copyright terms: Public domain W3C validator