Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem5 Structured version   Visualization version   GIF version

Theorem paddasslem5 36975
Description: Lemma for paddass 36989. Show 𝑠𝑧 by contradiction. (Contributed by NM, 8-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l = (le‘𝐾)
paddasslem.j = (join‘𝐾)
paddasslem.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
paddasslem5 (((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦))) → 𝑠𝑧)

Proof of Theorem paddasslem5
StepHypRef Expression
1 breq1 5069 . . . . . . . . 9 (𝑠 = 𝑧 → (𝑠 (𝑥 𝑦) ↔ 𝑧 (𝑥 𝑦)))
21biimpac 481 . . . . . . . 8 ((𝑠 (𝑥 𝑦) ∧ 𝑠 = 𝑧) → 𝑧 (𝑥 𝑦))
3 eqid 2821 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
4 paddasslem.l . . . . . . . . . 10 = (le‘𝐾)
5 simpll1 1208 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝐾 ∈ HL)
65hllatd 36515 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝐾 ∈ Lat)
7 simpll2 1209 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑟𝐴)
8 paddasslem.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
93, 8atbase 36440 . . . . . . . . . . 11 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
107, 9syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑟 ∈ (Base‘𝐾))
11 simp32 1206 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → 𝑦𝐴)
1211ad2antrr 724 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑦𝐴)
133, 8atbase 36440 . . . . . . . . . . . 12 (𝑦𝐴𝑦 ∈ (Base‘𝐾))
1412, 13syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑦 ∈ (Base‘𝐾))
15 simp33 1207 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → 𝑧𝐴)
1615ad2antrr 724 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑧𝐴)
173, 8atbase 36440 . . . . . . . . . . . 12 (𝑧𝐴𝑧 ∈ (Base‘𝐾))
1816, 17syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑧 ∈ (Base‘𝐾))
19 paddasslem.j . . . . . . . . . . . 12 = (join‘𝐾)
203, 19latjcl 17661 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑦 𝑧) ∈ (Base‘𝐾))
216, 14, 18, 20syl3anc 1367 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → (𝑦 𝑧) ∈ (Base‘𝐾))
22 simp31 1205 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → 𝑥𝐴)
2322ad2antrr 724 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑥𝐴)
243, 8atbase 36440 . . . . . . . . . . . 12 (𝑥𝐴𝑥 ∈ (Base‘𝐾))
2523, 24syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑥 ∈ (Base‘𝐾))
263, 19latjcl 17661 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥 𝑦) ∈ (Base‘𝐾))
276, 25, 14, 26syl3anc 1367 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → (𝑥 𝑦) ∈ (Base‘𝐾))
28 simplr 767 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑟 (𝑦 𝑧))
294, 19, 8hlatlej2 36527 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑥𝐴𝑦𝐴) → 𝑦 (𝑥 𝑦))
305, 23, 12, 29syl3anc 1367 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑦 (𝑥 𝑦))
31 simpr 487 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑧 (𝑥 𝑦))
323, 4, 19latjle12 17672 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾) ∧ (𝑥 𝑦) ∈ (Base‘𝐾))) → ((𝑦 (𝑥 𝑦) ∧ 𝑧 (𝑥 𝑦)) ↔ (𝑦 𝑧) (𝑥 𝑦)))
3332biimpd 231 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾) ∧ (𝑥 𝑦) ∈ (Base‘𝐾))) → ((𝑦 (𝑥 𝑦) ∧ 𝑧 (𝑥 𝑦)) → (𝑦 𝑧) (𝑥 𝑦)))
346, 14, 18, 27, 33syl13anc 1368 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → ((𝑦 (𝑥 𝑦) ∧ 𝑧 (𝑥 𝑦)) → (𝑦 𝑧) (𝑥 𝑦)))
3530, 31, 34mp2and 697 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → (𝑦 𝑧) (𝑥 𝑦))
363, 4, 6, 10, 21, 27, 28, 35lattrd 17668 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑟 (𝑥 𝑦))
3736ex 415 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) → (𝑧 (𝑥 𝑦) → 𝑟 (𝑥 𝑦)))
382, 37syl5 34 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) → ((𝑠 (𝑥 𝑦) ∧ 𝑠 = 𝑧) → 𝑟 (𝑥 𝑦)))
3938expdimp 455 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑠 (𝑥 𝑦)) → (𝑠 = 𝑧𝑟 (𝑥 𝑦)))
4039necon3bd 3030 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑠 (𝑥 𝑦)) → (¬ 𝑟 (𝑥 𝑦) → 𝑠𝑧))
4140exp31 422 . . . 4 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑟 (𝑦 𝑧) → (𝑠 (𝑥 𝑦) → (¬ 𝑟 (𝑥 𝑦) → 𝑠𝑧))))
4241com23 86 . . 3 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑠 (𝑥 𝑦) → (𝑟 (𝑦 𝑧) → (¬ 𝑟 (𝑥 𝑦) → 𝑠𝑧))))
4342com24 95 . 2 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (¬ 𝑟 (𝑥 𝑦) → (𝑟 (𝑦 𝑧) → (𝑠 (𝑥 𝑦) → 𝑠𝑧))))
44433imp2 1345 1 (((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦))) → 𝑠𝑧)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  cfv 6355  (class class class)co 7156  Basecbs 16483  lecple 16572  joincjn 17554  Latclat 17655  Atomscatm 36414  HLchlt 36501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-poset 17556  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-lat 17656  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502
This theorem is referenced by:  paddasslem7  36977
  Copyright terms: Public domain W3C validator