Proof of Theorem paddasslem5
Step | Hyp | Ref
| Expression |
1 | | breq1 5076 |
. . . . . . . . 9
⊢ (𝑠 = 𝑧 → (𝑠 ≤ (𝑥 ∨ 𝑦) ↔ 𝑧 ≤ (𝑥 ∨ 𝑦))) |
2 | 1 | biimpac 479 |
. . . . . . . 8
⊢ ((𝑠 ≤ (𝑥 ∨ 𝑦) ∧ 𝑠 = 𝑧) → 𝑧 ≤ (𝑥 ∨ 𝑦)) |
3 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝐾) =
(Base‘𝐾) |
4 | | paddasslem.l |
. . . . . . . . . 10
⊢ ≤ =
(le‘𝐾) |
5 | | simpll1 1211 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) → 𝐾 ∈ HL) |
6 | 5 | hllatd 37386 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) → 𝐾 ∈ Lat) |
7 | | simpll2 1212 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) → 𝑟 ∈ 𝐴) |
8 | | paddasslem.a |
. . . . . . . . . . . 12
⊢ 𝐴 = (Atoms‘𝐾) |
9 | 3, 8 | atbase 37311 |
. . . . . . . . . . 11
⊢ (𝑟 ∈ 𝐴 → 𝑟 ∈ (Base‘𝐾)) |
10 | 7, 9 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) → 𝑟 ∈ (Base‘𝐾)) |
11 | | simp32 1209 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑦 ∈ 𝐴) |
12 | 11 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) → 𝑦 ∈ 𝐴) |
13 | 3, 8 | atbase 37311 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ (Base‘𝐾)) |
14 | 12, 13 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) → 𝑦 ∈ (Base‘𝐾)) |
15 | | simp33 1210 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑧 ∈ 𝐴) |
16 | 15 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) → 𝑧 ∈ 𝐴) |
17 | 3, 8 | atbase 37311 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ 𝐴 → 𝑧 ∈ (Base‘𝐾)) |
18 | 16, 17 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) → 𝑧 ∈ (Base‘𝐾)) |
19 | | paddasslem.j |
. . . . . . . . . . . 12
⊢ ∨ =
(join‘𝐾) |
20 | 3, 19 | latjcl 18167 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑦 ∨ 𝑧) ∈ (Base‘𝐾)) |
21 | 6, 14, 18, 20 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) → (𝑦 ∨ 𝑧) ∈ (Base‘𝐾)) |
22 | | simp31 1208 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑥 ∈ 𝐴) |
23 | 22 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) → 𝑥 ∈ 𝐴) |
24 | 3, 8 | atbase 37311 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ (Base‘𝐾)) |
25 | 23, 24 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) → 𝑥 ∈ (Base‘𝐾)) |
26 | 3, 19 | latjcl 18167 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥 ∨ 𝑦) ∈ (Base‘𝐾)) |
27 | 6, 25, 14, 26 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) → (𝑥 ∨ 𝑦) ∈ (Base‘𝐾)) |
28 | | simplr 766 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) → 𝑟 ≤ (𝑦 ∨ 𝑧)) |
29 | 4, 19, 8 | hlatlej2 37398 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑦 ≤ (𝑥 ∨ 𝑦)) |
30 | 5, 23, 12, 29 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) → 𝑦 ≤ (𝑥 ∨ 𝑦)) |
31 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) → 𝑧 ≤ (𝑥 ∨ 𝑦)) |
32 | 3, 4, 19 | latjle12 18178 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Lat ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾) ∧ (𝑥 ∨ 𝑦) ∈ (Base‘𝐾))) → ((𝑦 ≤ (𝑥 ∨ 𝑦) ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) ↔ (𝑦 ∨ 𝑧) ≤ (𝑥 ∨ 𝑦))) |
33 | 32 | biimpd 228 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Lat ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾) ∧ (𝑥 ∨ 𝑦) ∈ (Base‘𝐾))) → ((𝑦 ≤ (𝑥 ∨ 𝑦) ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) → (𝑦 ∨ 𝑧) ≤ (𝑥 ∨ 𝑦))) |
34 | 6, 14, 18, 27, 33 | syl13anc 1371 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) → ((𝑦 ≤ (𝑥 ∨ 𝑦) ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) → (𝑦 ∨ 𝑧) ≤ (𝑥 ∨ 𝑦))) |
35 | 30, 31, 34 | mp2and 696 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) → (𝑦 ∨ 𝑧) ≤ (𝑥 ∨ 𝑦)) |
36 | 3, 4, 6, 10, 21, 27, 28, 35 | lattrd 18174 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ 𝑧 ≤ (𝑥 ∨ 𝑦)) → 𝑟 ≤ (𝑥 ∨ 𝑦)) |
37 | 36 | ex 413 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) → (𝑧 ≤ (𝑥 ∨ 𝑦) → 𝑟 ≤ (𝑥 ∨ 𝑦))) |
38 | 2, 37 | syl5 34 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) → ((𝑠 ≤ (𝑥 ∨ 𝑦) ∧ 𝑠 = 𝑧) → 𝑟 ≤ (𝑥 ∨ 𝑦))) |
39 | 38 | expdimp 453 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ 𝑠 ≤ (𝑥 ∨ 𝑦)) → (𝑠 = 𝑧 → 𝑟 ≤ (𝑥 ∨ 𝑦))) |
40 | 39 | necon3bd 2957 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) ∧ 𝑠 ≤ (𝑥 ∨ 𝑦)) → (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) → 𝑠 ≠ 𝑧)) |
41 | 40 | exp31 420 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑟 ≤ (𝑦 ∨ 𝑧) → (𝑠 ≤ (𝑥 ∨ 𝑦) → (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) → 𝑠 ≠ 𝑧)))) |
42 | 41 | com23 86 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑠 ≤ (𝑥 ∨ 𝑦) → (𝑟 ≤ (𝑦 ∨ 𝑧) → (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) → 𝑠 ≠ 𝑧)))) |
43 | 42 | com24 95 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) → (𝑟 ≤ (𝑦 ∨ 𝑧) → (𝑠 ≤ (𝑥 ∨ 𝑦) → 𝑠 ≠ 𝑧)))) |
44 | 43 | 3imp2 1348 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧) ∧ 𝑠 ≤ (𝑥 ∨ 𝑦))) → 𝑠 ≠ 𝑧) |