Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem5 Structured version   Visualization version   GIF version

Theorem paddasslem5 39781
Description: Lemma for paddass 39795. Show 𝑠𝑧 by contradiction. (Contributed by NM, 8-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l = (le‘𝐾)
paddasslem.j = (join‘𝐾)
paddasslem.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
paddasslem5 (((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦))) → 𝑠𝑧)

Proof of Theorem paddasslem5
StepHypRef Expression
1 breq1 5169 . . . . . . . . 9 (𝑠 = 𝑧 → (𝑠 (𝑥 𝑦) ↔ 𝑧 (𝑥 𝑦)))
21biimpac 478 . . . . . . . 8 ((𝑠 (𝑥 𝑦) ∧ 𝑠 = 𝑧) → 𝑧 (𝑥 𝑦))
3 eqid 2740 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
4 paddasslem.l . . . . . . . . . 10 = (le‘𝐾)
5 simpll1 1212 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝐾 ∈ HL)
65hllatd 39320 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝐾 ∈ Lat)
7 simpll2 1213 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑟𝐴)
8 paddasslem.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
93, 8atbase 39245 . . . . . . . . . . 11 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
107, 9syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑟 ∈ (Base‘𝐾))
11 simp32 1210 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → 𝑦𝐴)
1211ad2antrr 725 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑦𝐴)
133, 8atbase 39245 . . . . . . . . . . . 12 (𝑦𝐴𝑦 ∈ (Base‘𝐾))
1412, 13syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑦 ∈ (Base‘𝐾))
15 simp33 1211 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → 𝑧𝐴)
1615ad2antrr 725 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑧𝐴)
173, 8atbase 39245 . . . . . . . . . . . 12 (𝑧𝐴𝑧 ∈ (Base‘𝐾))
1816, 17syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑧 ∈ (Base‘𝐾))
19 paddasslem.j . . . . . . . . . . . 12 = (join‘𝐾)
203, 19latjcl 18509 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑦 𝑧) ∈ (Base‘𝐾))
216, 14, 18, 20syl3anc 1371 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → (𝑦 𝑧) ∈ (Base‘𝐾))
22 simp31 1209 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → 𝑥𝐴)
2322ad2antrr 725 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑥𝐴)
243, 8atbase 39245 . . . . . . . . . . . 12 (𝑥𝐴𝑥 ∈ (Base‘𝐾))
2523, 24syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑥 ∈ (Base‘𝐾))
263, 19latjcl 18509 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥 𝑦) ∈ (Base‘𝐾))
276, 25, 14, 26syl3anc 1371 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → (𝑥 𝑦) ∈ (Base‘𝐾))
28 simplr 768 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑟 (𝑦 𝑧))
294, 19, 8hlatlej2 39332 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑥𝐴𝑦𝐴) → 𝑦 (𝑥 𝑦))
305, 23, 12, 29syl3anc 1371 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑦 (𝑥 𝑦))
31 simpr 484 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑧 (𝑥 𝑦))
323, 4, 19latjle12 18520 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾) ∧ (𝑥 𝑦) ∈ (Base‘𝐾))) → ((𝑦 (𝑥 𝑦) ∧ 𝑧 (𝑥 𝑦)) ↔ (𝑦 𝑧) (𝑥 𝑦)))
3332biimpd 229 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾) ∧ (𝑥 𝑦) ∈ (Base‘𝐾))) → ((𝑦 (𝑥 𝑦) ∧ 𝑧 (𝑥 𝑦)) → (𝑦 𝑧) (𝑥 𝑦)))
346, 14, 18, 27, 33syl13anc 1372 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → ((𝑦 (𝑥 𝑦) ∧ 𝑧 (𝑥 𝑦)) → (𝑦 𝑧) (𝑥 𝑦)))
3530, 31, 34mp2and 698 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → (𝑦 𝑧) (𝑥 𝑦))
363, 4, 6, 10, 21, 27, 28, 35lattrd 18516 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑧 (𝑥 𝑦)) → 𝑟 (𝑥 𝑦))
3736ex 412 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) → (𝑧 (𝑥 𝑦) → 𝑟 (𝑥 𝑦)))
382, 37syl5 34 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) → ((𝑠 (𝑥 𝑦) ∧ 𝑠 = 𝑧) → 𝑟 (𝑥 𝑦)))
3938expdimp 452 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑠 (𝑥 𝑦)) → (𝑠 = 𝑧𝑟 (𝑥 𝑦)))
4039necon3bd 2960 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ 𝑟 (𝑦 𝑧)) ∧ 𝑠 (𝑥 𝑦)) → (¬ 𝑟 (𝑥 𝑦) → 𝑠𝑧))
4140exp31 419 . . . 4 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑟 (𝑦 𝑧) → (𝑠 (𝑥 𝑦) → (¬ 𝑟 (𝑥 𝑦) → 𝑠𝑧))))
4241com23 86 . . 3 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑠 (𝑥 𝑦) → (𝑟 (𝑦 𝑧) → (¬ 𝑟 (𝑥 𝑦) → 𝑠𝑧))))
4342com24 95 . 2 ((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (¬ 𝑟 (𝑥 𝑦) → (𝑟 (𝑦 𝑧) → (𝑠 (𝑥 𝑦) → 𝑠𝑧))))
44433imp2 1349 1 (((𝐾 ∈ HL ∧ 𝑟𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧) ∧ 𝑠 (𝑥 𝑦))) → 𝑠𝑧)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  Latclat 18501  Atomscatm 39219  HLchlt 39306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-poset 18383  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-lat 18502  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307
This theorem is referenced by:  paddasslem7  39783
  Copyright terms: Public domain W3C validator