Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pridlc | Structured version Visualization version GIF version |
Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
Ref | Expression |
---|---|
ispridlc.1 | ⊢ 𝐺 = (1st ‘𝑅) |
ispridlc.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
ispridlc.3 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
pridlc | ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ispridlc.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | ispridlc.2 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
3 | ispridlc.3 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
4 | 1, 2, 3 | ispridlc 36155 | . . . 4 ⊢ (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))) |
5 | 4 | biimpa 476 | . . 3 ⊢ ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) |
6 | 5 | simp3d 1142 | . 2 ⊢ ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) |
7 | oveq1 7262 | . . . . . . . 8 ⊢ (𝑎 = 𝐴 → (𝑎𝐻𝑏) = (𝐴𝐻𝑏)) | |
8 | 7 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → ((𝑎𝐻𝑏) ∈ 𝑃 ↔ (𝐴𝐻𝑏) ∈ 𝑃)) |
9 | eleq1 2826 | . . . . . . . 8 ⊢ (𝑎 = 𝐴 → (𝑎 ∈ 𝑃 ↔ 𝐴 ∈ 𝑃)) | |
10 | 9 | orbi1d 913 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → ((𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃) ↔ (𝐴 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) |
11 | 8, 10 | imbi12d 344 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) ↔ ((𝐴𝐻𝑏) ∈ 𝑃 → (𝐴 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) |
12 | oveq2 7263 | . . . . . . . 8 ⊢ (𝑏 = 𝐵 → (𝐴𝐻𝑏) = (𝐴𝐻𝐵)) | |
13 | 12 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑏 = 𝐵 → ((𝐴𝐻𝑏) ∈ 𝑃 ↔ (𝐴𝐻𝐵) ∈ 𝑃)) |
14 | eleq1 2826 | . . . . . . . 8 ⊢ (𝑏 = 𝐵 → (𝑏 ∈ 𝑃 ↔ 𝐵 ∈ 𝑃)) | |
15 | 14 | orbi2d 912 | . . . . . . 7 ⊢ (𝑏 = 𝐵 → ((𝐴 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃) ↔ (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃))) |
16 | 13, 15 | imbi12d 344 | . . . . . 6 ⊢ (𝑏 = 𝐵 → (((𝐴𝐻𝑏) ∈ 𝑃 → (𝐴 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) ↔ ((𝐴𝐻𝐵) ∈ 𝑃 → (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃)))) |
17 | 11, 16 | rspc2v 3562 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → ((𝐴𝐻𝐵) ∈ 𝑃 → (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃)))) |
18 | 17 | com12 32 | . . . 4 ⊢ (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐻𝐵) ∈ 𝑃 → (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃)))) |
19 | 18 | expd 415 | . . 3 ⊢ (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐵) ∈ 𝑃 → (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃))))) |
20 | 19 | 3imp2 1347 | . 2 ⊢ ((∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃)) |
21 | 6, 20 | sylan 579 | 1 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ran crn 5581 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 2nd c2nd 7803 CRingOpsccring 36078 Idlcidl 36092 PrIdlcpridl 36093 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-grpo 28756 df-gid 28757 df-ginv 28758 df-ablo 28808 df-ass 35928 df-exid 35930 df-mgmOLD 35934 df-sgrOLD 35946 df-mndo 35952 df-rngo 35980 df-com2 36075 df-crngo 36079 df-idl 36095 df-pridl 36096 df-igen 36145 |
This theorem is referenced by: pridlc2 36157 |
Copyright terms: Public domain | W3C validator |