| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pridlc | Structured version Visualization version GIF version | ||
| Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
| Ref | Expression |
|---|---|
| ispridlc.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| ispridlc.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| ispridlc.3 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| pridlc | ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ispridlc.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | ispridlc.2 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 3 | ispridlc.3 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
| 4 | 1, 2, 3 | ispridlc 38071 | . . . 4 ⊢ (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))) |
| 5 | 4 | biimpa 476 | . . 3 ⊢ ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) |
| 6 | 5 | simp3d 1144 | . 2 ⊢ ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) |
| 7 | oveq1 7397 | . . . . . . . 8 ⊢ (𝑎 = 𝐴 → (𝑎𝐻𝑏) = (𝐴𝐻𝑏)) | |
| 8 | 7 | eleq1d 2814 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → ((𝑎𝐻𝑏) ∈ 𝑃 ↔ (𝐴𝐻𝑏) ∈ 𝑃)) |
| 9 | eleq1 2817 | . . . . . . . 8 ⊢ (𝑎 = 𝐴 → (𝑎 ∈ 𝑃 ↔ 𝐴 ∈ 𝑃)) | |
| 10 | 9 | orbi1d 916 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → ((𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃) ↔ (𝐴 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) |
| 11 | 8, 10 | imbi12d 344 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) ↔ ((𝐴𝐻𝑏) ∈ 𝑃 → (𝐴 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) |
| 12 | oveq2 7398 | . . . . . . . 8 ⊢ (𝑏 = 𝐵 → (𝐴𝐻𝑏) = (𝐴𝐻𝐵)) | |
| 13 | 12 | eleq1d 2814 | . . . . . . 7 ⊢ (𝑏 = 𝐵 → ((𝐴𝐻𝑏) ∈ 𝑃 ↔ (𝐴𝐻𝐵) ∈ 𝑃)) |
| 14 | eleq1 2817 | . . . . . . . 8 ⊢ (𝑏 = 𝐵 → (𝑏 ∈ 𝑃 ↔ 𝐵 ∈ 𝑃)) | |
| 15 | 14 | orbi2d 915 | . . . . . . 7 ⊢ (𝑏 = 𝐵 → ((𝐴 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃) ↔ (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃))) |
| 16 | 13, 15 | imbi12d 344 | . . . . . 6 ⊢ (𝑏 = 𝐵 → (((𝐴𝐻𝑏) ∈ 𝑃 → (𝐴 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) ↔ ((𝐴𝐻𝐵) ∈ 𝑃 → (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃)))) |
| 17 | 11, 16 | rspc2v 3602 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → ((𝐴𝐻𝐵) ∈ 𝑃 → (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃)))) |
| 18 | 17 | com12 32 | . . . 4 ⊢ (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐻𝐵) ∈ 𝑃 → (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃)))) |
| 19 | 18 | expd 415 | . . 3 ⊢ (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐵) ∈ 𝑃 → (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃))))) |
| 20 | 19 | 3imp2 1350 | . 2 ⊢ ((∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃)) |
| 21 | 6, 20 | sylan 580 | 1 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ran crn 5642 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 CRingOpsccring 37994 Idlcidl 38008 PrIdlcpridl 38009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-grpo 30429 df-gid 30430 df-ginv 30431 df-ablo 30481 df-ass 37844 df-exid 37846 df-mgmOLD 37850 df-sgrOLD 37862 df-mndo 37868 df-rngo 37896 df-com2 37991 df-crngo 37995 df-idl 38011 df-pridl 38012 df-igen 38061 |
| This theorem is referenced by: pridlc2 38073 |
| Copyright terms: Public domain | W3C validator |