Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridlc Structured version   Visualization version   GIF version

Theorem pridlc 36385
Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.)
Hypotheses
Ref Expression
ispridlc.1 𝐺 = (1st𝑅)
ispridlc.2 𝐻 = (2nd𝑅)
ispridlc.3 𝑋 = ran 𝐺
Assertion
Ref Expression
pridlc (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (𝐴𝑃𝐵𝑃))

Proof of Theorem pridlc
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ispridlc.1 . . . . 5 𝐺 = (1st𝑅)
2 ispridlc.2 . . . . 5 𝐻 = (2nd𝑅)
3 ispridlc.3 . . . . 5 𝑋 = ran 𝐺
41, 2, 3ispridlc 36384 . . . 4 (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
54biimpa 478 . . 3 ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
65simp3d 1144 . 2 ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))
7 oveq1 7348 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎𝐻𝑏) = (𝐴𝐻𝑏))
87eleq1d 2822 . . . . . . 7 (𝑎 = 𝐴 → ((𝑎𝐻𝑏) ∈ 𝑃 ↔ (𝐴𝐻𝑏) ∈ 𝑃))
9 eleq1 2825 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎𝑃𝐴𝑃))
109orbi1d 915 . . . . . . 7 (𝑎 = 𝐴 → ((𝑎𝑃𝑏𝑃) ↔ (𝐴𝑃𝑏𝑃)))
118, 10imbi12d 345 . . . . . 6 (𝑎 = 𝐴 → (((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) ↔ ((𝐴𝐻𝑏) ∈ 𝑃 → (𝐴𝑃𝑏𝑃))))
12 oveq2 7349 . . . . . . . 8 (𝑏 = 𝐵 → (𝐴𝐻𝑏) = (𝐴𝐻𝐵))
1312eleq1d 2822 . . . . . . 7 (𝑏 = 𝐵 → ((𝐴𝐻𝑏) ∈ 𝑃 ↔ (𝐴𝐻𝐵) ∈ 𝑃))
14 eleq1 2825 . . . . . . . 8 (𝑏 = 𝐵 → (𝑏𝑃𝐵𝑃))
1514orbi2d 914 . . . . . . 7 (𝑏 = 𝐵 → ((𝐴𝑃𝑏𝑃) ↔ (𝐴𝑃𝐵𝑃)))
1613, 15imbi12d 345 . . . . . 6 (𝑏 = 𝐵 → (((𝐴𝐻𝑏) ∈ 𝑃 → (𝐴𝑃𝑏𝑃)) ↔ ((𝐴𝐻𝐵) ∈ 𝑃 → (𝐴𝑃𝐵𝑃))))
1711, 16rspc2v 3582 . . . . 5 ((𝐴𝑋𝐵𝑋) → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ((𝐴𝐻𝐵) ∈ 𝑃 → (𝐴𝑃𝐵𝑃))))
1817com12 32 . . . 4 (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ((𝐴𝑋𝐵𝑋) → ((𝐴𝐻𝐵) ∈ 𝑃 → (𝐴𝑃𝐵𝑃))))
1918expd 417 . . 3 (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → (𝐴𝑋 → (𝐵𝑋 → ((𝐴𝐻𝐵) ∈ 𝑃 → (𝐴𝑃𝐵𝑃)))))
20193imp2 1349 . 2 ((∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (𝐴𝑃𝐵𝑃))
216, 20sylan 581 1 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (𝐴𝑃𝐵𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2941  wral 3062  ran crn 5625  cfv 6483  (class class class)co 7341  1st c1st 7901  2nd c2nd 7902  CRingOpsccring 36307  Idlcidl 36321  PrIdlcpridl 36322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-int 4899  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-id 5522  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7903  df-2nd 7904  df-grpo 29142  df-gid 29143  df-ginv 29144  df-ablo 29194  df-ass 36157  df-exid 36159  df-mgmOLD 36163  df-sgrOLD 36175  df-mndo 36181  df-rngo 36209  df-com2 36304  df-crngo 36308  df-idl 36324  df-pridl 36325  df-igen 36374
This theorem is referenced by:  pridlc2  36386
  Copyright terms: Public domain W3C validator