Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridlc Structured version   Visualization version   GIF version

Theorem pridlc 38072
Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.)
Hypotheses
Ref Expression
ispridlc.1 𝐺 = (1st𝑅)
ispridlc.2 𝐻 = (2nd𝑅)
ispridlc.3 𝑋 = ran 𝐺
Assertion
Ref Expression
pridlc (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (𝐴𝑃𝐵𝑃))

Proof of Theorem pridlc
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ispridlc.1 . . . . 5 𝐺 = (1st𝑅)
2 ispridlc.2 . . . . 5 𝐻 = (2nd𝑅)
3 ispridlc.3 . . . . 5 𝑋 = ran 𝐺
41, 2, 3ispridlc 38071 . . . 4 (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
54biimpa 476 . . 3 ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
65simp3d 1144 . 2 ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))
7 oveq1 7397 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎𝐻𝑏) = (𝐴𝐻𝑏))
87eleq1d 2814 . . . . . . 7 (𝑎 = 𝐴 → ((𝑎𝐻𝑏) ∈ 𝑃 ↔ (𝐴𝐻𝑏) ∈ 𝑃))
9 eleq1 2817 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎𝑃𝐴𝑃))
109orbi1d 916 . . . . . . 7 (𝑎 = 𝐴 → ((𝑎𝑃𝑏𝑃) ↔ (𝐴𝑃𝑏𝑃)))
118, 10imbi12d 344 . . . . . 6 (𝑎 = 𝐴 → (((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) ↔ ((𝐴𝐻𝑏) ∈ 𝑃 → (𝐴𝑃𝑏𝑃))))
12 oveq2 7398 . . . . . . . 8 (𝑏 = 𝐵 → (𝐴𝐻𝑏) = (𝐴𝐻𝐵))
1312eleq1d 2814 . . . . . . 7 (𝑏 = 𝐵 → ((𝐴𝐻𝑏) ∈ 𝑃 ↔ (𝐴𝐻𝐵) ∈ 𝑃))
14 eleq1 2817 . . . . . . . 8 (𝑏 = 𝐵 → (𝑏𝑃𝐵𝑃))
1514orbi2d 915 . . . . . . 7 (𝑏 = 𝐵 → ((𝐴𝑃𝑏𝑃) ↔ (𝐴𝑃𝐵𝑃)))
1613, 15imbi12d 344 . . . . . 6 (𝑏 = 𝐵 → (((𝐴𝐻𝑏) ∈ 𝑃 → (𝐴𝑃𝑏𝑃)) ↔ ((𝐴𝐻𝐵) ∈ 𝑃 → (𝐴𝑃𝐵𝑃))))
1711, 16rspc2v 3602 . . . . 5 ((𝐴𝑋𝐵𝑋) → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ((𝐴𝐻𝐵) ∈ 𝑃 → (𝐴𝑃𝐵𝑃))))
1817com12 32 . . . 4 (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ((𝐴𝑋𝐵𝑋) → ((𝐴𝐻𝐵) ∈ 𝑃 → (𝐴𝑃𝐵𝑃))))
1918expd 415 . . 3 (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → (𝐴𝑋 → (𝐵𝑋 → ((𝐴𝐻𝐵) ∈ 𝑃 → (𝐴𝑃𝐵𝑃)))))
20193imp2 1350 . 2 ((∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (𝐴𝑃𝐵𝑃))
216, 20sylan 580 1 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (𝐴𝑃𝐵𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  ran crn 5642  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  CRingOpsccring 37994  Idlcidl 38008  PrIdlcpridl 38009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-grpo 30429  df-gid 30430  df-ginv 30431  df-ablo 30481  df-ass 37844  df-exid 37846  df-mgmOLD 37850  df-sgrOLD 37862  df-mndo 37868  df-rngo 37896  df-com2 37991  df-crngo 37995  df-idl 38011  df-pridl 38012  df-igen 38061
This theorem is referenced by:  pridlc2  38073
  Copyright terms: Public domain W3C validator