Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pridlc | Structured version Visualization version GIF version |
Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
Ref | Expression |
---|---|
ispridlc.1 | ⊢ 𝐺 = (1st ‘𝑅) |
ispridlc.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
ispridlc.3 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
pridlc | ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ispridlc.1 | . . . . 5 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | ispridlc.2 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
3 | ispridlc.3 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
4 | 1, 2, 3 | ispridlc 36228 | . . . 4 ⊢ (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))) |
5 | 4 | biimpa 477 | . . 3 ⊢ ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) |
6 | 5 | simp3d 1143 | . 2 ⊢ ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) |
7 | oveq1 7282 | . . . . . . . 8 ⊢ (𝑎 = 𝐴 → (𝑎𝐻𝑏) = (𝐴𝐻𝑏)) | |
8 | 7 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → ((𝑎𝐻𝑏) ∈ 𝑃 ↔ (𝐴𝐻𝑏) ∈ 𝑃)) |
9 | eleq1 2826 | . . . . . . . 8 ⊢ (𝑎 = 𝐴 → (𝑎 ∈ 𝑃 ↔ 𝐴 ∈ 𝑃)) | |
10 | 9 | orbi1d 914 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → ((𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃) ↔ (𝐴 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))) |
11 | 8, 10 | imbi12d 345 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) ↔ ((𝐴𝐻𝑏) ∈ 𝑃 → (𝐴 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) |
12 | oveq2 7283 | . . . . . . . 8 ⊢ (𝑏 = 𝐵 → (𝐴𝐻𝑏) = (𝐴𝐻𝐵)) | |
13 | 12 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑏 = 𝐵 → ((𝐴𝐻𝑏) ∈ 𝑃 ↔ (𝐴𝐻𝐵) ∈ 𝑃)) |
14 | eleq1 2826 | . . . . . . . 8 ⊢ (𝑏 = 𝐵 → (𝑏 ∈ 𝑃 ↔ 𝐵 ∈ 𝑃)) | |
15 | 14 | orbi2d 913 | . . . . . . 7 ⊢ (𝑏 = 𝐵 → ((𝐴 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃) ↔ (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃))) |
16 | 13, 15 | imbi12d 345 | . . . . . 6 ⊢ (𝑏 = 𝐵 → (((𝐴𝐻𝑏) ∈ 𝑃 → (𝐴 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) ↔ ((𝐴𝐻𝐵) ∈ 𝑃 → (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃)))) |
17 | 11, 16 | rspc2v 3570 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → ((𝐴𝐻𝐵) ∈ 𝑃 → (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃)))) |
18 | 17 | com12 32 | . . . 4 ⊢ (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐻𝐵) ∈ 𝑃 → (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃)))) |
19 | 18 | expd 416 | . . 3 ⊢ (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐵) ∈ 𝑃 → (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃))))) |
20 | 19 | 3imp2 1348 | . 2 ⊢ ((∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃)) |
21 | 6, 20 | sylan 580 | 1 ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ran crn 5590 ‘cfv 6433 (class class class)co 7275 1st c1st 7829 2nd c2nd 7830 CRingOpsccring 36151 Idlcidl 36165 PrIdlcpridl 36166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-grpo 28855 df-gid 28856 df-ginv 28857 df-ablo 28907 df-ass 36001 df-exid 36003 df-mgmOLD 36007 df-sgrOLD 36019 df-mndo 36025 df-rngo 36053 df-com2 36148 df-crngo 36152 df-idl 36168 df-pridl 36169 df-igen 36218 |
This theorem is referenced by: pridlc2 36230 |
Copyright terms: Public domain | W3C validator |