Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridlc Structured version   Visualization version   GIF version

Theorem pridlc 37244
Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.)
Hypotheses
Ref Expression
ispridlc.1 𝐺 = (1st β€˜π‘…)
ispridlc.2 𝐻 = (2nd β€˜π‘…)
ispridlc.3 𝑋 = ran 𝐺
Assertion
Ref Expression
pridlc (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdlβ€˜π‘…)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ (𝐴𝐻𝐡) ∈ 𝑃)) β†’ (𝐴 ∈ 𝑃 ∨ 𝐡 ∈ 𝑃))

Proof of Theorem pridlc
Dummy variables π‘Ž 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ispridlc.1 . . . . 5 𝐺 = (1st β€˜π‘…)
2 ispridlc.2 . . . . 5 𝐻 = (2nd β€˜π‘…)
3 ispridlc.3 . . . . 5 𝑋 = ran 𝐺
41, 2, 3ispridlc 37243 . . . 4 (𝑅 ∈ CRingOps β†’ (𝑃 ∈ (PrIdlβ€˜π‘…) ↔ (𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))))
54biimpa 475 . . 3 ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdlβ€˜π‘…)) β†’ (𝑃 ∈ (Idlβ€˜π‘…) ∧ 𝑃 β‰  𝑋 ∧ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))
65simp3d 1142 . 2 ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdlβ€˜π‘…)) β†’ βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))
7 oveq1 7420 . . . . . . . 8 (π‘Ž = 𝐴 β†’ (π‘Žπ»π‘) = (𝐴𝐻𝑏))
87eleq1d 2816 . . . . . . 7 (π‘Ž = 𝐴 β†’ ((π‘Žπ»π‘) ∈ 𝑃 ↔ (𝐴𝐻𝑏) ∈ 𝑃))
9 eleq1 2819 . . . . . . . 8 (π‘Ž = 𝐴 β†’ (π‘Ž ∈ 𝑃 ↔ 𝐴 ∈ 𝑃))
109orbi1d 913 . . . . . . 7 (π‘Ž = 𝐴 β†’ ((π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃) ↔ (𝐴 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))
118, 10imbi12d 343 . . . . . 6 (π‘Ž = 𝐴 β†’ (((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) ↔ ((𝐴𝐻𝑏) ∈ 𝑃 β†’ (𝐴 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))
12 oveq2 7421 . . . . . . . 8 (𝑏 = 𝐡 β†’ (𝐴𝐻𝑏) = (𝐴𝐻𝐡))
1312eleq1d 2816 . . . . . . 7 (𝑏 = 𝐡 β†’ ((𝐴𝐻𝑏) ∈ 𝑃 ↔ (𝐴𝐻𝐡) ∈ 𝑃))
14 eleq1 2819 . . . . . . . 8 (𝑏 = 𝐡 β†’ (𝑏 ∈ 𝑃 ↔ 𝐡 ∈ 𝑃))
1514orbi2d 912 . . . . . . 7 (𝑏 = 𝐡 β†’ ((𝐴 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃) ↔ (𝐴 ∈ 𝑃 ∨ 𝐡 ∈ 𝑃)))
1613, 15imbi12d 343 . . . . . 6 (𝑏 = 𝐡 β†’ (((𝐴𝐻𝑏) ∈ 𝑃 β†’ (𝐴 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) ↔ ((𝐴𝐻𝐡) ∈ 𝑃 β†’ (𝐴 ∈ 𝑃 ∨ 𝐡 ∈ 𝑃))))
1711, 16rspc2v 3623 . . . . 5 ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ ((𝐴𝐻𝐡) ∈ 𝑃 β†’ (𝐴 ∈ 𝑃 ∨ 𝐡 ∈ 𝑃))))
1817com12 32 . . . 4 (βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((𝐴𝐻𝐡) ∈ 𝑃 β†’ (𝐴 ∈ 𝑃 ∨ 𝐡 ∈ 𝑃))))
1918expd 414 . . 3 (βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) β†’ (𝐴 ∈ 𝑋 β†’ (𝐡 ∈ 𝑋 β†’ ((𝐴𝐻𝐡) ∈ 𝑃 β†’ (𝐴 ∈ 𝑃 ∨ 𝐡 ∈ 𝑃)))))
20193imp2 1347 . 2 ((βˆ€π‘Ž ∈ 𝑋 βˆ€π‘ ∈ 𝑋 ((π‘Žπ»π‘) ∈ 𝑃 β†’ (π‘Ž ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ (𝐴𝐻𝐡) ∈ 𝑃)) β†’ (𝐴 ∈ 𝑃 ∨ 𝐡 ∈ 𝑃))
216, 20sylan 578 1 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdlβ€˜π‘…)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ (𝐴𝐻𝐡) ∈ 𝑃)) β†’ (𝐴 ∈ 𝑃 ∨ 𝐡 ∈ 𝑃))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∨ wo 843   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  βˆ€wral 3059  ran crn 5678  β€˜cfv 6544  (class class class)co 7413  1st c1st 7977  2nd c2nd 7978  CRingOpsccring 37166  Idlcidl 37180  PrIdlcpridl 37181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7979  df-2nd 7980  df-grpo 30011  df-gid 30012  df-ginv 30013  df-ablo 30063  df-ass 37016  df-exid 37018  df-mgmOLD 37022  df-sgrOLD 37034  df-mndo 37040  df-rngo 37068  df-com2 37163  df-crngo 37167  df-idl 37183  df-pridl 37184  df-igen 37233
This theorem is referenced by:  pridlc2  37245
  Copyright terms: Public domain W3C validator