![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > m11nprm | Structured version Visualization version GIF version |
Description: The eleventh Mersenne number M11 = 2047 is not a prime number. (Contributed by AV, 18-Aug-2021.) |
Ref | Expression |
---|---|
m11nprm | ⊢ ((2↑;11) − 1) = (;89 · ;23) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12489 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
2 | 0nn0 12487 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
3 | 1, 2 | deccl 12692 | . . . 4 ⊢ ;20 ∈ ℕ0 |
4 | 4nn0 12491 | . . . 4 ⊢ 4 ∈ ℕ0 | |
5 | 3, 4 | deccl 12692 | . . 3 ⊢ ;;204 ∈ ℕ0 |
6 | 8nn0 12495 | . . 3 ⊢ 8 ∈ ℕ0 | |
7 | 1nn0 12488 | . . 3 ⊢ 1 ∈ ℕ0 | |
8 | 2exp11 17023 | . . 3 ⊢ (2↑;11) = ;;;2048 | |
9 | 4p1e5 12358 | . . . 4 ⊢ (4 + 1) = 5 | |
10 | eqid 2733 | . . . 4 ⊢ ;;204 = ;;204 | |
11 | 3, 4, 9, 10 | decsuc 12708 | . . 3 ⊢ (;;204 + 1) = ;;205 |
12 | 8m1e7 12345 | . . 3 ⊢ (8 − 1) = 7 | |
13 | 5, 6, 7, 8, 11, 12 | decsubi 12740 | . 2 ⊢ ((2↑;11) − 1) = ;;;2047 |
14 | 3nn0 12490 | . . . 4 ⊢ 3 ∈ ℕ0 | |
15 | 1, 14 | deccl 12692 | . . 3 ⊢ ;23 ∈ ℕ0 |
16 | 9nn0 12496 | . . 3 ⊢ 9 ∈ ℕ0 | |
17 | eqid 2733 | . . 3 ⊢ ;89 = ;89 | |
18 | 7nn0 12494 | . . 3 ⊢ 7 ∈ ℕ0 | |
19 | eqid 2733 | . . . 4 ⊢ ;23 = ;23 | |
20 | eqid 2733 | . . . 4 ⊢ ;20 = ;20 | |
21 | 8t2e16 12792 | . . . . . 6 ⊢ (8 · 2) = ;16 | |
22 | 2p2e4 12347 | . . . . . 6 ⊢ (2 + 2) = 4 | |
23 | 21, 22 | oveq12i 7421 | . . . . 5 ⊢ ((8 · 2) + (2 + 2)) = (;16 + 4) |
24 | 6nn0 12493 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
25 | eqid 2733 | . . . . . 6 ⊢ ;16 = ;16 | |
26 | 1p1e2 12337 | . . . . . 6 ⊢ (1 + 1) = 2 | |
27 | 6p4e10 12749 | . . . . . 6 ⊢ (6 + 4) = ;10 | |
28 | 7, 24, 4, 25, 26, 27 | decaddci2 12739 | . . . . 5 ⊢ (;16 + 4) = ;20 |
29 | 23, 28 | eqtri 2761 | . . . 4 ⊢ ((8 · 2) + (2 + 2)) = ;20 |
30 | 8t3e24 12793 | . . . . . 6 ⊢ (8 · 3) = ;24 | |
31 | 30 | oveq1i 7419 | . . . . 5 ⊢ ((8 · 3) + 0) = (;24 + 0) |
32 | 1, 4 | deccl 12692 | . . . . . . 7 ⊢ ;24 ∈ ℕ0 |
33 | 32 | nn0cni 12484 | . . . . . 6 ⊢ ;24 ∈ ℂ |
34 | 33 | addridi 11401 | . . . . 5 ⊢ (;24 + 0) = ;24 |
35 | 31, 34 | eqtri 2761 | . . . 4 ⊢ ((8 · 3) + 0) = ;24 |
36 | 1, 14, 1, 2, 19, 20, 6, 4, 1, 29, 35 | decma2c 12730 | . . 3 ⊢ ((8 · ;23) + ;20) = ;;204 |
37 | 9t2e18 12799 | . . . . 5 ⊢ (9 · 2) = ;18 | |
38 | 8p2e10 12757 | . . . . 5 ⊢ (8 + 2) = ;10 | |
39 | 7, 6, 1, 37, 26, 38 | decaddci2 12739 | . . . 4 ⊢ ((9 · 2) + 2) = ;20 |
40 | 9t3e27 12800 | . . . 4 ⊢ (9 · 3) = ;27 | |
41 | 16, 1, 14, 19, 18, 1, 39, 40 | decmul2c 12743 | . . 3 ⊢ (9 · ;23) = ;;207 |
42 | 15, 6, 16, 17, 18, 3, 36, 41 | decmul1c 12742 | . 2 ⊢ (;89 · ;23) = ;;;2047 |
43 | 13, 42 | eqtr4i 2764 | 1 ⊢ ((2↑;11) − 1) = (;89 · ;23) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 (class class class)co 7409 0cc0 11110 1c1 11111 + caddc 11113 · cmul 11115 − cmin 11444 2c2 12267 3c3 12268 4c4 12269 5c5 12270 6c6 12271 7c7 12272 8c8 12273 9c9 12274 ;cdc 12677 ↑cexp 14027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-seq 13967 df-exp 14028 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |