![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > m11nprm | Structured version Visualization version GIF version |
Description: The eleventh Mersenne number M11 = 2047 is not a prime number. (Contributed by AV, 18-Aug-2021.) |
Ref | Expression |
---|---|
m11nprm | ⊢ ((2↑;11) − 1) = (;89 · ;23) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12493 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
2 | 0nn0 12491 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
3 | 1, 2 | deccl 12696 | . . . 4 ⊢ ;20 ∈ ℕ0 |
4 | 4nn0 12495 | . . . 4 ⊢ 4 ∈ ℕ0 | |
5 | 3, 4 | deccl 12696 | . . 3 ⊢ ;;204 ∈ ℕ0 |
6 | 8nn0 12499 | . . 3 ⊢ 8 ∈ ℕ0 | |
7 | 1nn0 12492 | . . 3 ⊢ 1 ∈ ℕ0 | |
8 | 2exp11 17032 | . . 3 ⊢ (2↑;11) = ;;;2048 | |
9 | 4p1e5 12362 | . . . 4 ⊢ (4 + 1) = 5 | |
10 | eqid 2726 | . . . 4 ⊢ ;;204 = ;;204 | |
11 | 3, 4, 9, 10 | decsuc 12712 | . . 3 ⊢ (;;204 + 1) = ;;205 |
12 | 8m1e7 12349 | . . 3 ⊢ (8 − 1) = 7 | |
13 | 5, 6, 7, 8, 11, 12 | decsubi 12744 | . 2 ⊢ ((2↑;11) − 1) = ;;;2047 |
14 | 3nn0 12494 | . . . 4 ⊢ 3 ∈ ℕ0 | |
15 | 1, 14 | deccl 12696 | . . 3 ⊢ ;23 ∈ ℕ0 |
16 | 9nn0 12500 | . . 3 ⊢ 9 ∈ ℕ0 | |
17 | eqid 2726 | . . 3 ⊢ ;89 = ;89 | |
18 | 7nn0 12498 | . . 3 ⊢ 7 ∈ ℕ0 | |
19 | eqid 2726 | . . . 4 ⊢ ;23 = ;23 | |
20 | eqid 2726 | . . . 4 ⊢ ;20 = ;20 | |
21 | 8t2e16 12796 | . . . . . 6 ⊢ (8 · 2) = ;16 | |
22 | 2p2e4 12351 | . . . . . 6 ⊢ (2 + 2) = 4 | |
23 | 21, 22 | oveq12i 7417 | . . . . 5 ⊢ ((8 · 2) + (2 + 2)) = (;16 + 4) |
24 | 6nn0 12497 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
25 | eqid 2726 | . . . . . 6 ⊢ ;16 = ;16 | |
26 | 1p1e2 12341 | . . . . . 6 ⊢ (1 + 1) = 2 | |
27 | 6p4e10 12753 | . . . . . 6 ⊢ (6 + 4) = ;10 | |
28 | 7, 24, 4, 25, 26, 27 | decaddci2 12743 | . . . . 5 ⊢ (;16 + 4) = ;20 |
29 | 23, 28 | eqtri 2754 | . . . 4 ⊢ ((8 · 2) + (2 + 2)) = ;20 |
30 | 8t3e24 12797 | . . . . . 6 ⊢ (8 · 3) = ;24 | |
31 | 30 | oveq1i 7415 | . . . . 5 ⊢ ((8 · 3) + 0) = (;24 + 0) |
32 | 1, 4 | deccl 12696 | . . . . . . 7 ⊢ ;24 ∈ ℕ0 |
33 | 32 | nn0cni 12488 | . . . . . 6 ⊢ ;24 ∈ ℂ |
34 | 33 | addridi 11405 | . . . . 5 ⊢ (;24 + 0) = ;24 |
35 | 31, 34 | eqtri 2754 | . . . 4 ⊢ ((8 · 3) + 0) = ;24 |
36 | 1, 14, 1, 2, 19, 20, 6, 4, 1, 29, 35 | decma2c 12734 | . . 3 ⊢ ((8 · ;23) + ;20) = ;;204 |
37 | 9t2e18 12803 | . . . . 5 ⊢ (9 · 2) = ;18 | |
38 | 8p2e10 12761 | . . . . 5 ⊢ (8 + 2) = ;10 | |
39 | 7, 6, 1, 37, 26, 38 | decaddci2 12743 | . . . 4 ⊢ ((9 · 2) + 2) = ;20 |
40 | 9t3e27 12804 | . . . 4 ⊢ (9 · 3) = ;27 | |
41 | 16, 1, 14, 19, 18, 1, 39, 40 | decmul2c 12747 | . . 3 ⊢ (9 · ;23) = ;;207 |
42 | 15, 6, 16, 17, 18, 3, 36, 41 | decmul1c 12746 | . 2 ⊢ (;89 · ;23) = ;;;2047 |
43 | 13, 42 | eqtr4i 2757 | 1 ⊢ ((2↑;11) − 1) = (;89 · ;23) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 (class class class)co 7405 0cc0 11112 1c1 11113 + caddc 11115 · cmul 11117 − cmin 11448 2c2 12271 3c3 12272 4c4 12273 5c5 12274 6c6 12275 7c7 12276 8c8 12277 9c9 12278 ;cdc 12681 ↑cexp 14032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-seq 13973 df-exp 14033 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |