| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > m11nprm | Structured version Visualization version GIF version | ||
| Description: The eleventh Mersenne number M11 = 2047 is not a prime number. (Contributed by AV, 18-Aug-2021.) |
| Ref | Expression |
|---|---|
| m11nprm | ⊢ ((2↑;11) − 1) = (;89 · ;23) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn0 12405 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 2 | 0nn0 12403 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 3 | 1, 2 | deccl 12609 | . . . 4 ⊢ ;20 ∈ ℕ0 |
| 4 | 4nn0 12407 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 5 | 3, 4 | deccl 12609 | . . 3 ⊢ ;;204 ∈ ℕ0 |
| 6 | 8nn0 12411 | . . 3 ⊢ 8 ∈ ℕ0 | |
| 7 | 1nn0 12404 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 8 | 2exp11 17003 | . . 3 ⊢ (2↑;11) = ;;;2048 | |
| 9 | 4p1e5 12273 | . . . 4 ⊢ (4 + 1) = 5 | |
| 10 | eqid 2733 | . . . 4 ⊢ ;;204 = ;;204 | |
| 11 | 3, 4, 9, 10 | decsuc 12625 | . . 3 ⊢ (;;204 + 1) = ;;205 |
| 12 | 8m1e7 12260 | . . 3 ⊢ (8 − 1) = 7 | |
| 13 | 5, 6, 7, 8, 11, 12 | decsubi 12657 | . 2 ⊢ ((2↑;11) − 1) = ;;;2047 |
| 14 | 3nn0 12406 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 15 | 1, 14 | deccl 12609 | . . 3 ⊢ ;23 ∈ ℕ0 |
| 16 | 9nn0 12412 | . . 3 ⊢ 9 ∈ ℕ0 | |
| 17 | eqid 2733 | . . 3 ⊢ ;89 = ;89 | |
| 18 | 7nn0 12410 | . . 3 ⊢ 7 ∈ ℕ0 | |
| 19 | eqid 2733 | . . . 4 ⊢ ;23 = ;23 | |
| 20 | eqid 2733 | . . . 4 ⊢ ;20 = ;20 | |
| 21 | 8t2e16 12709 | . . . . . 6 ⊢ (8 · 2) = ;16 | |
| 22 | 2p2e4 12262 | . . . . . 6 ⊢ (2 + 2) = 4 | |
| 23 | 21, 22 | oveq12i 7364 | . . . . 5 ⊢ ((8 · 2) + (2 + 2)) = (;16 + 4) |
| 24 | 6nn0 12409 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
| 25 | eqid 2733 | . . . . . 6 ⊢ ;16 = ;16 | |
| 26 | 1p1e2 12252 | . . . . . 6 ⊢ (1 + 1) = 2 | |
| 27 | 6p4e10 12666 | . . . . . 6 ⊢ (6 + 4) = ;10 | |
| 28 | 7, 24, 4, 25, 26, 27 | decaddci2 12656 | . . . . 5 ⊢ (;16 + 4) = ;20 |
| 29 | 23, 28 | eqtri 2756 | . . . 4 ⊢ ((8 · 2) + (2 + 2)) = ;20 |
| 30 | 8t3e24 12710 | . . . . . 6 ⊢ (8 · 3) = ;24 | |
| 31 | 30 | oveq1i 7362 | . . . . 5 ⊢ ((8 · 3) + 0) = (;24 + 0) |
| 32 | 1, 4 | deccl 12609 | . . . . . . 7 ⊢ ;24 ∈ ℕ0 |
| 33 | 32 | nn0cni 12400 | . . . . . 6 ⊢ ;24 ∈ ℂ |
| 34 | 33 | addridi 11307 | . . . . 5 ⊢ (;24 + 0) = ;24 |
| 35 | 31, 34 | eqtri 2756 | . . . 4 ⊢ ((8 · 3) + 0) = ;24 |
| 36 | 1, 14, 1, 2, 19, 20, 6, 4, 1, 29, 35 | decma2c 12647 | . . 3 ⊢ ((8 · ;23) + ;20) = ;;204 |
| 37 | 9t2e18 12716 | . . . . 5 ⊢ (9 · 2) = ;18 | |
| 38 | 8p2e10 12674 | . . . . 5 ⊢ (8 + 2) = ;10 | |
| 39 | 7, 6, 1, 37, 26, 38 | decaddci2 12656 | . . . 4 ⊢ ((9 · 2) + 2) = ;20 |
| 40 | 9t3e27 12717 | . . . 4 ⊢ (9 · 3) = ;27 | |
| 41 | 16, 1, 14, 19, 18, 1, 39, 40 | decmul2c 12660 | . . 3 ⊢ (9 · ;23) = ;;207 |
| 42 | 15, 6, 16, 17, 18, 3, 36, 41 | decmul1c 12659 | . 2 ⊢ (;89 · ;23) = ;;;2047 |
| 43 | 13, 42 | eqtr4i 2759 | 1 ⊢ ((2↑;11) − 1) = (;89 · ;23) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7352 0cc0 11013 1c1 11014 + caddc 11016 · cmul 11018 − cmin 11351 2c2 12187 3c3 12188 4c4 12189 5c5 12190 6c6 12191 7c7 12192 8c8 12193 9c9 12194 ;cdc 12594 ↑cexp 13970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-seq 13911 df-exp 13971 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |