| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > m11nprm | Structured version Visualization version GIF version | ||
| Description: The eleventh Mersenne number M11 = 2047 is not a prime number. (Contributed by AV, 18-Aug-2021.) |
| Ref | Expression |
|---|---|
| m11nprm | ⊢ ((2↑;11) − 1) = (;89 · ;23) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn0 12466 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 2 | 0nn0 12464 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 3 | 1, 2 | deccl 12671 | . . . 4 ⊢ ;20 ∈ ℕ0 |
| 4 | 4nn0 12468 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 5 | 3, 4 | deccl 12671 | . . 3 ⊢ ;;204 ∈ ℕ0 |
| 6 | 8nn0 12472 | . . 3 ⊢ 8 ∈ ℕ0 | |
| 7 | 1nn0 12465 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 8 | 2exp11 17067 | . . 3 ⊢ (2↑;11) = ;;;2048 | |
| 9 | 4p1e5 12334 | . . . 4 ⊢ (4 + 1) = 5 | |
| 10 | eqid 2730 | . . . 4 ⊢ ;;204 = ;;204 | |
| 11 | 3, 4, 9, 10 | decsuc 12687 | . . 3 ⊢ (;;204 + 1) = ;;205 |
| 12 | 8m1e7 12321 | . . 3 ⊢ (8 − 1) = 7 | |
| 13 | 5, 6, 7, 8, 11, 12 | decsubi 12719 | . 2 ⊢ ((2↑;11) − 1) = ;;;2047 |
| 14 | 3nn0 12467 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 15 | 1, 14 | deccl 12671 | . . 3 ⊢ ;23 ∈ ℕ0 |
| 16 | 9nn0 12473 | . . 3 ⊢ 9 ∈ ℕ0 | |
| 17 | eqid 2730 | . . 3 ⊢ ;89 = ;89 | |
| 18 | 7nn0 12471 | . . 3 ⊢ 7 ∈ ℕ0 | |
| 19 | eqid 2730 | . . . 4 ⊢ ;23 = ;23 | |
| 20 | eqid 2730 | . . . 4 ⊢ ;20 = ;20 | |
| 21 | 8t2e16 12771 | . . . . . 6 ⊢ (8 · 2) = ;16 | |
| 22 | 2p2e4 12323 | . . . . . 6 ⊢ (2 + 2) = 4 | |
| 23 | 21, 22 | oveq12i 7402 | . . . . 5 ⊢ ((8 · 2) + (2 + 2)) = (;16 + 4) |
| 24 | 6nn0 12470 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
| 25 | eqid 2730 | . . . . . 6 ⊢ ;16 = ;16 | |
| 26 | 1p1e2 12313 | . . . . . 6 ⊢ (1 + 1) = 2 | |
| 27 | 6p4e10 12728 | . . . . . 6 ⊢ (6 + 4) = ;10 | |
| 28 | 7, 24, 4, 25, 26, 27 | decaddci2 12718 | . . . . 5 ⊢ (;16 + 4) = ;20 |
| 29 | 23, 28 | eqtri 2753 | . . . 4 ⊢ ((8 · 2) + (2 + 2)) = ;20 |
| 30 | 8t3e24 12772 | . . . . . 6 ⊢ (8 · 3) = ;24 | |
| 31 | 30 | oveq1i 7400 | . . . . 5 ⊢ ((8 · 3) + 0) = (;24 + 0) |
| 32 | 1, 4 | deccl 12671 | . . . . . . 7 ⊢ ;24 ∈ ℕ0 |
| 33 | 32 | nn0cni 12461 | . . . . . 6 ⊢ ;24 ∈ ℂ |
| 34 | 33 | addridi 11368 | . . . . 5 ⊢ (;24 + 0) = ;24 |
| 35 | 31, 34 | eqtri 2753 | . . . 4 ⊢ ((8 · 3) + 0) = ;24 |
| 36 | 1, 14, 1, 2, 19, 20, 6, 4, 1, 29, 35 | decma2c 12709 | . . 3 ⊢ ((8 · ;23) + ;20) = ;;204 |
| 37 | 9t2e18 12778 | . . . . 5 ⊢ (9 · 2) = ;18 | |
| 38 | 8p2e10 12736 | . . . . 5 ⊢ (8 + 2) = ;10 | |
| 39 | 7, 6, 1, 37, 26, 38 | decaddci2 12718 | . . . 4 ⊢ ((9 · 2) + 2) = ;20 |
| 40 | 9t3e27 12779 | . . . 4 ⊢ (9 · 3) = ;27 | |
| 41 | 16, 1, 14, 19, 18, 1, 39, 40 | decmul2c 12722 | . . 3 ⊢ (9 · ;23) = ;;207 |
| 42 | 15, 6, 16, 17, 18, 3, 36, 41 | decmul1c 12721 | . 2 ⊢ (;89 · ;23) = ;;;2047 |
| 43 | 13, 42 | eqtr4i 2756 | 1 ⊢ ((2↑;11) − 1) = (;89 · ;23) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7390 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 − cmin 11412 2c2 12248 3c3 12249 4c4 12250 5c5 12251 6c6 12252 7c7 12253 8c8 12254 9c9 12255 ;cdc 12656 ↑cexp 14033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-seq 13974 df-exp 14034 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |