| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > m11nprm | Structured version Visualization version GIF version | ||
| Description: The eleventh Mersenne number M11 = 2047 is not a prime number. (Contributed by AV, 18-Aug-2021.) |
| Ref | Expression |
|---|---|
| m11nprm | ⊢ ((2↑;11) − 1) = (;89 · ;23) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn0 12518 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 2 | 0nn0 12516 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 3 | 1, 2 | deccl 12723 | . . . 4 ⊢ ;20 ∈ ℕ0 |
| 4 | 4nn0 12520 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 5 | 3, 4 | deccl 12723 | . . 3 ⊢ ;;204 ∈ ℕ0 |
| 6 | 8nn0 12524 | . . 3 ⊢ 8 ∈ ℕ0 | |
| 7 | 1nn0 12517 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 8 | 2exp11 17109 | . . 3 ⊢ (2↑;11) = ;;;2048 | |
| 9 | 4p1e5 12386 | . . . 4 ⊢ (4 + 1) = 5 | |
| 10 | eqid 2735 | . . . 4 ⊢ ;;204 = ;;204 | |
| 11 | 3, 4, 9, 10 | decsuc 12739 | . . 3 ⊢ (;;204 + 1) = ;;205 |
| 12 | 8m1e7 12373 | . . 3 ⊢ (8 − 1) = 7 | |
| 13 | 5, 6, 7, 8, 11, 12 | decsubi 12771 | . 2 ⊢ ((2↑;11) − 1) = ;;;2047 |
| 14 | 3nn0 12519 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 15 | 1, 14 | deccl 12723 | . . 3 ⊢ ;23 ∈ ℕ0 |
| 16 | 9nn0 12525 | . . 3 ⊢ 9 ∈ ℕ0 | |
| 17 | eqid 2735 | . . 3 ⊢ ;89 = ;89 | |
| 18 | 7nn0 12523 | . . 3 ⊢ 7 ∈ ℕ0 | |
| 19 | eqid 2735 | . . . 4 ⊢ ;23 = ;23 | |
| 20 | eqid 2735 | . . . 4 ⊢ ;20 = ;20 | |
| 21 | 8t2e16 12823 | . . . . . 6 ⊢ (8 · 2) = ;16 | |
| 22 | 2p2e4 12375 | . . . . . 6 ⊢ (2 + 2) = 4 | |
| 23 | 21, 22 | oveq12i 7417 | . . . . 5 ⊢ ((8 · 2) + (2 + 2)) = (;16 + 4) |
| 24 | 6nn0 12522 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
| 25 | eqid 2735 | . . . . . 6 ⊢ ;16 = ;16 | |
| 26 | 1p1e2 12365 | . . . . . 6 ⊢ (1 + 1) = 2 | |
| 27 | 6p4e10 12780 | . . . . . 6 ⊢ (6 + 4) = ;10 | |
| 28 | 7, 24, 4, 25, 26, 27 | decaddci2 12770 | . . . . 5 ⊢ (;16 + 4) = ;20 |
| 29 | 23, 28 | eqtri 2758 | . . . 4 ⊢ ((8 · 2) + (2 + 2)) = ;20 |
| 30 | 8t3e24 12824 | . . . . . 6 ⊢ (8 · 3) = ;24 | |
| 31 | 30 | oveq1i 7415 | . . . . 5 ⊢ ((8 · 3) + 0) = (;24 + 0) |
| 32 | 1, 4 | deccl 12723 | . . . . . . 7 ⊢ ;24 ∈ ℕ0 |
| 33 | 32 | nn0cni 12513 | . . . . . 6 ⊢ ;24 ∈ ℂ |
| 34 | 33 | addridi 11422 | . . . . 5 ⊢ (;24 + 0) = ;24 |
| 35 | 31, 34 | eqtri 2758 | . . . 4 ⊢ ((8 · 3) + 0) = ;24 |
| 36 | 1, 14, 1, 2, 19, 20, 6, 4, 1, 29, 35 | decma2c 12761 | . . 3 ⊢ ((8 · ;23) + ;20) = ;;204 |
| 37 | 9t2e18 12830 | . . . . 5 ⊢ (9 · 2) = ;18 | |
| 38 | 8p2e10 12788 | . . . . 5 ⊢ (8 + 2) = ;10 | |
| 39 | 7, 6, 1, 37, 26, 38 | decaddci2 12770 | . . . 4 ⊢ ((9 · 2) + 2) = ;20 |
| 40 | 9t3e27 12831 | . . . 4 ⊢ (9 · 3) = ;27 | |
| 41 | 16, 1, 14, 19, 18, 1, 39, 40 | decmul2c 12774 | . . 3 ⊢ (9 · ;23) = ;;207 |
| 42 | 15, 6, 16, 17, 18, 3, 36, 41 | decmul1c 12773 | . 2 ⊢ (;89 · ;23) = ;;;2047 |
| 43 | 13, 42 | eqtr4i 2761 | 1 ⊢ ((2↑;11) − 1) = (;89 · ;23) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7405 0cc0 11129 1c1 11130 + caddc 11132 · cmul 11134 − cmin 11466 2c2 12295 3c3 12296 4c4 12297 5c5 12298 6c6 12299 7c7 12300 8c8 12301 9c9 12302 ;cdc 12708 ↑cexp 14079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-seq 14020 df-exp 14080 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |