![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > m11nprm | Structured version Visualization version GIF version |
Description: The eleventh Mersenne number M11 = 2047 is not a prime number. (Contributed by AV, 18-Aug-2021.) |
Ref | Expression |
---|---|
m11nprm | ⊢ ((2↑;11) − 1) = (;89 · ;23) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 11511 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
2 | 0nn0 11509 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
3 | 1, 2 | deccl 11714 | . . . 4 ⊢ ;20 ∈ ℕ0 |
4 | 4nn0 11513 | . . . 4 ⊢ 4 ∈ ℕ0 | |
5 | 3, 4 | deccl 11714 | . . 3 ⊢ ;;204 ∈ ℕ0 |
6 | 8nn0 11517 | . . 3 ⊢ 8 ∈ ℕ0 | |
7 | 1nn0 11510 | . . 3 ⊢ 1 ∈ ℕ0 | |
8 | 2exp11 42045 | . . 3 ⊢ (2↑;11) = ;;;2048 | |
9 | 4p1e5 11356 | . . . 4 ⊢ (4 + 1) = 5 | |
10 | eqid 2771 | . . . 4 ⊢ ;;204 = ;;204 | |
11 | 3, 4, 9, 10 | decsuc 11737 | . . 3 ⊢ (;;204 + 1) = ;;205 |
12 | 8m1e7 11344 | . . 3 ⊢ (8 − 1) = 7 | |
13 | 5, 6, 7, 8, 11, 12 | decsubi 11784 | . 2 ⊢ ((2↑;11) − 1) = ;;;2047 |
14 | 3nn0 11512 | . . . 4 ⊢ 3 ∈ ℕ0 | |
15 | 1, 14 | deccl 11714 | . . 3 ⊢ ;23 ∈ ℕ0 |
16 | 9nn0 11518 | . . 3 ⊢ 9 ∈ ℕ0 | |
17 | eqid 2771 | . . 3 ⊢ ;89 = ;89 | |
18 | 7nn0 11516 | . . 3 ⊢ 7 ∈ ℕ0 | |
19 | eqid 2771 | . . . 4 ⊢ ;23 = ;23 | |
20 | eqid 2771 | . . . 4 ⊢ ;20 = ;20 | |
21 | 8t2e16 11855 | . . . . . 6 ⊢ (8 · 2) = ;16 | |
22 | 2p2e4 11346 | . . . . . 6 ⊢ (2 + 2) = 4 | |
23 | 21, 22 | oveq12i 6805 | . . . . 5 ⊢ ((8 · 2) + (2 + 2)) = (;16 + 4) |
24 | 6nn0 11515 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
25 | eqid 2771 | . . . . . 6 ⊢ ;16 = ;16 | |
26 | 1p1e2 11336 | . . . . . 6 ⊢ (1 + 1) = 2 | |
27 | 6p4e10 11799 | . . . . . 6 ⊢ (6 + 4) = ;10 | |
28 | 7, 24, 4, 25, 26, 27 | decaddci2 11782 | . . . . 5 ⊢ (;16 + 4) = ;20 |
29 | 23, 28 | eqtri 2793 | . . . 4 ⊢ ((8 · 2) + (2 + 2)) = ;20 |
30 | 8t3e24 11856 | . . . . . 6 ⊢ (8 · 3) = ;24 | |
31 | 30 | oveq1i 6803 | . . . . 5 ⊢ ((8 · 3) + 0) = (;24 + 0) |
32 | 1, 4 | deccl 11714 | . . . . . . 7 ⊢ ;24 ∈ ℕ0 |
33 | 32 | nn0cni 11506 | . . . . . 6 ⊢ ;24 ∈ ℂ |
34 | 33 | addid1i 10425 | . . . . 5 ⊢ (;24 + 0) = ;24 |
35 | 31, 34 | eqtri 2793 | . . . 4 ⊢ ((8 · 3) + 0) = ;24 |
36 | 1, 14, 1, 2, 19, 20, 6, 4, 1, 29, 35 | decma2c 11769 | . . 3 ⊢ ((8 · ;23) + ;20) = ;;204 |
37 | 9t2e18 11864 | . . . . 5 ⊢ (9 · 2) = ;18 | |
38 | 8p2e10 11811 | . . . . 5 ⊢ (8 + 2) = ;10 | |
39 | 7, 6, 1, 37, 26, 38 | decaddci2 11782 | . . . 4 ⊢ ((9 · 2) + 2) = ;20 |
40 | 9t3e27 11865 | . . . 4 ⊢ (9 · 3) = ;27 | |
41 | 16, 1, 14, 19, 18, 1, 39, 40 | decmul2c 11790 | . . 3 ⊢ (9 · ;23) = ;;207 |
42 | 15, 6, 16, 17, 18, 3, 36, 41 | decmul1c 11788 | . 2 ⊢ (;89 · ;23) = ;;;2047 |
43 | 13, 42 | eqtr4i 2796 | 1 ⊢ ((2↑;11) − 1) = (;89 · ;23) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 (class class class)co 6793 0cc0 10138 1c1 10139 + caddc 10141 · cmul 10143 − cmin 10468 2c2 11272 3c3 11273 4c4 11274 5c5 11275 6c6 11276 7c7 11277 8c8 11278 9c9 11279 ;cdc 11695 ↑cexp 13067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-seq 13009 df-exp 13068 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |