![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > m11nprm | Structured version Visualization version GIF version |
Description: The eleventh Mersenne number M11 = 2047 is not a prime number. (Contributed by AV, 18-Aug-2021.) |
Ref | Expression |
---|---|
m11nprm | ⊢ ((2↑;11) − 1) = (;89 · ;23) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12570 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
2 | 0nn0 12568 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
3 | 1, 2 | deccl 12773 | . . . 4 ⊢ ;20 ∈ ℕ0 |
4 | 4nn0 12572 | . . . 4 ⊢ 4 ∈ ℕ0 | |
5 | 3, 4 | deccl 12773 | . . 3 ⊢ ;;204 ∈ ℕ0 |
6 | 8nn0 12576 | . . 3 ⊢ 8 ∈ ℕ0 | |
7 | 1nn0 12569 | . . 3 ⊢ 1 ∈ ℕ0 | |
8 | 2exp11 17137 | . . 3 ⊢ (2↑;11) = ;;;2048 | |
9 | 4p1e5 12439 | . . . 4 ⊢ (4 + 1) = 5 | |
10 | eqid 2740 | . . . 4 ⊢ ;;204 = ;;204 | |
11 | 3, 4, 9, 10 | decsuc 12789 | . . 3 ⊢ (;;204 + 1) = ;;205 |
12 | 8m1e7 12426 | . . 3 ⊢ (8 − 1) = 7 | |
13 | 5, 6, 7, 8, 11, 12 | decsubi 12821 | . 2 ⊢ ((2↑;11) − 1) = ;;;2047 |
14 | 3nn0 12571 | . . . 4 ⊢ 3 ∈ ℕ0 | |
15 | 1, 14 | deccl 12773 | . . 3 ⊢ ;23 ∈ ℕ0 |
16 | 9nn0 12577 | . . 3 ⊢ 9 ∈ ℕ0 | |
17 | eqid 2740 | . . 3 ⊢ ;89 = ;89 | |
18 | 7nn0 12575 | . . 3 ⊢ 7 ∈ ℕ0 | |
19 | eqid 2740 | . . . 4 ⊢ ;23 = ;23 | |
20 | eqid 2740 | . . . 4 ⊢ ;20 = ;20 | |
21 | 8t2e16 12873 | . . . . . 6 ⊢ (8 · 2) = ;16 | |
22 | 2p2e4 12428 | . . . . . 6 ⊢ (2 + 2) = 4 | |
23 | 21, 22 | oveq12i 7460 | . . . . 5 ⊢ ((8 · 2) + (2 + 2)) = (;16 + 4) |
24 | 6nn0 12574 | . . . . . 6 ⊢ 6 ∈ ℕ0 | |
25 | eqid 2740 | . . . . . 6 ⊢ ;16 = ;16 | |
26 | 1p1e2 12418 | . . . . . 6 ⊢ (1 + 1) = 2 | |
27 | 6p4e10 12830 | . . . . . 6 ⊢ (6 + 4) = ;10 | |
28 | 7, 24, 4, 25, 26, 27 | decaddci2 12820 | . . . . 5 ⊢ (;16 + 4) = ;20 |
29 | 23, 28 | eqtri 2768 | . . . 4 ⊢ ((8 · 2) + (2 + 2)) = ;20 |
30 | 8t3e24 12874 | . . . . . 6 ⊢ (8 · 3) = ;24 | |
31 | 30 | oveq1i 7458 | . . . . 5 ⊢ ((8 · 3) + 0) = (;24 + 0) |
32 | 1, 4 | deccl 12773 | . . . . . . 7 ⊢ ;24 ∈ ℕ0 |
33 | 32 | nn0cni 12565 | . . . . . 6 ⊢ ;24 ∈ ℂ |
34 | 33 | addridi 11477 | . . . . 5 ⊢ (;24 + 0) = ;24 |
35 | 31, 34 | eqtri 2768 | . . . 4 ⊢ ((8 · 3) + 0) = ;24 |
36 | 1, 14, 1, 2, 19, 20, 6, 4, 1, 29, 35 | decma2c 12811 | . . 3 ⊢ ((8 · ;23) + ;20) = ;;204 |
37 | 9t2e18 12880 | . . . . 5 ⊢ (9 · 2) = ;18 | |
38 | 8p2e10 12838 | . . . . 5 ⊢ (8 + 2) = ;10 | |
39 | 7, 6, 1, 37, 26, 38 | decaddci2 12820 | . . . 4 ⊢ ((9 · 2) + 2) = ;20 |
40 | 9t3e27 12881 | . . . 4 ⊢ (9 · 3) = ;27 | |
41 | 16, 1, 14, 19, 18, 1, 39, 40 | decmul2c 12824 | . . 3 ⊢ (9 · ;23) = ;;207 |
42 | 15, 6, 16, 17, 18, 3, 36, 41 | decmul1c 12823 | . 2 ⊢ (;89 · ;23) = ;;;2047 |
43 | 13, 42 | eqtr4i 2771 | 1 ⊢ ((2↑;11) − 1) = (;89 · ;23) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 − cmin 11520 2c2 12348 3c3 12349 4c4 12350 5c5 12351 6c6 12352 7c7 12353 8c8 12354 9c9 12355 ;cdc 12758 ↑cexp 14112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-seq 14053 df-exp 14113 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |