![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fib5 | Structured version Visualization version GIF version |
Description: Value of the Fibonacci sequence at index 5. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
Ref | Expression |
---|---|
fib5 | ⊢ (Fibci‘5) = 5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4p1e5 12356 | . . 3 ⊢ (4 + 1) = 5 | |
2 | 1 | fveq2i 6885 | . 2 ⊢ (Fibci‘(4 + 1)) = (Fibci‘5) |
3 | 4nn 12293 | . . . 4 ⊢ 4 ∈ ℕ | |
4 | fibp1 33892 | . . . 4 ⊢ (4 ∈ ℕ → (Fibci‘(4 + 1)) = ((Fibci‘(4 − 1)) + (Fibci‘4))) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (Fibci‘(4 + 1)) = ((Fibci‘(4 − 1)) + (Fibci‘4)) |
6 | 4cn 12295 | . . . . . . 7 ⊢ 4 ∈ ℂ | |
7 | ax-1cn 11165 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
8 | 3cn 12291 | . . . . . . 7 ⊢ 3 ∈ ℂ | |
9 | 3p1e4 12355 | . . . . . . . 8 ⊢ (3 + 1) = 4 | |
10 | 8, 7, 9 | addcomli 11404 | . . . . . . 7 ⊢ (1 + 3) = 4 |
11 | 6, 7, 8, 10 | subaddrii 11547 | . . . . . 6 ⊢ (4 − 1) = 3 |
12 | 11 | fveq2i 6885 | . . . . 5 ⊢ (Fibci‘(4 − 1)) = (Fibci‘3) |
13 | fib3 33894 | . . . . 5 ⊢ (Fibci‘3) = 2 | |
14 | 12, 13 | eqtri 2752 | . . . 4 ⊢ (Fibci‘(4 − 1)) = 2 |
15 | fib4 33895 | . . . 4 ⊢ (Fibci‘4) = 3 | |
16 | 14, 15 | oveq12i 7414 | . . 3 ⊢ ((Fibci‘(4 − 1)) + (Fibci‘4)) = (2 + 3) |
17 | 2cn 12285 | . . . 4 ⊢ 2 ∈ ℂ | |
18 | 3p2e5 12361 | . . . 4 ⊢ (3 + 2) = 5 | |
19 | 8, 17, 18 | addcomli 11404 | . . 3 ⊢ (2 + 3) = 5 |
20 | 5, 16, 19 | 3eqtri 2756 | . 2 ⊢ (Fibci‘(4 + 1)) = 5 |
21 | 2, 20 | eqtr3i 2754 | 1 ⊢ (Fibci‘5) = 5 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 ‘cfv 6534 (class class class)co 7402 1c1 11108 + caddc 11110 − cmin 11442 ℕcn 12210 2c2 12265 3c3 12266 4c4 12267 5c5 12268 Fibcicfib 33887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-inf2 9633 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-card 9931 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-nn 12211 df-2 12273 df-3 12274 df-4 12275 df-5 12276 df-n0 12471 df-xnn0 12543 df-z 12557 df-uz 12821 df-rp 12973 df-fz 13483 df-fzo 13626 df-seq 13965 df-hash 14289 df-word 14463 df-lsw 14511 df-concat 14519 df-s1 14544 df-substr 14589 df-pfx 14619 df-s2 14797 df-sseq 33875 df-fib 33888 |
This theorem is referenced by: fib6 33897 |
Copyright terms: Public domain | W3C validator |