![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5faclem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for fmtno5fac 46250. (Contributed by AV, 22-Jul-2021.) |
Ref | Expression |
---|---|
fmtno5faclem2 | ⊢ (;;;;;;6700417 · 6) = ;;;;;;;40202502 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn0 12493 | . 2 ⊢ 6 ∈ ℕ0 | |
2 | 7nn0 12494 | . . . . . . 7 ⊢ 7 ∈ ℕ0 | |
3 | 1, 2 | deccl 12692 | . . . . . 6 ⊢ ;67 ∈ ℕ0 |
4 | 0nn0 12487 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
5 | 3, 4 | deccl 12692 | . . . . 5 ⊢ ;;670 ∈ ℕ0 |
6 | 5, 4 | deccl 12692 | . . . 4 ⊢ ;;;6700 ∈ ℕ0 |
7 | 4nn0 12491 | . . . 4 ⊢ 4 ∈ ℕ0 | |
8 | 6, 7 | deccl 12692 | . . 3 ⊢ ;;;;67004 ∈ ℕ0 |
9 | 1nn0 12488 | . . 3 ⊢ 1 ∈ ℕ0 | |
10 | 8, 9 | deccl 12692 | . 2 ⊢ ;;;;;670041 ∈ ℕ0 |
11 | eqid 2733 | . 2 ⊢ ;;;;;;6700417 = ;;;;;;6700417 | |
12 | 2nn0 12489 | . 2 ⊢ 2 ∈ ℕ0 | |
13 | 7, 4 | deccl 12692 | . . . . . . 7 ⊢ ;40 ∈ ℕ0 |
14 | 13, 12 | deccl 12692 | . . . . . 6 ⊢ ;;402 ∈ ℕ0 |
15 | 14, 4 | deccl 12692 | . . . . 5 ⊢ ;;;4020 ∈ ℕ0 |
16 | 15, 12 | deccl 12692 | . . . 4 ⊢ ;;;;40202 ∈ ℕ0 |
17 | 16, 7 | deccl 12692 | . . 3 ⊢ ;;;;;402024 ∈ ℕ0 |
18 | eqid 2733 | . . . 4 ⊢ ;;;;;670041 = ;;;;;670041 | |
19 | eqid 2733 | . . . . 5 ⊢ ;;;;67004 = ;;;;67004 | |
20 | eqid 2733 | . . . . . . 7 ⊢ ;;;6700 = ;;;6700 | |
21 | eqid 2733 | . . . . . . . 8 ⊢ ;;670 = ;;670 | |
22 | eqid 2733 | . . . . . . . . 9 ⊢ ;67 = ;67 | |
23 | 3nn0 12490 | . . . . . . . . . 10 ⊢ 3 ∈ ℕ0 | |
24 | 6t6e36 12785 | . . . . . . . . . 10 ⊢ (6 · 6) = ;36 | |
25 | 3p1e4 12357 | . . . . . . . . . 10 ⊢ (3 + 1) = 4 | |
26 | 6p4e10 12749 | . . . . . . . . . 10 ⊢ (6 + 4) = ;10 | |
27 | 23, 1, 7, 24, 25, 26 | decaddci2 12739 | . . . . . . . . 9 ⊢ ((6 · 6) + 4) = ;40 |
28 | 7t6e42 12790 | . . . . . . . . 9 ⊢ (7 · 6) = ;42 | |
29 | 1, 1, 2, 22, 12, 7, 27, 28 | decmul1c 12742 | . . . . . . . 8 ⊢ (;67 · 6) = ;;402 |
30 | 6cn 12303 | . . . . . . . . 9 ⊢ 6 ∈ ℂ | |
31 | 30 | mul02i 11403 | . . . . . . . 8 ⊢ (0 · 6) = 0 |
32 | 1, 3, 4, 21, 29, 31 | decmul1 12741 | . . . . . . 7 ⊢ (;;670 · 6) = ;;;4020 |
33 | 1, 5, 4, 20, 32, 31 | decmul1 12741 | . . . . . 6 ⊢ (;;;6700 · 6) = ;;;;40200 |
34 | 2cn 12287 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
35 | 34 | addlidi 11402 | . . . . . 6 ⊢ (0 + 2) = 2 |
36 | 15, 4, 12, 33, 35 | decaddi 12737 | . . . . 5 ⊢ ((;;;6700 · 6) + 2) = ;;;;40202 |
37 | 4cn 12297 | . . . . . 6 ⊢ 4 ∈ ℂ | |
38 | 6t4e24 12783 | . . . . . 6 ⊢ (6 · 4) = ;24 | |
39 | 30, 37, 38 | mulcomli 11223 | . . . . 5 ⊢ (4 · 6) = ;24 |
40 | 1, 6, 7, 19, 7, 12, 36, 39 | decmul1c 12742 | . . . 4 ⊢ (;;;;67004 · 6) = ;;;;;402024 |
41 | 30 | mullidi 11219 | . . . 4 ⊢ (1 · 6) = 6 |
42 | 1, 8, 9, 18, 40, 41 | decmul1 12741 | . . 3 ⊢ (;;;;;670041 · 6) = ;;;;;;4020246 |
43 | eqid 2733 | . . . 4 ⊢ ;;;;;402024 = ;;;;;402024 | |
44 | 4p1e5 12358 | . . . 4 ⊢ (4 + 1) = 5 | |
45 | 16, 7, 9, 43, 44 | decaddi 12737 | . . 3 ⊢ (;;;;;402024 + 1) = ;;;;;402025 |
46 | 17, 1, 7, 42, 45, 26 | decaddci2 12739 | . 2 ⊢ ((;;;;;670041 · 6) + 4) = ;;;;;;4020250 |
47 | 1, 10, 2, 11, 12, 7, 46, 28 | decmul1c 12742 | 1 ⊢ (;;;;;;6700417 · 6) = ;;;;;;;40202502 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 (class class class)co 7409 0cc0 11110 1c1 11111 · cmul 11115 2c2 12267 3c3 12268 4c4 12269 5c5 12270 6c6 12271 7c7 12272 ;cdc 12677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-sub 11446 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-dec 12678 |
This theorem is referenced by: fmtno5fac 46250 |
Copyright terms: Public domain | W3C validator |