Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5faclem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for fmtno5fac 44922. (Contributed by AV, 22-Jul-2021.) |
Ref | Expression |
---|---|
fmtno5faclem2 | ⊢ (;;;;;;6700417 · 6) = ;;;;;;;40202502 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn0 12184 | . 2 ⊢ 6 ∈ ℕ0 | |
2 | 7nn0 12185 | . . . . . . 7 ⊢ 7 ∈ ℕ0 | |
3 | 1, 2 | deccl 12381 | . . . . . 6 ⊢ ;67 ∈ ℕ0 |
4 | 0nn0 12178 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
5 | 3, 4 | deccl 12381 | . . . . 5 ⊢ ;;670 ∈ ℕ0 |
6 | 5, 4 | deccl 12381 | . . . 4 ⊢ ;;;6700 ∈ ℕ0 |
7 | 4nn0 12182 | . . . 4 ⊢ 4 ∈ ℕ0 | |
8 | 6, 7 | deccl 12381 | . . 3 ⊢ ;;;;67004 ∈ ℕ0 |
9 | 1nn0 12179 | . . 3 ⊢ 1 ∈ ℕ0 | |
10 | 8, 9 | deccl 12381 | . 2 ⊢ ;;;;;670041 ∈ ℕ0 |
11 | eqid 2738 | . 2 ⊢ ;;;;;;6700417 = ;;;;;;6700417 | |
12 | 2nn0 12180 | . 2 ⊢ 2 ∈ ℕ0 | |
13 | 7, 4 | deccl 12381 | . . . . . . 7 ⊢ ;40 ∈ ℕ0 |
14 | 13, 12 | deccl 12381 | . . . . . 6 ⊢ ;;402 ∈ ℕ0 |
15 | 14, 4 | deccl 12381 | . . . . 5 ⊢ ;;;4020 ∈ ℕ0 |
16 | 15, 12 | deccl 12381 | . . . 4 ⊢ ;;;;40202 ∈ ℕ0 |
17 | 16, 7 | deccl 12381 | . . 3 ⊢ ;;;;;402024 ∈ ℕ0 |
18 | eqid 2738 | . . . 4 ⊢ ;;;;;670041 = ;;;;;670041 | |
19 | eqid 2738 | . . . . 5 ⊢ ;;;;67004 = ;;;;67004 | |
20 | eqid 2738 | . . . . . . 7 ⊢ ;;;6700 = ;;;6700 | |
21 | eqid 2738 | . . . . . . . 8 ⊢ ;;670 = ;;670 | |
22 | eqid 2738 | . . . . . . . . 9 ⊢ ;67 = ;67 | |
23 | 3nn0 12181 | . . . . . . . . . 10 ⊢ 3 ∈ ℕ0 | |
24 | 6t6e36 12474 | . . . . . . . . . 10 ⊢ (6 · 6) = ;36 | |
25 | 3p1e4 12048 | . . . . . . . . . 10 ⊢ (3 + 1) = 4 | |
26 | 6p4e10 12438 | . . . . . . . . . 10 ⊢ (6 + 4) = ;10 | |
27 | 23, 1, 7, 24, 25, 26 | decaddci2 12428 | . . . . . . . . 9 ⊢ ((6 · 6) + 4) = ;40 |
28 | 7t6e42 12479 | . . . . . . . . 9 ⊢ (7 · 6) = ;42 | |
29 | 1, 1, 2, 22, 12, 7, 27, 28 | decmul1c 12431 | . . . . . . . 8 ⊢ (;67 · 6) = ;;402 |
30 | 6cn 11994 | . . . . . . . . 9 ⊢ 6 ∈ ℂ | |
31 | 30 | mul02i 11094 | . . . . . . . 8 ⊢ (0 · 6) = 0 |
32 | 1, 3, 4, 21, 29, 31 | decmul1 12430 | . . . . . . 7 ⊢ (;;670 · 6) = ;;;4020 |
33 | 1, 5, 4, 20, 32, 31 | decmul1 12430 | . . . . . 6 ⊢ (;;;6700 · 6) = ;;;;40200 |
34 | 2cn 11978 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
35 | 34 | addid2i 11093 | . . . . . 6 ⊢ (0 + 2) = 2 |
36 | 15, 4, 12, 33, 35 | decaddi 12426 | . . . . 5 ⊢ ((;;;6700 · 6) + 2) = ;;;;40202 |
37 | 4cn 11988 | . . . . . 6 ⊢ 4 ∈ ℂ | |
38 | 6t4e24 12472 | . . . . . 6 ⊢ (6 · 4) = ;24 | |
39 | 30, 37, 38 | mulcomli 10915 | . . . . 5 ⊢ (4 · 6) = ;24 |
40 | 1, 6, 7, 19, 7, 12, 36, 39 | decmul1c 12431 | . . . 4 ⊢ (;;;;67004 · 6) = ;;;;;402024 |
41 | 30 | mulid2i 10911 | . . . 4 ⊢ (1 · 6) = 6 |
42 | 1, 8, 9, 18, 40, 41 | decmul1 12430 | . . 3 ⊢ (;;;;;670041 · 6) = ;;;;;;4020246 |
43 | eqid 2738 | . . . 4 ⊢ ;;;;;402024 = ;;;;;402024 | |
44 | 4p1e5 12049 | . . . 4 ⊢ (4 + 1) = 5 | |
45 | 16, 7, 9, 43, 44 | decaddi 12426 | . . 3 ⊢ (;;;;;402024 + 1) = ;;;;;402025 |
46 | 17, 1, 7, 42, 45, 26 | decaddci2 12428 | . 2 ⊢ ((;;;;;670041 · 6) + 4) = ;;;;;;4020250 |
47 | 1, 10, 2, 11, 12, 7, 46, 28 | decmul1c 12431 | 1 ⊢ (;;;;;;6700417 · 6) = ;;;;;;;40202502 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7255 0cc0 10802 1c1 10803 · cmul 10807 2c2 11958 3c3 11959 4c4 11960 5c5 11961 6c6 11962 7c7 11963 ;cdc 12366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-dec 12367 |
This theorem is referenced by: fmtno5fac 44922 |
Copyright terms: Public domain | W3C validator |