![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5faclem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for fmtno5fac 47507. (Contributed by AV, 22-Jul-2021.) |
Ref | Expression |
---|---|
fmtno5faclem2 | ⊢ (;;;;;;6700417 · 6) = ;;;;;;;40202502 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn0 12545 | . 2 ⊢ 6 ∈ ℕ0 | |
2 | 7nn0 12546 | . . . . . . 7 ⊢ 7 ∈ ℕ0 | |
3 | 1, 2 | deccl 12746 | . . . . . 6 ⊢ ;67 ∈ ℕ0 |
4 | 0nn0 12539 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
5 | 3, 4 | deccl 12746 | . . . . 5 ⊢ ;;670 ∈ ℕ0 |
6 | 5, 4 | deccl 12746 | . . . 4 ⊢ ;;;6700 ∈ ℕ0 |
7 | 4nn0 12543 | . . . 4 ⊢ 4 ∈ ℕ0 | |
8 | 6, 7 | deccl 12746 | . . 3 ⊢ ;;;;67004 ∈ ℕ0 |
9 | 1nn0 12540 | . . 3 ⊢ 1 ∈ ℕ0 | |
10 | 8, 9 | deccl 12746 | . 2 ⊢ ;;;;;670041 ∈ ℕ0 |
11 | eqid 2735 | . 2 ⊢ ;;;;;;6700417 = ;;;;;;6700417 | |
12 | 2nn0 12541 | . 2 ⊢ 2 ∈ ℕ0 | |
13 | 7, 4 | deccl 12746 | . . . . . . 7 ⊢ ;40 ∈ ℕ0 |
14 | 13, 12 | deccl 12746 | . . . . . 6 ⊢ ;;402 ∈ ℕ0 |
15 | 14, 4 | deccl 12746 | . . . . 5 ⊢ ;;;4020 ∈ ℕ0 |
16 | 15, 12 | deccl 12746 | . . . 4 ⊢ ;;;;40202 ∈ ℕ0 |
17 | 16, 7 | deccl 12746 | . . 3 ⊢ ;;;;;402024 ∈ ℕ0 |
18 | eqid 2735 | . . . 4 ⊢ ;;;;;670041 = ;;;;;670041 | |
19 | eqid 2735 | . . . . 5 ⊢ ;;;;67004 = ;;;;67004 | |
20 | eqid 2735 | . . . . . . 7 ⊢ ;;;6700 = ;;;6700 | |
21 | eqid 2735 | . . . . . . . 8 ⊢ ;;670 = ;;670 | |
22 | eqid 2735 | . . . . . . . . 9 ⊢ ;67 = ;67 | |
23 | 3nn0 12542 | . . . . . . . . . 10 ⊢ 3 ∈ ℕ0 | |
24 | 6t6e36 12839 | . . . . . . . . . 10 ⊢ (6 · 6) = ;36 | |
25 | 3p1e4 12409 | . . . . . . . . . 10 ⊢ (3 + 1) = 4 | |
26 | 6p4e10 12803 | . . . . . . . . . 10 ⊢ (6 + 4) = ;10 | |
27 | 23, 1, 7, 24, 25, 26 | decaddci2 12793 | . . . . . . . . 9 ⊢ ((6 · 6) + 4) = ;40 |
28 | 7t6e42 12844 | . . . . . . . . 9 ⊢ (7 · 6) = ;42 | |
29 | 1, 1, 2, 22, 12, 7, 27, 28 | decmul1c 12796 | . . . . . . . 8 ⊢ (;67 · 6) = ;;402 |
30 | 6cn 12355 | . . . . . . . . 9 ⊢ 6 ∈ ℂ | |
31 | 30 | mul02i 11448 | . . . . . . . 8 ⊢ (0 · 6) = 0 |
32 | 1, 3, 4, 21, 29, 31 | decmul1 12795 | . . . . . . 7 ⊢ (;;670 · 6) = ;;;4020 |
33 | 1, 5, 4, 20, 32, 31 | decmul1 12795 | . . . . . 6 ⊢ (;;;6700 · 6) = ;;;;40200 |
34 | 2cn 12339 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
35 | 34 | addlidi 11447 | . . . . . 6 ⊢ (0 + 2) = 2 |
36 | 15, 4, 12, 33, 35 | decaddi 12791 | . . . . 5 ⊢ ((;;;6700 · 6) + 2) = ;;;;40202 |
37 | 4cn 12349 | . . . . . 6 ⊢ 4 ∈ ℂ | |
38 | 6t4e24 12837 | . . . . . 6 ⊢ (6 · 4) = ;24 | |
39 | 30, 37, 38 | mulcomli 11268 | . . . . 5 ⊢ (4 · 6) = ;24 |
40 | 1, 6, 7, 19, 7, 12, 36, 39 | decmul1c 12796 | . . . 4 ⊢ (;;;;67004 · 6) = ;;;;;402024 |
41 | 30 | mullidi 11264 | . . . 4 ⊢ (1 · 6) = 6 |
42 | 1, 8, 9, 18, 40, 41 | decmul1 12795 | . . 3 ⊢ (;;;;;670041 · 6) = ;;;;;;4020246 |
43 | eqid 2735 | . . . 4 ⊢ ;;;;;402024 = ;;;;;402024 | |
44 | 4p1e5 12410 | . . . 4 ⊢ (4 + 1) = 5 | |
45 | 16, 7, 9, 43, 44 | decaddi 12791 | . . 3 ⊢ (;;;;;402024 + 1) = ;;;;;402025 |
46 | 17, 1, 7, 42, 45, 26 | decaddci2 12793 | . 2 ⊢ ((;;;;;670041 · 6) + 4) = ;;;;;;4020250 |
47 | 1, 10, 2, 11, 12, 7, 46, 28 | decmul1c 12796 | 1 ⊢ (;;;;;;6700417 · 6) = ;;;;;;;40202502 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7431 0cc0 11153 1c1 11154 · cmul 11158 2c2 12319 3c3 12320 4c4 12321 5c5 12322 6c6 12323 7c7 12324 ;cdc 12731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-sub 11492 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-dec 12732 |
This theorem is referenced by: fmtno5fac 47507 |
Copyright terms: Public domain | W3C validator |