| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5faclem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for fmtno5fac 47583. (Contributed by AV, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno5faclem2 | ⊢ (;;;;;;6700417 · 6) = ;;;;;;;40202502 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn0 12463 | . 2 ⊢ 6 ∈ ℕ0 | |
| 2 | 7nn0 12464 | . . . . . . 7 ⊢ 7 ∈ ℕ0 | |
| 3 | 1, 2 | deccl 12664 | . . . . . 6 ⊢ ;67 ∈ ℕ0 |
| 4 | 0nn0 12457 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 5 | 3, 4 | deccl 12664 | . . . . 5 ⊢ ;;670 ∈ ℕ0 |
| 6 | 5, 4 | deccl 12664 | . . . 4 ⊢ ;;;6700 ∈ ℕ0 |
| 7 | 4nn0 12461 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 8 | 6, 7 | deccl 12664 | . . 3 ⊢ ;;;;67004 ∈ ℕ0 |
| 9 | 1nn0 12458 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 10 | 8, 9 | deccl 12664 | . 2 ⊢ ;;;;;670041 ∈ ℕ0 |
| 11 | eqid 2729 | . 2 ⊢ ;;;;;;6700417 = ;;;;;;6700417 | |
| 12 | 2nn0 12459 | . 2 ⊢ 2 ∈ ℕ0 | |
| 13 | 7, 4 | deccl 12664 | . . . . . . 7 ⊢ ;40 ∈ ℕ0 |
| 14 | 13, 12 | deccl 12664 | . . . . . 6 ⊢ ;;402 ∈ ℕ0 |
| 15 | 14, 4 | deccl 12664 | . . . . 5 ⊢ ;;;4020 ∈ ℕ0 |
| 16 | 15, 12 | deccl 12664 | . . . 4 ⊢ ;;;;40202 ∈ ℕ0 |
| 17 | 16, 7 | deccl 12664 | . . 3 ⊢ ;;;;;402024 ∈ ℕ0 |
| 18 | eqid 2729 | . . . 4 ⊢ ;;;;;670041 = ;;;;;670041 | |
| 19 | eqid 2729 | . . . . 5 ⊢ ;;;;67004 = ;;;;67004 | |
| 20 | eqid 2729 | . . . . . . 7 ⊢ ;;;6700 = ;;;6700 | |
| 21 | eqid 2729 | . . . . . . . 8 ⊢ ;;670 = ;;670 | |
| 22 | eqid 2729 | . . . . . . . . 9 ⊢ ;67 = ;67 | |
| 23 | 3nn0 12460 | . . . . . . . . . 10 ⊢ 3 ∈ ℕ0 | |
| 24 | 6t6e36 12757 | . . . . . . . . . 10 ⊢ (6 · 6) = ;36 | |
| 25 | 3p1e4 12326 | . . . . . . . . . 10 ⊢ (3 + 1) = 4 | |
| 26 | 6p4e10 12721 | . . . . . . . . . 10 ⊢ (6 + 4) = ;10 | |
| 27 | 23, 1, 7, 24, 25, 26 | decaddci2 12711 | . . . . . . . . 9 ⊢ ((6 · 6) + 4) = ;40 |
| 28 | 7t6e42 12762 | . . . . . . . . 9 ⊢ (7 · 6) = ;42 | |
| 29 | 1, 1, 2, 22, 12, 7, 27, 28 | decmul1c 12714 | . . . . . . . 8 ⊢ (;67 · 6) = ;;402 |
| 30 | 6cn 12277 | . . . . . . . . 9 ⊢ 6 ∈ ℂ | |
| 31 | 30 | mul02i 11363 | . . . . . . . 8 ⊢ (0 · 6) = 0 |
| 32 | 1, 3, 4, 21, 29, 31 | decmul1 12713 | . . . . . . 7 ⊢ (;;670 · 6) = ;;;4020 |
| 33 | 1, 5, 4, 20, 32, 31 | decmul1 12713 | . . . . . 6 ⊢ (;;;6700 · 6) = ;;;;40200 |
| 34 | 2cn 12261 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 35 | 34 | addlidi 11362 | . . . . . 6 ⊢ (0 + 2) = 2 |
| 36 | 15, 4, 12, 33, 35 | decaddi 12709 | . . . . 5 ⊢ ((;;;6700 · 6) + 2) = ;;;;40202 |
| 37 | 4cn 12271 | . . . . . 6 ⊢ 4 ∈ ℂ | |
| 38 | 6t4e24 12755 | . . . . . 6 ⊢ (6 · 4) = ;24 | |
| 39 | 30, 37, 38 | mulcomli 11183 | . . . . 5 ⊢ (4 · 6) = ;24 |
| 40 | 1, 6, 7, 19, 7, 12, 36, 39 | decmul1c 12714 | . . . 4 ⊢ (;;;;67004 · 6) = ;;;;;402024 |
| 41 | 30 | mullidi 11179 | . . . 4 ⊢ (1 · 6) = 6 |
| 42 | 1, 8, 9, 18, 40, 41 | decmul1 12713 | . . 3 ⊢ (;;;;;670041 · 6) = ;;;;;;4020246 |
| 43 | eqid 2729 | . . . 4 ⊢ ;;;;;402024 = ;;;;;402024 | |
| 44 | 4p1e5 12327 | . . . 4 ⊢ (4 + 1) = 5 | |
| 45 | 16, 7, 9, 43, 44 | decaddi 12709 | . . 3 ⊢ (;;;;;402024 + 1) = ;;;;;402025 |
| 46 | 17, 1, 7, 42, 45, 26 | decaddci2 12711 | . 2 ⊢ ((;;;;;670041 · 6) + 4) = ;;;;;;4020250 |
| 47 | 1, 10, 2, 11, 12, 7, 46, 28 | decmul1c 12714 | 1 ⊢ (;;;;;;6700417 · 6) = ;;;;;;;40202502 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 0cc0 11068 1c1 11069 · cmul 11073 2c2 12241 3c3 12242 4c4 12243 5c5 12244 6c6 12245 7c7 12246 ;cdc 12649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-dec 12650 |
| This theorem is referenced by: fmtno5fac 47583 |
| Copyright terms: Public domain | W3C validator |