| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5faclem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for fmtno5fac 47570. (Contributed by AV, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno5faclem2 | ⊢ (;;;;;;6700417 · 6) = ;;;;;;;40202502 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn0 12423 | . 2 ⊢ 6 ∈ ℕ0 | |
| 2 | 7nn0 12424 | . . . . . . 7 ⊢ 7 ∈ ℕ0 | |
| 3 | 1, 2 | deccl 12624 | . . . . . 6 ⊢ ;67 ∈ ℕ0 |
| 4 | 0nn0 12417 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 5 | 3, 4 | deccl 12624 | . . . . 5 ⊢ ;;670 ∈ ℕ0 |
| 6 | 5, 4 | deccl 12624 | . . . 4 ⊢ ;;;6700 ∈ ℕ0 |
| 7 | 4nn0 12421 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 8 | 6, 7 | deccl 12624 | . . 3 ⊢ ;;;;67004 ∈ ℕ0 |
| 9 | 1nn0 12418 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 10 | 8, 9 | deccl 12624 | . 2 ⊢ ;;;;;670041 ∈ ℕ0 |
| 11 | eqid 2729 | . 2 ⊢ ;;;;;;6700417 = ;;;;;;6700417 | |
| 12 | 2nn0 12419 | . 2 ⊢ 2 ∈ ℕ0 | |
| 13 | 7, 4 | deccl 12624 | . . . . . . 7 ⊢ ;40 ∈ ℕ0 |
| 14 | 13, 12 | deccl 12624 | . . . . . 6 ⊢ ;;402 ∈ ℕ0 |
| 15 | 14, 4 | deccl 12624 | . . . . 5 ⊢ ;;;4020 ∈ ℕ0 |
| 16 | 15, 12 | deccl 12624 | . . . 4 ⊢ ;;;;40202 ∈ ℕ0 |
| 17 | 16, 7 | deccl 12624 | . . 3 ⊢ ;;;;;402024 ∈ ℕ0 |
| 18 | eqid 2729 | . . . 4 ⊢ ;;;;;670041 = ;;;;;670041 | |
| 19 | eqid 2729 | . . . . 5 ⊢ ;;;;67004 = ;;;;67004 | |
| 20 | eqid 2729 | . . . . . . 7 ⊢ ;;;6700 = ;;;6700 | |
| 21 | eqid 2729 | . . . . . . . 8 ⊢ ;;670 = ;;670 | |
| 22 | eqid 2729 | . . . . . . . . 9 ⊢ ;67 = ;67 | |
| 23 | 3nn0 12420 | . . . . . . . . . 10 ⊢ 3 ∈ ℕ0 | |
| 24 | 6t6e36 12717 | . . . . . . . . . 10 ⊢ (6 · 6) = ;36 | |
| 25 | 3p1e4 12286 | . . . . . . . . . 10 ⊢ (3 + 1) = 4 | |
| 26 | 6p4e10 12681 | . . . . . . . . . 10 ⊢ (6 + 4) = ;10 | |
| 27 | 23, 1, 7, 24, 25, 26 | decaddci2 12671 | . . . . . . . . 9 ⊢ ((6 · 6) + 4) = ;40 |
| 28 | 7t6e42 12722 | . . . . . . . . 9 ⊢ (7 · 6) = ;42 | |
| 29 | 1, 1, 2, 22, 12, 7, 27, 28 | decmul1c 12674 | . . . . . . . 8 ⊢ (;67 · 6) = ;;402 |
| 30 | 6cn 12237 | . . . . . . . . 9 ⊢ 6 ∈ ℂ | |
| 31 | 30 | mul02i 11323 | . . . . . . . 8 ⊢ (0 · 6) = 0 |
| 32 | 1, 3, 4, 21, 29, 31 | decmul1 12673 | . . . . . . 7 ⊢ (;;670 · 6) = ;;;4020 |
| 33 | 1, 5, 4, 20, 32, 31 | decmul1 12673 | . . . . . 6 ⊢ (;;;6700 · 6) = ;;;;40200 |
| 34 | 2cn 12221 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 35 | 34 | addlidi 11322 | . . . . . 6 ⊢ (0 + 2) = 2 |
| 36 | 15, 4, 12, 33, 35 | decaddi 12669 | . . . . 5 ⊢ ((;;;6700 · 6) + 2) = ;;;;40202 |
| 37 | 4cn 12231 | . . . . . 6 ⊢ 4 ∈ ℂ | |
| 38 | 6t4e24 12715 | . . . . . 6 ⊢ (6 · 4) = ;24 | |
| 39 | 30, 37, 38 | mulcomli 11143 | . . . . 5 ⊢ (4 · 6) = ;24 |
| 40 | 1, 6, 7, 19, 7, 12, 36, 39 | decmul1c 12674 | . . . 4 ⊢ (;;;;67004 · 6) = ;;;;;402024 |
| 41 | 30 | mullidi 11139 | . . . 4 ⊢ (1 · 6) = 6 |
| 42 | 1, 8, 9, 18, 40, 41 | decmul1 12673 | . . 3 ⊢ (;;;;;670041 · 6) = ;;;;;;4020246 |
| 43 | eqid 2729 | . . . 4 ⊢ ;;;;;402024 = ;;;;;402024 | |
| 44 | 4p1e5 12287 | . . . 4 ⊢ (4 + 1) = 5 | |
| 45 | 16, 7, 9, 43, 44 | decaddi 12669 | . . 3 ⊢ (;;;;;402024 + 1) = ;;;;;402025 |
| 46 | 17, 1, 7, 42, 45, 26 | decaddci2 12671 | . 2 ⊢ ((;;;;;670041 · 6) + 4) = ;;;;;;4020250 |
| 47 | 1, 10, 2, 11, 12, 7, 46, 28 | decmul1c 12674 | 1 ⊢ (;;;;;;6700417 · 6) = ;;;;;;;40202502 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7353 0cc0 11028 1c1 11029 · cmul 11033 2c2 12201 3c3 12202 4c4 12203 5c5 12204 6c6 12205 7c7 12206 ;cdc 12609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-sub 11367 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-dec 12610 |
| This theorem is referenced by: fmtno5fac 47570 |
| Copyright terms: Public domain | W3C validator |