![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5faclem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for fmtno5fac 46835. (Contributed by AV, 22-Jul-2021.) |
Ref | Expression |
---|---|
fmtno5faclem2 | ⊢ (;;;;;;6700417 · 6) = ;;;;;;;40202502 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn0 12509 | . 2 ⊢ 6 ∈ ℕ0 | |
2 | 7nn0 12510 | . . . . . . 7 ⊢ 7 ∈ ℕ0 | |
3 | 1, 2 | deccl 12708 | . . . . . 6 ⊢ ;67 ∈ ℕ0 |
4 | 0nn0 12503 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
5 | 3, 4 | deccl 12708 | . . . . 5 ⊢ ;;670 ∈ ℕ0 |
6 | 5, 4 | deccl 12708 | . . . 4 ⊢ ;;;6700 ∈ ℕ0 |
7 | 4nn0 12507 | . . . 4 ⊢ 4 ∈ ℕ0 | |
8 | 6, 7 | deccl 12708 | . . 3 ⊢ ;;;;67004 ∈ ℕ0 |
9 | 1nn0 12504 | . . 3 ⊢ 1 ∈ ℕ0 | |
10 | 8, 9 | deccl 12708 | . 2 ⊢ ;;;;;670041 ∈ ℕ0 |
11 | eqid 2727 | . 2 ⊢ ;;;;;;6700417 = ;;;;;;6700417 | |
12 | 2nn0 12505 | . 2 ⊢ 2 ∈ ℕ0 | |
13 | 7, 4 | deccl 12708 | . . . . . . 7 ⊢ ;40 ∈ ℕ0 |
14 | 13, 12 | deccl 12708 | . . . . . 6 ⊢ ;;402 ∈ ℕ0 |
15 | 14, 4 | deccl 12708 | . . . . 5 ⊢ ;;;4020 ∈ ℕ0 |
16 | 15, 12 | deccl 12708 | . . . 4 ⊢ ;;;;40202 ∈ ℕ0 |
17 | 16, 7 | deccl 12708 | . . 3 ⊢ ;;;;;402024 ∈ ℕ0 |
18 | eqid 2727 | . . . 4 ⊢ ;;;;;670041 = ;;;;;670041 | |
19 | eqid 2727 | . . . . 5 ⊢ ;;;;67004 = ;;;;67004 | |
20 | eqid 2727 | . . . . . . 7 ⊢ ;;;6700 = ;;;6700 | |
21 | eqid 2727 | . . . . . . . 8 ⊢ ;;670 = ;;670 | |
22 | eqid 2727 | . . . . . . . . 9 ⊢ ;67 = ;67 | |
23 | 3nn0 12506 | . . . . . . . . . 10 ⊢ 3 ∈ ℕ0 | |
24 | 6t6e36 12801 | . . . . . . . . . 10 ⊢ (6 · 6) = ;36 | |
25 | 3p1e4 12373 | . . . . . . . . . 10 ⊢ (3 + 1) = 4 | |
26 | 6p4e10 12765 | . . . . . . . . . 10 ⊢ (6 + 4) = ;10 | |
27 | 23, 1, 7, 24, 25, 26 | decaddci2 12755 | . . . . . . . . 9 ⊢ ((6 · 6) + 4) = ;40 |
28 | 7t6e42 12806 | . . . . . . . . 9 ⊢ (7 · 6) = ;42 | |
29 | 1, 1, 2, 22, 12, 7, 27, 28 | decmul1c 12758 | . . . . . . . 8 ⊢ (;67 · 6) = ;;402 |
30 | 6cn 12319 | . . . . . . . . 9 ⊢ 6 ∈ ℂ | |
31 | 30 | mul02i 11419 | . . . . . . . 8 ⊢ (0 · 6) = 0 |
32 | 1, 3, 4, 21, 29, 31 | decmul1 12757 | . . . . . . 7 ⊢ (;;670 · 6) = ;;;4020 |
33 | 1, 5, 4, 20, 32, 31 | decmul1 12757 | . . . . . 6 ⊢ (;;;6700 · 6) = ;;;;40200 |
34 | 2cn 12303 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
35 | 34 | addlidi 11418 | . . . . . 6 ⊢ (0 + 2) = 2 |
36 | 15, 4, 12, 33, 35 | decaddi 12753 | . . . . 5 ⊢ ((;;;6700 · 6) + 2) = ;;;;40202 |
37 | 4cn 12313 | . . . . . 6 ⊢ 4 ∈ ℂ | |
38 | 6t4e24 12799 | . . . . . 6 ⊢ (6 · 4) = ;24 | |
39 | 30, 37, 38 | mulcomli 11239 | . . . . 5 ⊢ (4 · 6) = ;24 |
40 | 1, 6, 7, 19, 7, 12, 36, 39 | decmul1c 12758 | . . . 4 ⊢ (;;;;67004 · 6) = ;;;;;402024 |
41 | 30 | mullidi 11235 | . . . 4 ⊢ (1 · 6) = 6 |
42 | 1, 8, 9, 18, 40, 41 | decmul1 12757 | . . 3 ⊢ (;;;;;670041 · 6) = ;;;;;;4020246 |
43 | eqid 2727 | . . . 4 ⊢ ;;;;;402024 = ;;;;;402024 | |
44 | 4p1e5 12374 | . . . 4 ⊢ (4 + 1) = 5 | |
45 | 16, 7, 9, 43, 44 | decaddi 12753 | . . 3 ⊢ (;;;;;402024 + 1) = ;;;;;402025 |
46 | 17, 1, 7, 42, 45, 26 | decaddci2 12755 | . 2 ⊢ ((;;;;;670041 · 6) + 4) = ;;;;;;4020250 |
47 | 1, 10, 2, 11, 12, 7, 46, 28 | decmul1c 12758 | 1 ⊢ (;;;;;;6700417 · 6) = ;;;;;;;40202502 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 (class class class)co 7414 0cc0 11124 1c1 11125 · cmul 11129 2c2 12283 3c3 12284 4c4 12285 5c5 12286 6c6 12287 7c7 12288 ;cdc 12693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11266 df-mnf 11267 df-ltxr 11269 df-sub 11462 df-nn 12229 df-2 12291 df-3 12292 df-4 12293 df-5 12294 df-6 12295 df-7 12296 df-8 12297 df-9 12298 df-n0 12489 df-dec 12694 |
This theorem is referenced by: fmtno5fac 46835 |
Copyright terms: Public domain | W3C validator |