Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 5bc2eq10 | Structured version Visualization version GIF version |
Description: The value of 5 choose 2. (Contributed by metakunt, 8-Jun-2024.) |
Ref | Expression |
---|---|
5bc2eq10 | ⊢ (5C2) = ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn0 12331 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
2 | 2z 12431 | . . . . 5 ⊢ 2 ∈ ℤ | |
3 | bcpasc 14114 | . . . . 5 ⊢ ((4 ∈ ℕ0 ∧ 2 ∈ ℤ) → ((4C2) + (4C(2 − 1))) = ((4 + 1)C2)) | |
4 | 1, 2, 3 | mp2an 689 | . . . 4 ⊢ ((4C2) + (4C(2 − 1))) = ((4 + 1)C2) |
5 | 4p1e5 12198 | . . . . 5 ⊢ (4 + 1) = 5 | |
6 | 5 | oveq1i 7326 | . . . 4 ⊢ ((4 + 1)C2) = (5C2) |
7 | 4, 6 | eqtri 2764 | . . 3 ⊢ ((4C2) + (4C(2 − 1))) = (5C2) |
8 | 7 | eqcomi 2745 | . 2 ⊢ (5C2) = ((4C2) + (4C(2 − 1))) |
9 | 2m1e1 12178 | . . . . 5 ⊢ (2 − 1) = 1 | |
10 | 9 | oveq2i 7327 | . . . 4 ⊢ (4C(2 − 1)) = (4C1) |
11 | 10 | oveq2i 7327 | . . 3 ⊢ ((4C2) + (4C(2 − 1))) = ((4C2) + (4C1)) |
12 | 4bc2eq6 14122 | . . . 4 ⊢ (4C2) = 6 | |
13 | bcn1 14106 | . . . . 5 ⊢ (4 ∈ ℕ0 → (4C1) = 4) | |
14 | 1, 13 | ax-mp 5 | . . . 4 ⊢ (4C1) = 4 |
15 | 12, 14 | oveq12i 7328 | . . 3 ⊢ ((4C2) + (4C1)) = (6 + 4) |
16 | 11, 15 | eqtri 2764 | . 2 ⊢ ((4C2) + (4C(2 − 1))) = (6 + 4) |
17 | 6p4e10 12588 | . 2 ⊢ (6 + 4) = ;10 | |
18 | 8, 16, 17 | 3eqtri 2768 | 1 ⊢ (5C2) = ;10 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 (class class class)co 7316 0cc0 10950 1c1 10951 + caddc 10953 − cmin 11284 2c2 12107 4c4 12109 5c5 12110 6c6 12111 ℕ0cn0 12312 ℤcz 12398 ;cdc 12516 Ccbc 14095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-div 11712 df-nn 12053 df-2 12115 df-3 12116 df-4 12117 df-5 12118 df-6 12119 df-7 12120 df-8 12121 df-9 12122 df-n0 12313 df-z 12399 df-dec 12517 df-uz 12662 df-rp 12810 df-fz 13319 df-seq 13801 df-fac 14067 df-bc 14096 |
This theorem is referenced by: 2ap1caineq 40330 |
Copyright terms: Public domain | W3C validator |