MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvdom Structured version   Visualization version   GIF version

Theorem abvdom 20788
Description: Any ring with an absolute value is a domain, which is to say that it contains no zero divisors. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
abv0.a 𝐴 = (AbsVal‘𝑅)
abvneg.b 𝐵 = (Base‘𝑅)
abvrec.z 0 = (0g𝑅)
abvdom.t · = (.r𝑅)
Assertion
Ref Expression
abvdom ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝑋 · 𝑌) ≠ 0 )

Proof of Theorem abvdom
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → 𝐹𝐴)
2 simp2l 1200 . . . 4 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → 𝑋𝐵)
3 simp3l 1202 . . . 4 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → 𝑌𝐵)
4 abv0.a . . . . 5 𝐴 = (AbsVal‘𝑅)
5 abvneg.b . . . . 5 𝐵 = (Base‘𝑅)
6 abvdom.t . . . . 5 · = (.r𝑅)
74, 5, 6abvmul 20779 . . . 4 ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) · (𝐹𝑌)))
81, 2, 3, 7syl3anc 1373 . . 3 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) · (𝐹𝑌)))
94, 5abvcl 20774 . . . . . 6 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℝ)
101, 2, 9syl2anc 584 . . . . 5 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹𝑋) ∈ ℝ)
1110recnd 11261 . . . 4 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹𝑋) ∈ ℂ)
124, 5abvcl 20774 . . . . . 6 ((𝐹𝐴𝑌𝐵) → (𝐹𝑌) ∈ ℝ)
131, 3, 12syl2anc 584 . . . . 5 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹𝑌) ∈ ℝ)
1413recnd 11261 . . . 4 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹𝑌) ∈ ℂ)
15 simp2r 1201 . . . . 5 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → 𝑋0 )
16 abvrec.z . . . . . 6 0 = (0g𝑅)
174, 5, 16abvne0 20777 . . . . 5 ((𝐹𝐴𝑋𝐵𝑋0 ) → (𝐹𝑋) ≠ 0)
181, 2, 15, 17syl3anc 1373 . . . 4 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹𝑋) ≠ 0)
19 simp3r 1203 . . . . 5 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → 𝑌0 )
204, 5, 16abvne0 20777 . . . . 5 ((𝐹𝐴𝑌𝐵𝑌0 ) → (𝐹𝑌) ≠ 0)
211, 3, 19, 20syl3anc 1373 . . . 4 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹𝑌) ≠ 0)
2211, 14, 18, 21mulne0d 11887 . . 3 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → ((𝐹𝑋) · (𝐹𝑌)) ≠ 0)
238, 22eqnetrd 2999 . 2 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹‘(𝑋 · 𝑌)) ≠ 0)
244, 16abv0 20781 . . . . 5 (𝐹𝐴 → (𝐹0 ) = 0)
251, 24syl 17 . . . 4 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹0 ) = 0)
26 fveqeq2 6884 . . . 4 ((𝑋 · 𝑌) = 0 → ((𝐹‘(𝑋 · 𝑌)) = 0 ↔ (𝐹0 ) = 0))
2725, 26syl5ibrcom 247 . . 3 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → ((𝑋 · 𝑌) = 0 → (𝐹‘(𝑋 · 𝑌)) = 0))
2827necon3d 2953 . 2 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → ((𝐹‘(𝑋 · 𝑌)) ≠ 0 → (𝑋 · 𝑌) ≠ 0 ))
2923, 28mpd 15 1 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝑋 · 𝑌) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  cfv 6530  (class class class)co 7403  cr 11126  0cc0 11127   · cmul 11132  Basecbs 17226  .rcmulr 17270  0gc0g 17451  AbsValcabv 20766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-ico 13366  df-0g 17453  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-grp 18917  df-ring 20193  df-abv 20767
This theorem is referenced by:  abvn0b  20794
  Copyright terms: Public domain W3C validator