![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abvdom | Structured version Visualization version GIF version |
Description: Any ring with an absolute value is a domain, which is to say that it contains no zero divisors. (Contributed by Mario Carneiro, 10-Sep-2014.) |
Ref | Expression |
---|---|
abv0.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
abvneg.b | ⊢ 𝐵 = (Base‘𝑅) |
abvrec.z | ⊢ 0 = (0g‘𝑅) |
abvdom.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
abvdom | ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝐹 ∈ 𝐴) | |
2 | simp2l 1197 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝑋 ∈ 𝐵) | |
3 | simp3l 1199 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝑌 ∈ 𝐵) | |
4 | abv0.a | . . . . 5 ⊢ 𝐴 = (AbsVal‘𝑅) | |
5 | abvneg.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
6 | abvdom.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
7 | 4, 5, 6 | abvmul 20698 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹‘𝑋) · (𝐹‘𝑌))) |
8 | 1, 2, 3, 7 | syl3anc 1369 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹‘𝑋) · (𝐹‘𝑌))) |
9 | 4, 5 | abvcl 20693 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ ℝ) |
10 | 1, 2, 9 | syl2anc 583 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑋) ∈ ℝ) |
11 | 10 | recnd 11264 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑋) ∈ ℂ) |
12 | 4, 5 | abvcl 20693 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝐹‘𝑌) ∈ ℝ) |
13 | 1, 3, 12 | syl2anc 583 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑌) ∈ ℝ) |
14 | 13 | recnd 11264 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑌) ∈ ℂ) |
15 | simp2r 1198 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝑋 ≠ 0 ) | |
16 | abvrec.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
17 | 4, 5, 16 | abvne0 20696 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐹‘𝑋) ≠ 0) |
18 | 1, 2, 15, 17 | syl3anc 1369 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑋) ≠ 0) |
19 | simp3r 1200 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝑌 ≠ 0 ) | |
20 | 4, 5, 16 | abvne0 20696 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) → (𝐹‘𝑌) ≠ 0) |
21 | 1, 3, 19, 20 | syl3anc 1369 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑌) ≠ 0) |
22 | 11, 14, 18, 21 | mulne0d 11888 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → ((𝐹‘𝑋) · (𝐹‘𝑌)) ≠ 0) |
23 | 8, 22 | eqnetrd 3003 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘(𝑋 · 𝑌)) ≠ 0) |
24 | 4, 16 | abv0 20700 | . . . . 5 ⊢ (𝐹 ∈ 𝐴 → (𝐹‘ 0 ) = 0) |
25 | 1, 24 | syl 17 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘ 0 ) = 0) |
26 | fveqeq2 6900 | . . . 4 ⊢ ((𝑋 · 𝑌) = 0 → ((𝐹‘(𝑋 · 𝑌)) = 0 ↔ (𝐹‘ 0 ) = 0)) | |
27 | 25, 26 | syl5ibrcom 246 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → ((𝑋 · 𝑌) = 0 → (𝐹‘(𝑋 · 𝑌)) = 0)) |
28 | 27 | necon3d 2956 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → ((𝐹‘(𝑋 · 𝑌)) ≠ 0 → (𝑋 · 𝑌) ≠ 0 )) |
29 | 23, 28 | mpd 15 | 1 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ‘cfv 6542 (class class class)co 7414 ℝcr 11129 0cc0 11130 · cmul 11135 Basecbs 17171 .rcmulr 17225 0gc0g 17412 AbsValcabv 20685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8718 df-map 8838 df-en 8956 df-dom 8957 df-sdom 8958 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-ico 13354 df-0g 17414 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-grp 18884 df-ring 20166 df-abv 20686 |
This theorem is referenced by: abvn0b 21240 |
Copyright terms: Public domain | W3C validator |