MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvdom Structured version   Visualization version   GIF version

Theorem abvdom 20715
Description: Any ring with an absolute value is a domain, which is to say that it contains no zero divisors. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
abv0.a 𝐴 = (AbsVal‘𝑅)
abvneg.b 𝐵 = (Base‘𝑅)
abvrec.z 0 = (0g𝑅)
abvdom.t · = (.r𝑅)
Assertion
Ref Expression
abvdom ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝑋 · 𝑌) ≠ 0 )

Proof of Theorem abvdom
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → 𝐹𝐴)
2 simp2l 1200 . . . 4 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → 𝑋𝐵)
3 simp3l 1202 . . . 4 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → 𝑌𝐵)
4 abv0.a . . . . 5 𝐴 = (AbsVal‘𝑅)
5 abvneg.b . . . . 5 𝐵 = (Base‘𝑅)
6 abvdom.t . . . . 5 · = (.r𝑅)
74, 5, 6abvmul 20706 . . . 4 ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) · (𝐹𝑌)))
81, 2, 3, 7syl3anc 1373 . . 3 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) · (𝐹𝑌)))
94, 5abvcl 20701 . . . . . 6 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℝ)
101, 2, 9syl2anc 584 . . . . 5 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹𝑋) ∈ ℝ)
1110recnd 11143 . . . 4 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹𝑋) ∈ ℂ)
124, 5abvcl 20701 . . . . . 6 ((𝐹𝐴𝑌𝐵) → (𝐹𝑌) ∈ ℝ)
131, 3, 12syl2anc 584 . . . . 5 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹𝑌) ∈ ℝ)
1413recnd 11143 . . . 4 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹𝑌) ∈ ℂ)
15 simp2r 1201 . . . . 5 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → 𝑋0 )
16 abvrec.z . . . . . 6 0 = (0g𝑅)
174, 5, 16abvne0 20704 . . . . 5 ((𝐹𝐴𝑋𝐵𝑋0 ) → (𝐹𝑋) ≠ 0)
181, 2, 15, 17syl3anc 1373 . . . 4 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹𝑋) ≠ 0)
19 simp3r 1203 . . . . 5 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → 𝑌0 )
204, 5, 16abvne0 20704 . . . . 5 ((𝐹𝐴𝑌𝐵𝑌0 ) → (𝐹𝑌) ≠ 0)
211, 3, 19, 20syl3anc 1373 . . . 4 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹𝑌) ≠ 0)
2211, 14, 18, 21mulne0d 11772 . . 3 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → ((𝐹𝑋) · (𝐹𝑌)) ≠ 0)
238, 22eqnetrd 2992 . 2 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹‘(𝑋 · 𝑌)) ≠ 0)
244, 16abv0 20708 . . . . 5 (𝐹𝐴 → (𝐹0 ) = 0)
251, 24syl 17 . . . 4 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹0 ) = 0)
26 fveqeq2 6831 . . . 4 ((𝑋 · 𝑌) = 0 → ((𝐹‘(𝑋 · 𝑌)) = 0 ↔ (𝐹0 ) = 0))
2725, 26syl5ibrcom 247 . . 3 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → ((𝑋 · 𝑌) = 0 → (𝐹‘(𝑋 · 𝑌)) = 0))
2827necon3d 2946 . 2 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → ((𝐹‘(𝑋 · 𝑌)) ≠ 0 → (𝑋 · 𝑌) ≠ 0 ))
2923, 28mpd 15 1 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝑋 · 𝑌) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009   · cmul 11014  Basecbs 17120  .rcmulr 17162  0gc0g 17343  AbsValcabv 20693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-ico 13254  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-ring 20120  df-abv 20694
This theorem is referenced by:  abvn0b  20721
  Copyright terms: Public domain W3C validator