Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abvdom | Structured version Visualization version GIF version |
Description: Any ring with an absolute value is a domain, which is to say that it contains no zero divisors. (Contributed by Mario Carneiro, 10-Sep-2014.) |
Ref | Expression |
---|---|
abv0.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
abvneg.b | ⊢ 𝐵 = (Base‘𝑅) |
abvrec.z | ⊢ 0 = (0g‘𝑅) |
abvdom.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
abvdom | ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝐹 ∈ 𝐴) | |
2 | simp2l 1197 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝑋 ∈ 𝐵) | |
3 | simp3l 1199 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝑌 ∈ 𝐵) | |
4 | abv0.a | . . . . 5 ⊢ 𝐴 = (AbsVal‘𝑅) | |
5 | abvneg.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
6 | abvdom.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
7 | 4, 5, 6 | abvmul 20004 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹‘𝑋) · (𝐹‘𝑌))) |
8 | 1, 2, 3, 7 | syl3anc 1369 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹‘𝑋) · (𝐹‘𝑌))) |
9 | 4, 5 | abvcl 19999 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ ℝ) |
10 | 1, 2, 9 | syl2anc 583 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑋) ∈ ℝ) |
11 | 10 | recnd 10934 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑋) ∈ ℂ) |
12 | 4, 5 | abvcl 19999 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝐹‘𝑌) ∈ ℝ) |
13 | 1, 3, 12 | syl2anc 583 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑌) ∈ ℝ) |
14 | 13 | recnd 10934 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑌) ∈ ℂ) |
15 | simp2r 1198 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝑋 ≠ 0 ) | |
16 | abvrec.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
17 | 4, 5, 16 | abvne0 20002 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐹‘𝑋) ≠ 0) |
18 | 1, 2, 15, 17 | syl3anc 1369 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑋) ≠ 0) |
19 | simp3r 1200 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝑌 ≠ 0 ) | |
20 | 4, 5, 16 | abvne0 20002 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) → (𝐹‘𝑌) ≠ 0) |
21 | 1, 3, 19, 20 | syl3anc 1369 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑌) ≠ 0) |
22 | 11, 14, 18, 21 | mulne0d 11557 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → ((𝐹‘𝑋) · (𝐹‘𝑌)) ≠ 0) |
23 | 8, 22 | eqnetrd 3010 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘(𝑋 · 𝑌)) ≠ 0) |
24 | 4, 16 | abv0 20006 | . . . . 5 ⊢ (𝐹 ∈ 𝐴 → (𝐹‘ 0 ) = 0) |
25 | 1, 24 | syl 17 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘ 0 ) = 0) |
26 | fveqeq2 6765 | . . . 4 ⊢ ((𝑋 · 𝑌) = 0 → ((𝐹‘(𝑋 · 𝑌)) = 0 ↔ (𝐹‘ 0 ) = 0)) | |
27 | 25, 26 | syl5ibrcom 246 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → ((𝑋 · 𝑌) = 0 → (𝐹‘(𝑋 · 𝑌)) = 0)) |
28 | 27 | necon3d 2963 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → ((𝐹‘(𝑋 · 𝑌)) ≠ 0 → (𝑋 · 𝑌) ≠ 0 )) |
29 | 23, 28 | mpd 15 | 1 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 · cmul 10807 Basecbs 16840 .rcmulr 16889 0gc0g 17067 AbsValcabv 19991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-ico 13014 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-ring 19700 df-abv 19992 |
This theorem is referenced by: abvn0b 20486 |
Copyright terms: Public domain | W3C validator |