| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abvdom | Structured version Visualization version GIF version | ||
| Description: Any ring with an absolute value is a domain, which is to say that it contains no zero divisors. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| Ref | Expression |
|---|---|
| abv0.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
| abvneg.b | ⊢ 𝐵 = (Base‘𝑅) |
| abvrec.z | ⊢ 0 = (0g‘𝑅) |
| abvdom.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| abvdom | ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝐹 ∈ 𝐴) | |
| 2 | simp2l 1200 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝑋 ∈ 𝐵) | |
| 3 | simp3l 1202 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝑌 ∈ 𝐵) | |
| 4 | abv0.a | . . . . 5 ⊢ 𝐴 = (AbsVal‘𝑅) | |
| 5 | abvneg.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | abvdom.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 7 | 4, 5, 6 | abvmul 20779 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹‘𝑋) · (𝐹‘𝑌))) |
| 8 | 1, 2, 3, 7 | syl3anc 1373 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹‘𝑋) · (𝐹‘𝑌))) |
| 9 | 4, 5 | abvcl 20774 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ ℝ) |
| 10 | 1, 2, 9 | syl2anc 584 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑋) ∈ ℝ) |
| 11 | 10 | recnd 11261 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑋) ∈ ℂ) |
| 12 | 4, 5 | abvcl 20774 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝐹‘𝑌) ∈ ℝ) |
| 13 | 1, 3, 12 | syl2anc 584 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑌) ∈ ℝ) |
| 14 | 13 | recnd 11261 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑌) ∈ ℂ) |
| 15 | simp2r 1201 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝑋 ≠ 0 ) | |
| 16 | abvrec.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 17 | 4, 5, 16 | abvne0 20777 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐹‘𝑋) ≠ 0) |
| 18 | 1, 2, 15, 17 | syl3anc 1373 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑋) ≠ 0) |
| 19 | simp3r 1203 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → 𝑌 ≠ 0 ) | |
| 20 | 4, 5, 16 | abvne0 20777 | . . . . 5 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) → (𝐹‘𝑌) ≠ 0) |
| 21 | 1, 3, 19, 20 | syl3anc 1373 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘𝑌) ≠ 0) |
| 22 | 11, 14, 18, 21 | mulne0d 11887 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → ((𝐹‘𝑋) · (𝐹‘𝑌)) ≠ 0) |
| 23 | 8, 22 | eqnetrd 2999 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘(𝑋 · 𝑌)) ≠ 0) |
| 24 | 4, 16 | abv0 20781 | . . . . 5 ⊢ (𝐹 ∈ 𝐴 → (𝐹‘ 0 ) = 0) |
| 25 | 1, 24 | syl 17 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝐹‘ 0 ) = 0) |
| 26 | fveqeq2 6884 | . . . 4 ⊢ ((𝑋 · 𝑌) = 0 → ((𝐹‘(𝑋 · 𝑌)) = 0 ↔ (𝐹‘ 0 ) = 0)) | |
| 27 | 25, 26 | syl5ibrcom 247 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → ((𝑋 · 𝑌) = 0 → (𝐹‘(𝑋 · 𝑌)) = 0)) |
| 28 | 27 | necon3d 2953 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → ((𝐹‘(𝑋 · 𝑌)) ≠ 0 → (𝑋 · 𝑌) ≠ 0 )) |
| 29 | 23, 28 | mpd 15 | 1 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ‘cfv 6530 (class class class)co 7403 ℝcr 11126 0cc0 11127 · cmul 11132 Basecbs 17226 .rcmulr 17270 0gc0g 17451 AbsValcabv 20766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-ico 13366 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-ring 20193 df-abv 20767 |
| This theorem is referenced by: abvn0b 20794 |
| Copyright terms: Public domain | W3C validator |