MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvdom Structured version   Visualization version   GIF version

Theorem abvdom 20707
Description: Any ring with an absolute value is a domain, which is to say that it contains no zero divisors. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
abv0.a 𝐴 = (AbsVal‘𝑅)
abvneg.b 𝐵 = (Base‘𝑅)
abvrec.z 0 = (0g𝑅)
abvdom.t · = (.r𝑅)
Assertion
Ref Expression
abvdom ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝑋 · 𝑌) ≠ 0 )

Proof of Theorem abvdom
StepHypRef Expression
1 simp1 1134 . . . 4 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → 𝐹𝐴)
2 simp2l 1197 . . . 4 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → 𝑋𝐵)
3 simp3l 1199 . . . 4 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → 𝑌𝐵)
4 abv0.a . . . . 5 𝐴 = (AbsVal‘𝑅)
5 abvneg.b . . . . 5 𝐵 = (Base‘𝑅)
6 abvdom.t . . . . 5 · = (.r𝑅)
74, 5, 6abvmul 20698 . . . 4 ((𝐹𝐴𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) · (𝐹𝑌)))
81, 2, 3, 7syl3anc 1369 . . 3 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹‘(𝑋 · 𝑌)) = ((𝐹𝑋) · (𝐹𝑌)))
94, 5abvcl 20693 . . . . . 6 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℝ)
101, 2, 9syl2anc 583 . . . . 5 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹𝑋) ∈ ℝ)
1110recnd 11264 . . . 4 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹𝑋) ∈ ℂ)
124, 5abvcl 20693 . . . . . 6 ((𝐹𝐴𝑌𝐵) → (𝐹𝑌) ∈ ℝ)
131, 3, 12syl2anc 583 . . . . 5 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹𝑌) ∈ ℝ)
1413recnd 11264 . . . 4 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹𝑌) ∈ ℂ)
15 simp2r 1198 . . . . 5 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → 𝑋0 )
16 abvrec.z . . . . . 6 0 = (0g𝑅)
174, 5, 16abvne0 20696 . . . . 5 ((𝐹𝐴𝑋𝐵𝑋0 ) → (𝐹𝑋) ≠ 0)
181, 2, 15, 17syl3anc 1369 . . . 4 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹𝑋) ≠ 0)
19 simp3r 1200 . . . . 5 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → 𝑌0 )
204, 5, 16abvne0 20696 . . . . 5 ((𝐹𝐴𝑌𝐵𝑌0 ) → (𝐹𝑌) ≠ 0)
211, 3, 19, 20syl3anc 1369 . . . 4 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹𝑌) ≠ 0)
2211, 14, 18, 21mulne0d 11888 . . 3 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → ((𝐹𝑋) · (𝐹𝑌)) ≠ 0)
238, 22eqnetrd 3003 . 2 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹‘(𝑋 · 𝑌)) ≠ 0)
244, 16abv0 20700 . . . . 5 (𝐹𝐴 → (𝐹0 ) = 0)
251, 24syl 17 . . . 4 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝐹0 ) = 0)
26 fveqeq2 6900 . . . 4 ((𝑋 · 𝑌) = 0 → ((𝐹‘(𝑋 · 𝑌)) = 0 ↔ (𝐹0 ) = 0))
2725, 26syl5ibrcom 246 . . 3 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → ((𝑋 · 𝑌) = 0 → (𝐹‘(𝑋 · 𝑌)) = 0))
2827necon3d 2956 . 2 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → ((𝐹‘(𝑋 · 𝑌)) ≠ 0 → (𝑋 · 𝑌) ≠ 0 ))
2923, 28mpd 15 1 ((𝐹𝐴 ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝑋 · 𝑌) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935  cfv 6542  (class class class)co 7414  cr 11129  0cc0 11130   · cmul 11135  Basecbs 17171  .rcmulr 17225  0gc0g 17412  AbsValcabv 20685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-er 8718  df-map 8838  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-ico 13354  df-0g 17414  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-grp 18884  df-ring 20166  df-abv 20686
This theorem is referenced by:  abvn0b  21240
  Copyright terms: Public domain W3C validator