| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abvrec | Structured version Visualization version GIF version | ||
| Description: The absolute value distributes under reciprocal. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| Ref | Expression |
|---|---|
| abv0.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
| abvneg.b | ⊢ 𝐵 = (Base‘𝑅) |
| abvrec.z | ⊢ 0 = (0g‘𝑅) |
| abvrec.p | ⊢ 𝐼 = (invr‘𝑅) |
| Ref | Expression |
|---|---|
| abvrec | ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝐼‘𝑋)) = (1 / (𝐹‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → 𝐹 ∈ 𝐴) | |
| 2 | simprl 770 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → 𝑋 ∈ 𝐵) | |
| 3 | abv0.a | . . . . 5 ⊢ 𝐴 = (AbsVal‘𝑅) | |
| 4 | abvneg.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | 3, 4 | abvcl 20731 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ ℝ) |
| 6 | 1, 2, 5 | syl2anc 584 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘𝑋) ∈ ℝ) |
| 7 | 6 | recnd 11140 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘𝑋) ∈ ℂ) |
| 8 | simpll 766 | . . . . 5 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → 𝑅 ∈ DivRing) | |
| 9 | simprr 772 | . . . . 5 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → 𝑋 ≠ 0 ) | |
| 10 | abvrec.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 11 | abvrec.p | . . . . . 6 ⊢ 𝐼 = (invr‘𝑅) | |
| 12 | 4, 10, 11 | drnginvrcl 20668 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐼‘𝑋) ∈ 𝐵) |
| 13 | 8, 2, 9, 12 | syl3anc 1373 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐼‘𝑋) ∈ 𝐵) |
| 14 | 3, 4 | abvcl 20731 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐵) → (𝐹‘(𝐼‘𝑋)) ∈ ℝ) |
| 15 | 1, 13, 14 | syl2anc 584 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝐼‘𝑋)) ∈ ℝ) |
| 16 | 15 | recnd 11140 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝐼‘𝑋)) ∈ ℂ) |
| 17 | 3, 4, 10 | abvne0 20734 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐹‘𝑋) ≠ 0) |
| 18 | 1, 2, 9, 17 | syl3anc 1373 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘𝑋) ≠ 0) |
| 19 | eqid 2731 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 20 | eqid 2731 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 21 | 4, 10, 19, 20, 11 | drnginvrr 20672 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝑋(.r‘𝑅)(𝐼‘𝑋)) = (1r‘𝑅)) |
| 22 | 8, 2, 9, 21 | syl3anc 1373 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝑋(.r‘𝑅)(𝐼‘𝑋)) = (1r‘𝑅)) |
| 23 | 22 | fveq2d 6826 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝑋(.r‘𝑅)(𝐼‘𝑋))) = (𝐹‘(1r‘𝑅))) |
| 24 | 3, 4, 19 | abvmul 20736 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ (𝐼‘𝑋) ∈ 𝐵) → (𝐹‘(𝑋(.r‘𝑅)(𝐼‘𝑋))) = ((𝐹‘𝑋) · (𝐹‘(𝐼‘𝑋)))) |
| 25 | 1, 2, 13, 24 | syl3anc 1373 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝑋(.r‘𝑅)(𝐼‘𝑋))) = ((𝐹‘𝑋) · (𝐹‘(𝐼‘𝑋)))) |
| 26 | 3, 20 | abv1 20740 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) → (𝐹‘(1r‘𝑅)) = 1) |
| 27 | 26 | adantr 480 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(1r‘𝑅)) = 1) |
| 28 | 23, 25, 27 | 3eqtr3d 2774 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → ((𝐹‘𝑋) · (𝐹‘(𝐼‘𝑋))) = 1) |
| 29 | 7, 16, 18, 28 | mvllmuld 11953 | 1 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝐼‘𝑋)) = (1 / (𝐹‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 · cmul 11011 / cdiv 11774 Basecbs 17120 .rcmulr 17162 0gc0g 17343 1rcur 20099 invrcinvr 20305 DivRingcdr 20644 AbsValcabv 20723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-ico 13251 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-drng 20646 df-abv 20724 |
| This theorem is referenced by: abvdiv 20744 |
| Copyright terms: Public domain | W3C validator |