MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvrec Structured version   Visualization version   GIF version

Theorem abvrec 20845
Description: The absolute value distributes under reciprocal. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
abv0.a 𝐴 = (AbsVal‘𝑅)
abvneg.b 𝐵 = (Base‘𝑅)
abvrec.z 0 = (0g𝑅)
abvrec.p 𝐼 = (invr𝑅)
Assertion
Ref Expression
abvrec (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝐼𝑋)) = (1 / (𝐹𝑋)))

Proof of Theorem abvrec
StepHypRef Expression
1 simplr 769 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → 𝐹𝐴)
2 simprl 771 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → 𝑋𝐵)
3 abv0.a . . . . 5 𝐴 = (AbsVal‘𝑅)
4 abvneg.b . . . . 5 𝐵 = (Base‘𝑅)
53, 4abvcl 20833 . . . 4 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℝ)
61, 2, 5syl2anc 584 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹𝑋) ∈ ℝ)
76recnd 11286 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹𝑋) ∈ ℂ)
8 simpll 767 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → 𝑅 ∈ DivRing)
9 simprr 773 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → 𝑋0 )
10 abvrec.z . . . . . 6 0 = (0g𝑅)
11 abvrec.p . . . . . 6 𝐼 = (invr𝑅)
124, 10, 11drnginvrcl 20769 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → (𝐼𝑋) ∈ 𝐵)
138, 2, 9, 12syl3anc 1370 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐼𝑋) ∈ 𝐵)
143, 4abvcl 20833 . . . 4 ((𝐹𝐴 ∧ (𝐼𝑋) ∈ 𝐵) → (𝐹‘(𝐼𝑋)) ∈ ℝ)
151, 13, 14syl2anc 584 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝐼𝑋)) ∈ ℝ)
1615recnd 11286 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝐼𝑋)) ∈ ℂ)
173, 4, 10abvne0 20836 . . 3 ((𝐹𝐴𝑋𝐵𝑋0 ) → (𝐹𝑋) ≠ 0)
181, 2, 9, 17syl3anc 1370 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹𝑋) ≠ 0)
19 eqid 2734 . . . . . 6 (.r𝑅) = (.r𝑅)
20 eqid 2734 . . . . . 6 (1r𝑅) = (1r𝑅)
214, 10, 19, 20, 11drnginvrr 20773 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → (𝑋(.r𝑅)(𝐼𝑋)) = (1r𝑅))
228, 2, 9, 21syl3anc 1370 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝑋(.r𝑅)(𝐼𝑋)) = (1r𝑅))
2322fveq2d 6910 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝑋(.r𝑅)(𝐼𝑋))) = (𝐹‘(1r𝑅)))
243, 4, 19abvmul 20838 . . . 4 ((𝐹𝐴𝑋𝐵 ∧ (𝐼𝑋) ∈ 𝐵) → (𝐹‘(𝑋(.r𝑅)(𝐼𝑋))) = ((𝐹𝑋) · (𝐹‘(𝐼𝑋))))
251, 2, 13, 24syl3anc 1370 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝑋(.r𝑅)(𝐼𝑋))) = ((𝐹𝑋) · (𝐹‘(𝐼𝑋))))
263, 20abv1 20842 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐹𝐴) → (𝐹‘(1r𝑅)) = 1)
2726adantr 480 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(1r𝑅)) = 1)
2823, 25, 273eqtr3d 2782 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → ((𝐹𝑋) · (𝐹‘(𝐼𝑋))) = 1)
297, 16, 18, 28mvllmuld 12096 1 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝐼𝑋)) = (1 / (𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wne 2937  cfv 6562  (class class class)co 7430  cr 11151  0cc0 11152  1c1 11153   · cmul 11157   / cdiv 11917  Basecbs 17244  .rcmulr 17298  0gc0g 17485  1rcur 20198  invrcinvr 20403  DivRingcdr 20745  AbsValcabv 20825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-ico 13389  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-drng 20747  df-abv 20826
This theorem is referenced by:  abvdiv  20846
  Copyright terms: Public domain W3C validator