Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abvrec | Structured version Visualization version GIF version |
Description: The absolute value distributes under reciprocal. (Contributed by Mario Carneiro, 10-Sep-2014.) |
Ref | Expression |
---|---|
abv0.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
abvneg.b | ⊢ 𝐵 = (Base‘𝑅) |
abvrec.z | ⊢ 0 = (0g‘𝑅) |
abvrec.p | ⊢ 𝐼 = (invr‘𝑅) |
Ref | Expression |
---|---|
abvrec | ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝐼‘𝑋)) = (1 / (𝐹‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 769 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → 𝐹 ∈ 𝐴) | |
2 | simprl 771 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → 𝑋 ∈ 𝐵) | |
3 | abv0.a | . . . . 5 ⊢ 𝐴 = (AbsVal‘𝑅) | |
4 | abvneg.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
5 | 3, 4 | abvcl 19714 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ ℝ) |
6 | 1, 2, 5 | syl2anc 587 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘𝑋) ∈ ℝ) |
7 | 6 | recnd 10747 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘𝑋) ∈ ℂ) |
8 | simpll 767 | . . . . 5 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → 𝑅 ∈ DivRing) | |
9 | simprr 773 | . . . . 5 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → 𝑋 ≠ 0 ) | |
10 | abvrec.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
11 | abvrec.p | . . . . . 6 ⊢ 𝐼 = (invr‘𝑅) | |
12 | 4, 10, 11 | drnginvrcl 19638 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐼‘𝑋) ∈ 𝐵) |
13 | 8, 2, 9, 12 | syl3anc 1372 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐼‘𝑋) ∈ 𝐵) |
14 | 3, 4 | abvcl 19714 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐵) → (𝐹‘(𝐼‘𝑋)) ∈ ℝ) |
15 | 1, 13, 14 | syl2anc 587 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝐼‘𝑋)) ∈ ℝ) |
16 | 15 | recnd 10747 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝐼‘𝑋)) ∈ ℂ) |
17 | 3, 4, 10 | abvne0 19717 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐹‘𝑋) ≠ 0) |
18 | 1, 2, 9, 17 | syl3anc 1372 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘𝑋) ≠ 0) |
19 | eqid 2738 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
20 | eqid 2738 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
21 | 4, 10, 19, 20, 11 | drnginvrr 19641 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝑋(.r‘𝑅)(𝐼‘𝑋)) = (1r‘𝑅)) |
22 | 8, 2, 9, 21 | syl3anc 1372 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝑋(.r‘𝑅)(𝐼‘𝑋)) = (1r‘𝑅)) |
23 | 22 | fveq2d 6678 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝑋(.r‘𝑅)(𝐼‘𝑋))) = (𝐹‘(1r‘𝑅))) |
24 | 3, 4, 19 | abvmul 19719 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ (𝐼‘𝑋) ∈ 𝐵) → (𝐹‘(𝑋(.r‘𝑅)(𝐼‘𝑋))) = ((𝐹‘𝑋) · (𝐹‘(𝐼‘𝑋)))) |
25 | 1, 2, 13, 24 | syl3anc 1372 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝑋(.r‘𝑅)(𝐼‘𝑋))) = ((𝐹‘𝑋) · (𝐹‘(𝐼‘𝑋)))) |
26 | 3, 20 | abv1 19723 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) → (𝐹‘(1r‘𝑅)) = 1) |
27 | 26 | adantr 484 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(1r‘𝑅)) = 1) |
28 | 23, 25, 27 | 3eqtr3d 2781 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → ((𝐹‘𝑋) · (𝐹‘(𝐼‘𝑋))) = 1) |
29 | 7, 16, 18, 28 | mvllmuld 11550 | 1 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝐼‘𝑋)) = (1 / (𝐹‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ≠ wne 2934 ‘cfv 6339 (class class class)co 7170 ℝcr 10614 0cc0 10615 1c1 10616 · cmul 10620 / cdiv 11375 Basecbs 16586 .rcmulr 16669 0gc0g 16816 1rcur 19370 invrcinvr 19543 DivRingcdr 19621 AbsValcabv 19706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-tpos 7921 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-er 8320 df-map 8439 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-ico 12827 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-ress 16594 df-plusg 16681 df-mulr 16682 df-0g 16818 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-grp 18222 df-minusg 18223 df-mgp 19359 df-ur 19371 df-ring 19418 df-oppr 19495 df-dvdsr 19513 df-unit 19514 df-invr 19544 df-drng 19623 df-abv 19707 |
This theorem is referenced by: abvdiv 19727 |
Copyright terms: Public domain | W3C validator |