MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvrec Structured version   Visualization version   GIF version

Theorem abvrec 19726
Description: The absolute value distributes under reciprocal. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
abv0.a 𝐴 = (AbsVal‘𝑅)
abvneg.b 𝐵 = (Base‘𝑅)
abvrec.z 0 = (0g𝑅)
abvrec.p 𝐼 = (invr𝑅)
Assertion
Ref Expression
abvrec (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝐼𝑋)) = (1 / (𝐹𝑋)))

Proof of Theorem abvrec
StepHypRef Expression
1 simplr 769 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → 𝐹𝐴)
2 simprl 771 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → 𝑋𝐵)
3 abv0.a . . . . 5 𝐴 = (AbsVal‘𝑅)
4 abvneg.b . . . . 5 𝐵 = (Base‘𝑅)
53, 4abvcl 19714 . . . 4 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℝ)
61, 2, 5syl2anc 587 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹𝑋) ∈ ℝ)
76recnd 10747 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹𝑋) ∈ ℂ)
8 simpll 767 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → 𝑅 ∈ DivRing)
9 simprr 773 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → 𝑋0 )
10 abvrec.z . . . . . 6 0 = (0g𝑅)
11 abvrec.p . . . . . 6 𝐼 = (invr𝑅)
124, 10, 11drnginvrcl 19638 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → (𝐼𝑋) ∈ 𝐵)
138, 2, 9, 12syl3anc 1372 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐼𝑋) ∈ 𝐵)
143, 4abvcl 19714 . . . 4 ((𝐹𝐴 ∧ (𝐼𝑋) ∈ 𝐵) → (𝐹‘(𝐼𝑋)) ∈ ℝ)
151, 13, 14syl2anc 587 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝐼𝑋)) ∈ ℝ)
1615recnd 10747 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝐼𝑋)) ∈ ℂ)
173, 4, 10abvne0 19717 . . 3 ((𝐹𝐴𝑋𝐵𝑋0 ) → (𝐹𝑋) ≠ 0)
181, 2, 9, 17syl3anc 1372 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹𝑋) ≠ 0)
19 eqid 2738 . . . . . 6 (.r𝑅) = (.r𝑅)
20 eqid 2738 . . . . . 6 (1r𝑅) = (1r𝑅)
214, 10, 19, 20, 11drnginvrr 19641 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → (𝑋(.r𝑅)(𝐼𝑋)) = (1r𝑅))
228, 2, 9, 21syl3anc 1372 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝑋(.r𝑅)(𝐼𝑋)) = (1r𝑅))
2322fveq2d 6678 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝑋(.r𝑅)(𝐼𝑋))) = (𝐹‘(1r𝑅)))
243, 4, 19abvmul 19719 . . . 4 ((𝐹𝐴𝑋𝐵 ∧ (𝐼𝑋) ∈ 𝐵) → (𝐹‘(𝑋(.r𝑅)(𝐼𝑋))) = ((𝐹𝑋) · (𝐹‘(𝐼𝑋))))
251, 2, 13, 24syl3anc 1372 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝑋(.r𝑅)(𝐼𝑋))) = ((𝐹𝑋) · (𝐹‘(𝐼𝑋))))
263, 20abv1 19723 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐹𝐴) → (𝐹‘(1r𝑅)) = 1)
2726adantr 484 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(1r𝑅)) = 1)
2823, 25, 273eqtr3d 2781 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → ((𝐹𝑋) · (𝐹‘(𝐼𝑋))) = 1)
297, 16, 18, 28mvllmuld 11550 1 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝐼𝑋)) = (1 / (𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  wne 2934  cfv 6339  (class class class)co 7170  cr 10614  0cc0 10615  1c1 10616   · cmul 10620   / cdiv 11375  Basecbs 16586  .rcmulr 16669  0gc0g 16816  1rcur 19370  invrcinvr 19543  DivRingcdr 19621  AbsValcabv 19706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-tpos 7921  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-ico 12827  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-0g 16818  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-grp 18222  df-minusg 18223  df-mgp 19359  df-ur 19371  df-ring 19418  df-oppr 19495  df-dvdsr 19513  df-unit 19514  df-invr 19544  df-drng 19623  df-abv 19707
This theorem is referenced by:  abvdiv  19727
  Copyright terms: Public domain W3C validator