MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvrec Structured version   Visualization version   GIF version

Theorem abvrec 20744
Description: The absolute value distributes under reciprocal. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
abv0.a 𝐴 = (AbsVal‘𝑅)
abvneg.b 𝐵 = (Base‘𝑅)
abvrec.z 0 = (0g𝑅)
abvrec.p 𝐼 = (invr𝑅)
Assertion
Ref Expression
abvrec (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝐼𝑋)) = (1 / (𝐹𝑋)))

Proof of Theorem abvrec
StepHypRef Expression
1 simplr 768 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → 𝐹𝐴)
2 simprl 770 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → 𝑋𝐵)
3 abv0.a . . . . 5 𝐴 = (AbsVal‘𝑅)
4 abvneg.b . . . . 5 𝐵 = (Base‘𝑅)
53, 4abvcl 20732 . . . 4 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℝ)
61, 2, 5syl2anc 584 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹𝑋) ∈ ℝ)
76recnd 11209 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹𝑋) ∈ ℂ)
8 simpll 766 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → 𝑅 ∈ DivRing)
9 simprr 772 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → 𝑋0 )
10 abvrec.z . . . . . 6 0 = (0g𝑅)
11 abvrec.p . . . . . 6 𝐼 = (invr𝑅)
124, 10, 11drnginvrcl 20669 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → (𝐼𝑋) ∈ 𝐵)
138, 2, 9, 12syl3anc 1373 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐼𝑋) ∈ 𝐵)
143, 4abvcl 20732 . . . 4 ((𝐹𝐴 ∧ (𝐼𝑋) ∈ 𝐵) → (𝐹‘(𝐼𝑋)) ∈ ℝ)
151, 13, 14syl2anc 584 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝐼𝑋)) ∈ ℝ)
1615recnd 11209 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝐼𝑋)) ∈ ℂ)
173, 4, 10abvne0 20735 . . 3 ((𝐹𝐴𝑋𝐵𝑋0 ) → (𝐹𝑋) ≠ 0)
181, 2, 9, 17syl3anc 1373 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹𝑋) ≠ 0)
19 eqid 2730 . . . . . 6 (.r𝑅) = (.r𝑅)
20 eqid 2730 . . . . . 6 (1r𝑅) = (1r𝑅)
214, 10, 19, 20, 11drnginvrr 20673 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → (𝑋(.r𝑅)(𝐼𝑋)) = (1r𝑅))
228, 2, 9, 21syl3anc 1373 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝑋(.r𝑅)(𝐼𝑋)) = (1r𝑅))
2322fveq2d 6865 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝑋(.r𝑅)(𝐼𝑋))) = (𝐹‘(1r𝑅)))
243, 4, 19abvmul 20737 . . . 4 ((𝐹𝐴𝑋𝐵 ∧ (𝐼𝑋) ∈ 𝐵) → (𝐹‘(𝑋(.r𝑅)(𝐼𝑋))) = ((𝐹𝑋) · (𝐹‘(𝐼𝑋))))
251, 2, 13, 24syl3anc 1373 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝑋(.r𝑅)(𝐼𝑋))) = ((𝐹𝑋) · (𝐹‘(𝐼𝑋))))
263, 20abv1 20741 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐹𝐴) → (𝐹‘(1r𝑅)) = 1)
2726adantr 480 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(1r𝑅)) = 1)
2823, 25, 273eqtr3d 2773 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → ((𝐹𝑋) · (𝐹‘(𝐼𝑋))) = 1)
297, 16, 18, 28mvllmuld 12021 1 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝐼𝑋)) = (1 / (𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   · cmul 11080   / cdiv 11842  Basecbs 17186  .rcmulr 17228  0gc0g 17409  1rcur 20097  invrcinvr 20303  DivRingcdr 20645  AbsValcabv 20724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-ico 13319  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-drng 20647  df-abv 20725
This theorem is referenced by:  abvdiv  20745
  Copyright terms: Public domain W3C validator