MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvrec Structured version   Visualization version   GIF version

Theorem abvrec 20077
Description: The absolute value distributes under reciprocal. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
abv0.a 𝐴 = (AbsVal‘𝑅)
abvneg.b 𝐵 = (Base‘𝑅)
abvrec.z 0 = (0g𝑅)
abvrec.p 𝐼 = (invr𝑅)
Assertion
Ref Expression
abvrec (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝐼𝑋)) = (1 / (𝐹𝑋)))

Proof of Theorem abvrec
StepHypRef Expression
1 simplr 765 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → 𝐹𝐴)
2 simprl 767 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → 𝑋𝐵)
3 abv0.a . . . . 5 𝐴 = (AbsVal‘𝑅)
4 abvneg.b . . . . 5 𝐵 = (Base‘𝑅)
53, 4abvcl 20065 . . . 4 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ ℝ)
61, 2, 5syl2anc 583 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹𝑋) ∈ ℝ)
76recnd 10987 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹𝑋) ∈ ℂ)
8 simpll 763 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → 𝑅 ∈ DivRing)
9 simprr 769 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → 𝑋0 )
10 abvrec.z . . . . . 6 0 = (0g𝑅)
11 abvrec.p . . . . . 6 𝐼 = (invr𝑅)
124, 10, 11drnginvrcl 19989 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → (𝐼𝑋) ∈ 𝐵)
138, 2, 9, 12syl3anc 1369 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐼𝑋) ∈ 𝐵)
143, 4abvcl 20065 . . . 4 ((𝐹𝐴 ∧ (𝐼𝑋) ∈ 𝐵) → (𝐹‘(𝐼𝑋)) ∈ ℝ)
151, 13, 14syl2anc 583 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝐼𝑋)) ∈ ℝ)
1615recnd 10987 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝐼𝑋)) ∈ ℂ)
173, 4, 10abvne0 20068 . . 3 ((𝐹𝐴𝑋𝐵𝑋0 ) → (𝐹𝑋) ≠ 0)
181, 2, 9, 17syl3anc 1369 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹𝑋) ≠ 0)
19 eqid 2739 . . . . . 6 (.r𝑅) = (.r𝑅)
20 eqid 2739 . . . . . 6 (1r𝑅) = (1r𝑅)
214, 10, 19, 20, 11drnginvrr 19992 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑋𝐵𝑋0 ) → (𝑋(.r𝑅)(𝐼𝑋)) = (1r𝑅))
228, 2, 9, 21syl3anc 1369 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝑋(.r𝑅)(𝐼𝑋)) = (1r𝑅))
2322fveq2d 6772 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝑋(.r𝑅)(𝐼𝑋))) = (𝐹‘(1r𝑅)))
243, 4, 19abvmul 20070 . . . 4 ((𝐹𝐴𝑋𝐵 ∧ (𝐼𝑋) ∈ 𝐵) → (𝐹‘(𝑋(.r𝑅)(𝐼𝑋))) = ((𝐹𝑋) · (𝐹‘(𝐼𝑋))))
251, 2, 13, 24syl3anc 1369 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝑋(.r𝑅)(𝐼𝑋))) = ((𝐹𝑋) · (𝐹‘(𝐼𝑋))))
263, 20abv1 20074 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐹𝐴) → (𝐹‘(1r𝑅)) = 1)
2726adantr 480 . . 3 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(1r𝑅)) = 1)
2823, 25, 273eqtr3d 2787 . 2 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → ((𝐹𝑋) · (𝐹‘(𝐼𝑋))) = 1)
297, 16, 18, 28mvllmuld 11790 1 (((𝑅 ∈ DivRing ∧ 𝐹𝐴) ∧ (𝑋𝐵𝑋0 )) → (𝐹‘(𝐼𝑋)) = (1 / (𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wne 2944  cfv 6430  (class class class)co 7268  cr 10854  0cc0 10855  1c1 10856   · cmul 10860   / cdiv 11615  Basecbs 16893  .rcmulr 16944  0gc0g 17131  1rcur 19718  invrcinvr 19894  DivRingcdr 19972  AbsValcabv 20057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-tpos 8026  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-ico 13067  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-0g 17133  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-grp 18561  df-minusg 18562  df-mgp 19702  df-ur 19719  df-ring 19766  df-oppr 19843  df-dvdsr 19864  df-unit 19865  df-invr 19895  df-drng 19974  df-abv 20058
This theorem is referenced by:  abvdiv  20078
  Copyright terms: Public domain W3C validator