![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abvrec | Structured version Visualization version GIF version |
Description: The absolute value distributes under reciprocal. (Contributed by Mario Carneiro, 10-Sep-2014.) |
Ref | Expression |
---|---|
abv0.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
abvneg.b | ⊢ 𝐵 = (Base‘𝑅) |
abvrec.z | ⊢ 0 = (0g‘𝑅) |
abvrec.p | ⊢ 𝐼 = (invr‘𝑅) |
Ref | Expression |
---|---|
abvrec | ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝐼‘𝑋)) = (1 / (𝐹‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 769 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → 𝐹 ∈ 𝐴) | |
2 | simprl 771 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → 𝑋 ∈ 𝐵) | |
3 | abv0.a | . . . . 5 ⊢ 𝐴 = (AbsVal‘𝑅) | |
4 | abvneg.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
5 | 3, 4 | abvcl 20833 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ ℝ) |
6 | 1, 2, 5 | syl2anc 584 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘𝑋) ∈ ℝ) |
7 | 6 | recnd 11286 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘𝑋) ∈ ℂ) |
8 | simpll 767 | . . . . 5 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → 𝑅 ∈ DivRing) | |
9 | simprr 773 | . . . . 5 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → 𝑋 ≠ 0 ) | |
10 | abvrec.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
11 | abvrec.p | . . . . . 6 ⊢ 𝐼 = (invr‘𝑅) | |
12 | 4, 10, 11 | drnginvrcl 20769 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐼‘𝑋) ∈ 𝐵) |
13 | 8, 2, 9, 12 | syl3anc 1370 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐼‘𝑋) ∈ 𝐵) |
14 | 3, 4 | abvcl 20833 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐵) → (𝐹‘(𝐼‘𝑋)) ∈ ℝ) |
15 | 1, 13, 14 | syl2anc 584 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝐼‘𝑋)) ∈ ℝ) |
16 | 15 | recnd 11286 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝐼‘𝑋)) ∈ ℂ) |
17 | 3, 4, 10 | abvne0 20836 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐹‘𝑋) ≠ 0) |
18 | 1, 2, 9, 17 | syl3anc 1370 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘𝑋) ≠ 0) |
19 | eqid 2734 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
20 | eqid 2734 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
21 | 4, 10, 19, 20, 11 | drnginvrr 20773 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝑋(.r‘𝑅)(𝐼‘𝑋)) = (1r‘𝑅)) |
22 | 8, 2, 9, 21 | syl3anc 1370 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝑋(.r‘𝑅)(𝐼‘𝑋)) = (1r‘𝑅)) |
23 | 22 | fveq2d 6910 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝑋(.r‘𝑅)(𝐼‘𝑋))) = (𝐹‘(1r‘𝑅))) |
24 | 3, 4, 19 | abvmul 20838 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ (𝐼‘𝑋) ∈ 𝐵) → (𝐹‘(𝑋(.r‘𝑅)(𝐼‘𝑋))) = ((𝐹‘𝑋) · (𝐹‘(𝐼‘𝑋)))) |
25 | 1, 2, 13, 24 | syl3anc 1370 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝑋(.r‘𝑅)(𝐼‘𝑋))) = ((𝐹‘𝑋) · (𝐹‘(𝐼‘𝑋)))) |
26 | 3, 20 | abv1 20842 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) → (𝐹‘(1r‘𝑅)) = 1) |
27 | 26 | adantr 480 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(1r‘𝑅)) = 1) |
28 | 23, 25, 27 | 3eqtr3d 2782 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → ((𝐹‘𝑋) · (𝐹‘(𝐼‘𝑋))) = 1) |
29 | 7, 16, 18, 28 | mvllmuld 12096 | 1 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝐼‘𝑋)) = (1 / (𝐹‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ‘cfv 6562 (class class class)co 7430 ℝcr 11151 0cc0 11152 1c1 11153 · cmul 11157 / cdiv 11917 Basecbs 17244 .rcmulr 17298 0gc0g 17485 1rcur 20198 invrcinvr 20403 DivRingcdr 20745 AbsValcabv 20825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-tpos 8249 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-ico 13389 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-0g 17487 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-grp 18966 df-minusg 18967 df-cmn 19814 df-abl 19815 df-mgp 20152 df-rng 20170 df-ur 20199 df-ring 20252 df-oppr 20350 df-dvdsr 20373 df-unit 20374 df-invr 20404 df-drng 20747 df-abv 20826 |
This theorem is referenced by: abvdiv 20846 |
Copyright terms: Public domain | W3C validator |