| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abvrec | Structured version Visualization version GIF version | ||
| Description: The absolute value distributes under reciprocal. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| Ref | Expression |
|---|---|
| abv0.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
| abvneg.b | ⊢ 𝐵 = (Base‘𝑅) |
| abvrec.z | ⊢ 0 = (0g‘𝑅) |
| abvrec.p | ⊢ 𝐼 = (invr‘𝑅) |
| Ref | Expression |
|---|---|
| abvrec | ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝐼‘𝑋)) = (1 / (𝐹‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → 𝐹 ∈ 𝐴) | |
| 2 | simprl 770 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → 𝑋 ∈ 𝐵) | |
| 3 | abv0.a | . . . . 5 ⊢ 𝐴 = (AbsVal‘𝑅) | |
| 4 | abvneg.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | 3, 4 | abvcl 20732 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ ℝ) |
| 6 | 1, 2, 5 | syl2anc 584 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘𝑋) ∈ ℝ) |
| 7 | 6 | recnd 11209 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘𝑋) ∈ ℂ) |
| 8 | simpll 766 | . . . . 5 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → 𝑅 ∈ DivRing) | |
| 9 | simprr 772 | . . . . 5 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → 𝑋 ≠ 0 ) | |
| 10 | abvrec.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 11 | abvrec.p | . . . . . 6 ⊢ 𝐼 = (invr‘𝑅) | |
| 12 | 4, 10, 11 | drnginvrcl 20669 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐼‘𝑋) ∈ 𝐵) |
| 13 | 8, 2, 9, 12 | syl3anc 1373 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐼‘𝑋) ∈ 𝐵) |
| 14 | 3, 4 | abvcl 20732 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ (𝐼‘𝑋) ∈ 𝐵) → (𝐹‘(𝐼‘𝑋)) ∈ ℝ) |
| 15 | 1, 13, 14 | syl2anc 584 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝐼‘𝑋)) ∈ ℝ) |
| 16 | 15 | recnd 11209 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝐼‘𝑋)) ∈ ℂ) |
| 17 | 3, 4, 10 | abvne0 20735 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐹‘𝑋) ≠ 0) |
| 18 | 1, 2, 9, 17 | syl3anc 1373 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘𝑋) ≠ 0) |
| 19 | eqid 2730 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 20 | eqid 2730 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 21 | 4, 10, 19, 20, 11 | drnginvrr 20673 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝑋(.r‘𝑅)(𝐼‘𝑋)) = (1r‘𝑅)) |
| 22 | 8, 2, 9, 21 | syl3anc 1373 | . . . 4 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝑋(.r‘𝑅)(𝐼‘𝑋)) = (1r‘𝑅)) |
| 23 | 22 | fveq2d 6865 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝑋(.r‘𝑅)(𝐼‘𝑋))) = (𝐹‘(1r‘𝑅))) |
| 24 | 3, 4, 19 | abvmul 20737 | . . . 4 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ (𝐼‘𝑋) ∈ 𝐵) → (𝐹‘(𝑋(.r‘𝑅)(𝐼‘𝑋))) = ((𝐹‘𝑋) · (𝐹‘(𝐼‘𝑋)))) |
| 25 | 1, 2, 13, 24 | syl3anc 1373 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝑋(.r‘𝑅)(𝐼‘𝑋))) = ((𝐹‘𝑋) · (𝐹‘(𝐼‘𝑋)))) |
| 26 | 3, 20 | abv1 20741 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) → (𝐹‘(1r‘𝑅)) = 1) |
| 27 | 26 | adantr 480 | . . 3 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(1r‘𝑅)) = 1) |
| 28 | 23, 25, 27 | 3eqtr3d 2773 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → ((𝐹‘𝑋) · (𝐹‘(𝐼‘𝑋))) = 1) |
| 29 | 7, 16, 18, 28 | mvllmuld 12021 | 1 ⊢ (((𝑅 ∈ DivRing ∧ 𝐹 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → (𝐹‘(𝐼‘𝑋)) = (1 / (𝐹‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 · cmul 11080 / cdiv 11842 Basecbs 17186 .rcmulr 17228 0gc0g 17409 1rcur 20097 invrcinvr 20303 DivRingcdr 20645 AbsValcabv 20724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-ico 13319 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-drng 20647 df-abv 20725 |
| This theorem is referenced by: abvdiv 20745 |
| Copyright terms: Public domain | W3C validator |