| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abvgt0 | Structured version Visualization version GIF version | ||
| Description: The absolute value of a nonzero number is strictly positive. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| Ref | Expression |
|---|---|
| abvf.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
| abvf.b | ⊢ 𝐵 = (Base‘𝑅) |
| abveq0.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| abvgt0 | ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 0 < (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abvf.a | . . . 4 ⊢ 𝐴 = (AbsVal‘𝑅) | |
| 2 | abvf.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | 1, 2 | abvcl 20741 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ ℝ) |
| 4 | 3 | 3adant3 1132 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐹‘𝑋) ∈ ℝ) |
| 5 | 1, 2 | abvge0 20742 | . . 3 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → 0 ≤ (𝐹‘𝑋)) |
| 6 | 5 | 3adant3 1132 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 0 ≤ (𝐹‘𝑋)) |
| 7 | abveq0.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 8 | 1, 2, 7 | abvne0 20744 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → (𝐹‘𝑋) ≠ 0) |
| 9 | 4, 6, 8 | ne0gt0d 11260 | 1 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → 0 < (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 class class class wbr 5095 ‘cfv 6489 ℝcr 11015 0cc0 11016 < clt 11156 ≤ cle 11157 Basecbs 17130 0gc0g 17353 AbsValcabv 20733 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-addrcl 11077 ax-rnegex 11087 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-ico 13261 df-abv 20734 |
| This theorem is referenced by: abvres 20756 abvcxp 27563 ostth2 27585 ostth3 27586 |
| Copyright terms: Public domain | W3C validator |