![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abvgt0 | Structured version Visualization version GIF version |
Description: The absolute value of a nonzero number is strictly positive. (Contributed by Mario Carneiro, 8-Sep-2014.) |
Ref | Expression |
---|---|
abvf.a | β’ π΄ = (AbsValβπ ) |
abvf.b | β’ π΅ = (Baseβπ ) |
abveq0.z | β’ 0 = (0gβπ ) |
Ref | Expression |
---|---|
abvgt0 | β’ ((πΉ β π΄ β§ π β π΅ β§ π β 0 ) β 0 < (πΉβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abvf.a | . . . 4 β’ π΄ = (AbsValβπ ) | |
2 | abvf.b | . . . 4 β’ π΅ = (Baseβπ ) | |
3 | 1, 2 | abvcl 20576 | . . 3 β’ ((πΉ β π΄ β§ π β π΅) β (πΉβπ) β β) |
4 | 3 | 3adant3 1131 | . 2 β’ ((πΉ β π΄ β§ π β π΅ β§ π β 0 ) β (πΉβπ) β β) |
5 | 1, 2 | abvge0 20577 | . . 3 β’ ((πΉ β π΄ β§ π β π΅) β 0 β€ (πΉβπ)) |
6 | 5 | 3adant3 1131 | . 2 β’ ((πΉ β π΄ β§ π β π΅ β§ π β 0 ) β 0 β€ (πΉβπ)) |
7 | abveq0.z | . . 3 β’ 0 = (0gβπ ) | |
8 | 1, 2, 7 | abvne0 20579 | . 2 β’ ((πΉ β π΄ β§ π β π΅ β§ π β 0 ) β (πΉβπ) β 0) |
9 | 4, 6, 8 | ne0gt0d 11356 | 1 β’ ((πΉ β π΄ β§ π β π΅ β§ π β 0 ) β 0 < (πΉβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1086 = wceq 1540 β wcel 2105 β wne 2939 class class class wbr 5148 βcfv 6543 βcr 11112 0cc0 11113 < clt 11253 β€ cle 11254 Basecbs 17149 0gc0g 17390 AbsValcabv 20568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-addrcl 11174 ax-rnegex 11184 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-ico 13335 df-abv 20569 |
This theorem is referenced by: abvres 20591 abvcxp 27355 ostth2 27377 ostth3 27378 |
Copyright terms: Public domain | W3C validator |