![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > addrfn | Structured version Visualization version GIF version |
Description: Vector addition produces a function. (Contributed by Andrew Salmon, 27-Jan-2012.) |
Ref | Expression |
---|---|
addrfn | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) Fn ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7459 | . . 3 ⊢ ((𝐴‘𝑥) + (𝐵‘𝑥)) ∈ V | |
2 | eqid 2728 | . . 3 ⊢ (𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) + (𝐵‘𝑥))) = (𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) + (𝐵‘𝑥))) | |
3 | 1, 2 | fnmpti 6703 | . 2 ⊢ (𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) + (𝐵‘𝑥))) Fn ℝ |
4 | addrval 43934 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) = (𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) + (𝐵‘𝑥)))) | |
5 | 4 | fneq1d 6652 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ((𝐴+𝑟𝐵) Fn ℝ ↔ (𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) + (𝐵‘𝑥))) Fn ℝ)) |
6 | 3, 5 | mpbiri 257 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) Fn ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 ↦ cmpt 5235 Fn wfn 6548 ‘cfv 6553 (class class class)co 7426 ℝcr 11145 + caddc 11149 +𝑟cplusr 43925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-cnex 11202 ax-resscn 11203 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-addr 43931 |
This theorem is referenced by: addrcom 43943 |
Copyright terms: Public domain | W3C validator |