Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addrval Structured version   Visualization version   GIF version

Theorem addrval 44427
Description: Value of the operation of vector addition. (Contributed by Andrew Salmon, 27-Jan-2012.)
Assertion
Ref Expression
addrval ((𝐴𝐶𝐵𝐷) → (𝐴+𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴𝑣) + (𝐵𝑣))))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐵
Allowed substitution hints:   𝐶(𝑣)   𝐷(𝑣)

Proof of Theorem addrval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3476 . 2 (𝐴𝐶𝐴 ∈ V)
2 elex 3476 . 2 (𝐵𝐷𝐵 ∈ V)
3 fveq1 6864 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑣) = (𝐴𝑣))
4 fveq1 6864 . . . . 5 (𝑦 = 𝐵 → (𝑦𝑣) = (𝐵𝑣))
53, 4oveqan12d 7413 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝑣) + (𝑦𝑣)) = ((𝐴𝑣) + (𝐵𝑣)))
65mpteq2dv 5209 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑣 ∈ ℝ ↦ ((𝑥𝑣) + (𝑦𝑣))) = (𝑣 ∈ ℝ ↦ ((𝐴𝑣) + (𝐵𝑣))))
7 df-addr 44424 . . 3 +𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥𝑣) + (𝑦𝑣))))
8 reex 11177 . . . 4 ℝ ∈ V
98mptex 7204 . . 3 (𝑣 ∈ ℝ ↦ ((𝐴𝑣) + (𝐵𝑣))) ∈ V
106, 7, 9ovmpoa 7551 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴+𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴𝑣) + (𝐵𝑣))))
111, 2, 10syl2an 596 1 ((𝐴𝐶𝐵𝐷) → (𝐴+𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴𝑣) + (𝐵𝑣))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3455  cmpt 5196  cfv 6519  (class class class)co 7394  cr 11085   + caddc 11089  +𝑟cplusr 44418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-cnex 11142  ax-resscn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-addr 44424
This theorem is referenced by:  addrfv  44430  addrfn  44433
  Copyright terms: Public domain W3C validator