![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > addrval | Structured version Visualization version GIF version |
Description: Value of the operation of vector addition. (Contributed by Andrew Salmon, 27-Jan-2012.) |
Ref | Expression |
---|---|
addrval | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴‘𝑣) + (𝐵‘𝑣)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
2 | elex 3492 | . 2 ⊢ (𝐵 ∈ 𝐷 → 𝐵 ∈ V) | |
3 | fveq1 6890 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥‘𝑣) = (𝐴‘𝑣)) | |
4 | fveq1 6890 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦‘𝑣) = (𝐵‘𝑣)) | |
5 | 3, 4 | oveqan12d 7427 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑥‘𝑣) + (𝑦‘𝑣)) = ((𝐴‘𝑣) + (𝐵‘𝑣))) |
6 | 5 | mpteq2dv 5250 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑣 ∈ ℝ ↦ ((𝑥‘𝑣) + (𝑦‘𝑣))) = (𝑣 ∈ ℝ ↦ ((𝐴‘𝑣) + (𝐵‘𝑣)))) |
7 | df-addr 43212 | . . 3 ⊢ +𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥‘𝑣) + (𝑦‘𝑣)))) | |
8 | reex 11200 | . . . 4 ⊢ ℝ ∈ V | |
9 | 8 | mptex 7224 | . . 3 ⊢ (𝑣 ∈ ℝ ↦ ((𝐴‘𝑣) + (𝐵‘𝑣))) ∈ V |
10 | 6, 7, 9 | ovmpoa 7562 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴+𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴‘𝑣) + (𝐵‘𝑣)))) |
11 | 1, 2, 10 | syl2an 596 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴‘𝑣) + (𝐵‘𝑣)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ↦ cmpt 5231 ‘cfv 6543 (class class class)co 7408 ℝcr 11108 + caddc 11112 +𝑟cplusr 43206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-cnex 11165 ax-resscn 11166 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-addr 43212 |
This theorem is referenced by: addrfv 43218 addrfn 43221 |
Copyright terms: Public domain | W3C validator |