Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mulvfv Structured version   Visualization version   GIF version

Theorem mulvfv 44627
Description: Scalar multiplication at a value. (Contributed by Andrew Salmon, 27-Jan-2012.)
Assertion
Ref Expression
mulvfv ((𝐴𝐸𝐵𝐷𝐶 ∈ ℝ) → ((𝐴.𝑣𝐵)‘𝐶) = (𝐴 · (𝐵𝐶)))

Proof of Theorem mulvfv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mulvval 44624 . . . 4 ((𝐴𝐸𝐵𝐷) → (𝐴.𝑣𝐵) = (𝑥 ∈ ℝ ↦ (𝐴 · (𝐵𝑥))))
21fveq1d 6833 . . 3 ((𝐴𝐸𝐵𝐷) → ((𝐴.𝑣𝐵)‘𝐶) = ((𝑥 ∈ ℝ ↦ (𝐴 · (𝐵𝑥)))‘𝐶))
3 fveq2 6831 . . . . 5 (𝑥 = 𝐶 → (𝐵𝑥) = (𝐵𝐶))
43oveq2d 7371 . . . 4 (𝑥 = 𝐶 → (𝐴 · (𝐵𝑥)) = (𝐴 · (𝐵𝐶)))
5 eqid 2733 . . . 4 (𝑥 ∈ ℝ ↦ (𝐴 · (𝐵𝑥))) = (𝑥 ∈ ℝ ↦ (𝐴 · (𝐵𝑥)))
6 ovex 7388 . . . 4 (𝐴 · (𝐵𝐶)) ∈ V
74, 5, 6fvmpt 6938 . . 3 (𝐶 ∈ ℝ → ((𝑥 ∈ ℝ ↦ (𝐴 · (𝐵𝑥)))‘𝐶) = (𝐴 · (𝐵𝐶)))
82, 7sylan9eq 2788 . 2 (((𝐴𝐸𝐵𝐷) ∧ 𝐶 ∈ ℝ) → ((𝐴.𝑣𝐵)‘𝐶) = (𝐴 · (𝐵𝐶)))
983impa 1109 1 ((𝐴𝐸𝐵𝐷𝐶 ∈ ℝ) → ((𝐴.𝑣𝐵)‘𝐶) = (𝐴 · (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  cmpt 5176  cfv 6489  (class class class)co 7355  cr 11016   · cmul 11022  .𝑣ctimesr 44615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-cnex 11073  ax-resscn 11074
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-mulv 44621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator