![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mulvfv | Structured version Visualization version GIF version |
Description: Scalar multiplication at a value. (Contributed by Andrew Salmon, 27-Jan-2012.) |
Ref | Expression |
---|---|
mulvfv | โข ((๐ด โ ๐ธ โง ๐ต โ ๐ท โง ๐ถ โ โ) โ ((๐ด.๐ฃ๐ต)โ๐ถ) = (๐ด ยท (๐ตโ๐ถ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulvval 43217 | . . . 4 โข ((๐ด โ ๐ธ โง ๐ต โ ๐ท) โ (๐ด.๐ฃ๐ต) = (๐ฅ โ โ โฆ (๐ด ยท (๐ตโ๐ฅ)))) | |
2 | 1 | fveq1d 6893 | . . 3 โข ((๐ด โ ๐ธ โง ๐ต โ ๐ท) โ ((๐ด.๐ฃ๐ต)โ๐ถ) = ((๐ฅ โ โ โฆ (๐ด ยท (๐ตโ๐ฅ)))โ๐ถ)) |
3 | fveq2 6891 | . . . . 5 โข (๐ฅ = ๐ถ โ (๐ตโ๐ฅ) = (๐ตโ๐ถ)) | |
4 | 3 | oveq2d 7424 | . . . 4 โข (๐ฅ = ๐ถ โ (๐ด ยท (๐ตโ๐ฅ)) = (๐ด ยท (๐ตโ๐ถ))) |
5 | eqid 2732 | . . . 4 โข (๐ฅ โ โ โฆ (๐ด ยท (๐ตโ๐ฅ))) = (๐ฅ โ โ โฆ (๐ด ยท (๐ตโ๐ฅ))) | |
6 | ovex 7441 | . . . 4 โข (๐ด ยท (๐ตโ๐ถ)) โ V | |
7 | 4, 5, 6 | fvmpt 6998 | . . 3 โข (๐ถ โ โ โ ((๐ฅ โ โ โฆ (๐ด ยท (๐ตโ๐ฅ)))โ๐ถ) = (๐ด ยท (๐ตโ๐ถ))) |
8 | 2, 7 | sylan9eq 2792 | . 2 โข (((๐ด โ ๐ธ โง ๐ต โ ๐ท) โง ๐ถ โ โ) โ ((๐ด.๐ฃ๐ต)โ๐ถ) = (๐ด ยท (๐ตโ๐ถ))) |
9 | 8 | 3impa 1110 | 1 โข ((๐ด โ ๐ธ โง ๐ต โ ๐ท โง ๐ถ โ โ) โ ((๐ด.๐ฃ๐ต)โ๐ถ) = (๐ด ยท (๐ตโ๐ถ))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 396 โง w3a 1087 = wceq 1541 โ wcel 2106 โฆ cmpt 5231 โcfv 6543 (class class class)co 7408 โcr 11108 ยท cmul 11114 .๐ฃctimesr 43208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-cnex 11165 ax-resscn 11166 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-mulv 43214 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |