Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mulvfv | Structured version Visualization version GIF version |
Description: Scalar multiplication at a value. (Contributed by Andrew Salmon, 27-Jan-2012.) |
Ref | Expression |
---|---|
mulvfv | ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴.𝑣𝐵)‘𝐶) = (𝐴 · (𝐵‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulvval 42048 | . . . 4 ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) = (𝑥 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑥)))) | |
2 | 1 | fveq1d 6771 | . . 3 ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷) → ((𝐴.𝑣𝐵)‘𝐶) = ((𝑥 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑥)))‘𝐶)) |
3 | fveq2 6769 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐵‘𝑥) = (𝐵‘𝐶)) | |
4 | 3 | oveq2d 7285 | . . . 4 ⊢ (𝑥 = 𝐶 → (𝐴 · (𝐵‘𝑥)) = (𝐴 · (𝐵‘𝐶))) |
5 | eqid 2740 | . . . 4 ⊢ (𝑥 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑥))) = (𝑥 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑥))) | |
6 | ovex 7302 | . . . 4 ⊢ (𝐴 · (𝐵‘𝐶)) ∈ V | |
7 | 4, 5, 6 | fvmpt 6870 | . . 3 ⊢ (𝐶 ∈ ℝ → ((𝑥 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑥)))‘𝐶) = (𝐴 · (𝐵‘𝐶))) |
8 | 2, 7 | sylan9eq 2800 | . 2 ⊢ (((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ ℝ) → ((𝐴.𝑣𝐵)‘𝐶) = (𝐴 · (𝐵‘𝐶))) |
9 | 8 | 3impa 1109 | 1 ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴.𝑣𝐵)‘𝐶) = (𝐴 · (𝐵‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ↦ cmpt 5162 ‘cfv 6431 (class class class)co 7269 ℝcr 10863 · cmul 10869 .𝑣ctimesr 42039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-cnex 10920 ax-resscn 10921 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-ov 7272 df-oprab 7273 df-mpo 7274 df-mulv 42045 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |