Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mulvfv | Structured version Visualization version GIF version |
Description: Scalar multiplication at a value. (Contributed by Andrew Salmon, 27-Jan-2012.) |
Ref | Expression |
---|---|
mulvfv | ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴.𝑣𝐵)‘𝐶) = (𝐴 · (𝐵‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulvval 42093 | . . . 4 ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷) → (𝐴.𝑣𝐵) = (𝑥 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑥)))) | |
2 | 1 | fveq1d 6785 | . . 3 ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷) → ((𝐴.𝑣𝐵)‘𝐶) = ((𝑥 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑥)))‘𝐶)) |
3 | fveq2 6783 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐵‘𝑥) = (𝐵‘𝐶)) | |
4 | 3 | oveq2d 7300 | . . . 4 ⊢ (𝑥 = 𝐶 → (𝐴 · (𝐵‘𝑥)) = (𝐴 · (𝐵‘𝐶))) |
5 | eqid 2739 | . . . 4 ⊢ (𝑥 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑥))) = (𝑥 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑥))) | |
6 | ovex 7317 | . . . 4 ⊢ (𝐴 · (𝐵‘𝐶)) ∈ V | |
7 | 4, 5, 6 | fvmpt 6884 | . . 3 ⊢ (𝐶 ∈ ℝ → ((𝑥 ∈ ℝ ↦ (𝐴 · (𝐵‘𝑥)))‘𝐶) = (𝐴 · (𝐵‘𝐶))) |
8 | 2, 7 | sylan9eq 2799 | . 2 ⊢ (((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ ℝ) → ((𝐴.𝑣𝐵)‘𝐶) = (𝐴 · (𝐵‘𝐶))) |
9 | 8 | 3impa 1109 | 1 ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴.𝑣𝐵)‘𝐶) = (𝐴 · (𝐵‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ↦ cmpt 5158 ‘cfv 6437 (class class class)co 7284 ℝcr 10879 · cmul 10885 .𝑣ctimesr 42084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pr 5353 ax-cnex 10936 ax-resscn 10937 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-ov 7287 df-oprab 7288 df-mpo 7289 df-mulv 42090 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |