Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addrfv Structured version   Visualization version   GIF version

Theorem addrfv 40794
Description: Vector addition at a value. The operation takes each vector 𝐴 and 𝐵 and forms a new vector whose values are the sum of each of the values of 𝐴 and 𝐵. (Contributed by Andrew Salmon, 27-Jan-2012.)
Assertion
Ref Expression
addrfv ((𝐴𝐸𝐵𝐷𝐶 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝐶) = ((𝐴𝐶) + (𝐵𝐶)))

Proof of Theorem addrfv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 addrval 40791 . . . 4 ((𝐴𝐸𝐵𝐷) → (𝐴+𝑟𝐵) = (𝑥 ∈ ℝ ↦ ((𝐴𝑥) + (𝐵𝑥))))
21fveq1d 6667 . . 3 ((𝐴𝐸𝐵𝐷) → ((𝐴+𝑟𝐵)‘𝐶) = ((𝑥 ∈ ℝ ↦ ((𝐴𝑥) + (𝐵𝑥)))‘𝐶))
3 fveq2 6665 . . . . 5 (𝑥 = 𝐶 → (𝐴𝑥) = (𝐴𝐶))
4 fveq2 6665 . . . . 5 (𝑥 = 𝐶 → (𝐵𝑥) = (𝐵𝐶))
53, 4oveq12d 7168 . . . 4 (𝑥 = 𝐶 → ((𝐴𝑥) + (𝐵𝑥)) = ((𝐴𝐶) + (𝐵𝐶)))
6 eqid 2821 . . . 4 (𝑥 ∈ ℝ ↦ ((𝐴𝑥) + (𝐵𝑥))) = (𝑥 ∈ ℝ ↦ ((𝐴𝑥) + (𝐵𝑥)))
7 ovex 7183 . . . 4 ((𝐴𝐶) + (𝐵𝐶)) ∈ V
85, 6, 7fvmpt 6763 . . 3 (𝐶 ∈ ℝ → ((𝑥 ∈ ℝ ↦ ((𝐴𝑥) + (𝐵𝑥)))‘𝐶) = ((𝐴𝐶) + (𝐵𝐶)))
92, 8sylan9eq 2876 . 2 (((𝐴𝐸𝐵𝐷) ∧ 𝐶 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝐶) = ((𝐴𝐶) + (𝐵𝐶)))
1093impa 1106 1 ((𝐴𝐸𝐵𝐷𝐶 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝐶) = ((𝐴𝐶) + (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  cmpt 5139  cfv 6350  (class class class)co 7150  cr 10530   + caddc 10534  +𝑟cplusr 40782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pr 5322  ax-cnex 10587  ax-resscn 10588
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-addr 40788
This theorem is referenced by:  addrcom  40800
  Copyright terms: Public domain W3C validator