Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addrfv Structured version   Visualization version   GIF version

Theorem addrfv 44433
Description: Vector addition at a value. The operation takes each vector 𝐴 and 𝐵 and forms a new vector whose values are the sum of each of the values of 𝐴 and 𝐵. (Contributed by Andrew Salmon, 27-Jan-2012.)
Assertion
Ref Expression
addrfv ((𝐴𝐸𝐵𝐷𝐶 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝐶) = ((𝐴𝐶) + (𝐵𝐶)))

Proof of Theorem addrfv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 addrval 44430 . . . 4 ((𝐴𝐸𝐵𝐷) → (𝐴+𝑟𝐵) = (𝑥 ∈ ℝ ↦ ((𝐴𝑥) + (𝐵𝑥))))
21fveq1d 6889 . . 3 ((𝐴𝐸𝐵𝐷) → ((𝐴+𝑟𝐵)‘𝐶) = ((𝑥 ∈ ℝ ↦ ((𝐴𝑥) + (𝐵𝑥)))‘𝐶))
3 fveq2 6887 . . . . 5 (𝑥 = 𝐶 → (𝐴𝑥) = (𝐴𝐶))
4 fveq2 6887 . . . . 5 (𝑥 = 𝐶 → (𝐵𝑥) = (𝐵𝐶))
53, 4oveq12d 7432 . . . 4 (𝑥 = 𝐶 → ((𝐴𝑥) + (𝐵𝑥)) = ((𝐴𝐶) + (𝐵𝐶)))
6 eqid 2734 . . . 4 (𝑥 ∈ ℝ ↦ ((𝐴𝑥) + (𝐵𝑥))) = (𝑥 ∈ ℝ ↦ ((𝐴𝑥) + (𝐵𝑥)))
7 ovex 7447 . . . 4 ((𝐴𝐶) + (𝐵𝐶)) ∈ V
85, 6, 7fvmpt 6997 . . 3 (𝐶 ∈ ℝ → ((𝑥 ∈ ℝ ↦ ((𝐴𝑥) + (𝐵𝑥)))‘𝐶) = ((𝐴𝐶) + (𝐵𝐶)))
92, 8sylan9eq 2789 . 2 (((𝐴𝐸𝐵𝐷) ∧ 𝐶 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝐶) = ((𝐴𝐶) + (𝐵𝐶)))
1093impa 1109 1 ((𝐴𝐸𝐵𝐷𝐶 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝐶) = ((𝐴𝐶) + (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  cmpt 5207  cfv 6542  (class class class)co 7414  cr 11137   + caddc 11141  +𝑟cplusr 44421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pr 5414  ax-cnex 11194  ax-resscn 11195
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-addr 44427
This theorem is referenced by:  addrcom  44439
  Copyright terms: Public domain W3C validator