| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > addrfv | Structured version Visualization version GIF version | ||
| Description: Vector addition at a value. The operation takes each vector 𝐴 and 𝐵 and forms a new vector whose values are the sum of each of the values of 𝐴 and 𝐵. (Contributed by Andrew Salmon, 27-Jan-2012.) |
| Ref | Expression |
|---|---|
| addrfv | ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝐶) = ((𝐴‘𝐶) + (𝐵‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addrval 44430 | . . . 4 ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) = (𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) + (𝐵‘𝑥)))) | |
| 2 | 1 | fveq1d 6889 | . . 3 ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷) → ((𝐴+𝑟𝐵)‘𝐶) = ((𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) + (𝐵‘𝑥)))‘𝐶)) |
| 3 | fveq2 6887 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐴‘𝑥) = (𝐴‘𝐶)) | |
| 4 | fveq2 6887 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐵‘𝑥) = (𝐵‘𝐶)) | |
| 5 | 3, 4 | oveq12d 7432 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐴‘𝑥) + (𝐵‘𝑥)) = ((𝐴‘𝐶) + (𝐵‘𝐶))) |
| 6 | eqid 2734 | . . . 4 ⊢ (𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) + (𝐵‘𝑥))) = (𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) + (𝐵‘𝑥))) | |
| 7 | ovex 7447 | . . . 4 ⊢ ((𝐴‘𝐶) + (𝐵‘𝐶)) ∈ V | |
| 8 | 5, 6, 7 | fvmpt 6997 | . . 3 ⊢ (𝐶 ∈ ℝ → ((𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) + (𝐵‘𝑥)))‘𝐶) = ((𝐴‘𝐶) + (𝐵‘𝐶))) |
| 9 | 2, 8 | sylan9eq 2789 | . 2 ⊢ (((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝐶) = ((𝐴‘𝐶) + (𝐵‘𝐶))) |
| 10 | 9 | 3impa 1109 | 1 ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝐶) = ((𝐴‘𝐶) + (𝐵‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ↦ cmpt 5207 ‘cfv 6542 (class class class)co 7414 ℝcr 11137 + caddc 11141 +𝑟cplusr 44421 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-cnex 11194 ax-resscn 11195 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-addr 44427 |
| This theorem is referenced by: addrcom 44439 |
| Copyright terms: Public domain | W3C validator |