Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > addrfv | Structured version Visualization version GIF version |
Description: Vector addition at a value. The operation takes each vector 𝐴 and 𝐵 and forms a new vector whose values are the sum of each of the values of 𝐴 and 𝐵. (Contributed by Andrew Salmon, 27-Jan-2012.) |
Ref | Expression |
---|---|
addrfv | ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝐶) = ((𝐴‘𝐶) + (𝐵‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addrval 42122 | . . . 4 ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷) → (𝐴+𝑟𝐵) = (𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) + (𝐵‘𝑥)))) | |
2 | 1 | fveq1d 6806 | . . 3 ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷) → ((𝐴+𝑟𝐵)‘𝐶) = ((𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) + (𝐵‘𝑥)))‘𝐶)) |
3 | fveq2 6804 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐴‘𝑥) = (𝐴‘𝐶)) | |
4 | fveq2 6804 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐵‘𝑥) = (𝐵‘𝐶)) | |
5 | 3, 4 | oveq12d 7325 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐴‘𝑥) + (𝐵‘𝑥)) = ((𝐴‘𝐶) + (𝐵‘𝐶))) |
6 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) + (𝐵‘𝑥))) = (𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) + (𝐵‘𝑥))) | |
7 | ovex 7340 | . . . 4 ⊢ ((𝐴‘𝐶) + (𝐵‘𝐶)) ∈ V | |
8 | 5, 6, 7 | fvmpt 6907 | . . 3 ⊢ (𝐶 ∈ ℝ → ((𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) + (𝐵‘𝑥)))‘𝐶) = ((𝐴‘𝐶) + (𝐵‘𝐶))) |
9 | 2, 8 | sylan9eq 2796 | . 2 ⊢ (((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝐶) = ((𝐴‘𝐶) + (𝐵‘𝐶))) |
10 | 9 | 3impa 1110 | 1 ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝐶) = ((𝐴‘𝐶) + (𝐵‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ↦ cmpt 5164 ‘cfv 6458 (class class class)co 7307 ℝcr 10916 + caddc 10920 +𝑟cplusr 42113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-cnex 10973 ax-resscn 10974 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-addr 42119 |
This theorem is referenced by: addrcom 42131 |
Copyright terms: Public domain | W3C validator |