Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subrfv Structured version   Visualization version   GIF version

Theorem subrfv 42069
Description: Vector subtraction at a value. (Contributed by Andrew Salmon, 27-Jan-2012.)
Assertion
Ref Expression
subrfv ((𝐴𝐸𝐵𝐷𝐶 ∈ ℝ) → ((𝐴-𝑟𝐵)‘𝐶) = ((𝐴𝐶) − (𝐵𝐶)))

Proof of Theorem subrfv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 subrval 42066 . . . 4 ((𝐴𝐸𝐵𝐷) → (𝐴-𝑟𝐵) = (𝑥 ∈ ℝ ↦ ((𝐴𝑥) − (𝐵𝑥))))
21fveq1d 6768 . . 3 ((𝐴𝐸𝐵𝐷) → ((𝐴-𝑟𝐵)‘𝐶) = ((𝑥 ∈ ℝ ↦ ((𝐴𝑥) − (𝐵𝑥)))‘𝐶))
3 fveq2 6766 . . . . 5 (𝑥 = 𝐶 → (𝐴𝑥) = (𝐴𝐶))
4 fveq2 6766 . . . . 5 (𝑥 = 𝐶 → (𝐵𝑥) = (𝐵𝐶))
53, 4oveq12d 7285 . . . 4 (𝑥 = 𝐶 → ((𝐴𝑥) − (𝐵𝑥)) = ((𝐴𝐶) − (𝐵𝐶)))
6 eqid 2738 . . . 4 (𝑥 ∈ ℝ ↦ ((𝐴𝑥) − (𝐵𝑥))) = (𝑥 ∈ ℝ ↦ ((𝐴𝑥) − (𝐵𝑥)))
7 ovex 7300 . . . 4 ((𝐴𝐶) − (𝐵𝐶)) ∈ V
85, 6, 7fvmpt 6867 . . 3 (𝐶 ∈ ℝ → ((𝑥 ∈ ℝ ↦ ((𝐴𝑥) − (𝐵𝑥)))‘𝐶) = ((𝐴𝐶) − (𝐵𝐶)))
92, 8sylan9eq 2798 . 2 (((𝐴𝐸𝐵𝐷) ∧ 𝐶 ∈ ℝ) → ((𝐴-𝑟𝐵)‘𝐶) = ((𝐴𝐶) − (𝐵𝐶)))
1093impa 1109 1 ((𝐴𝐸𝐵𝐷𝐶 ∈ ℝ) → ((𝐴-𝑟𝐵)‘𝐶) = ((𝐴𝐶) − (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cmpt 5156  cfv 6426  (class class class)co 7267  cr 10880  cmin 11215  -𝑟cminusr 42057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pr 5350  ax-cnex 10937  ax-resscn 10938
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-ov 7270  df-oprab 7271  df-mpo 7272  df-subr 42063
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator