Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subrfv Structured version   Visualization version   GIF version

Theorem subrfv 43219
Description: Vector subtraction at a value. (Contributed by Andrew Salmon, 27-Jan-2012.)
Assertion
Ref Expression
subrfv ((𝐴𝐸𝐵𝐷𝐶 ∈ ℝ) → ((𝐴-𝑟𝐵)‘𝐶) = ((𝐴𝐶) − (𝐵𝐶)))

Proof of Theorem subrfv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 subrval 43216 . . . 4 ((𝐴𝐸𝐵𝐷) → (𝐴-𝑟𝐵) = (𝑥 ∈ ℝ ↦ ((𝐴𝑥) − (𝐵𝑥))))
21fveq1d 6893 . . 3 ((𝐴𝐸𝐵𝐷) → ((𝐴-𝑟𝐵)‘𝐶) = ((𝑥 ∈ ℝ ↦ ((𝐴𝑥) − (𝐵𝑥)))‘𝐶))
3 fveq2 6891 . . . . 5 (𝑥 = 𝐶 → (𝐴𝑥) = (𝐴𝐶))
4 fveq2 6891 . . . . 5 (𝑥 = 𝐶 → (𝐵𝑥) = (𝐵𝐶))
53, 4oveq12d 7426 . . . 4 (𝑥 = 𝐶 → ((𝐴𝑥) − (𝐵𝑥)) = ((𝐴𝐶) − (𝐵𝐶)))
6 eqid 2732 . . . 4 (𝑥 ∈ ℝ ↦ ((𝐴𝑥) − (𝐵𝑥))) = (𝑥 ∈ ℝ ↦ ((𝐴𝑥) − (𝐵𝑥)))
7 ovex 7441 . . . 4 ((𝐴𝐶) − (𝐵𝐶)) ∈ V
85, 6, 7fvmpt 6998 . . 3 (𝐶 ∈ ℝ → ((𝑥 ∈ ℝ ↦ ((𝐴𝑥) − (𝐵𝑥)))‘𝐶) = ((𝐴𝐶) − (𝐵𝐶)))
92, 8sylan9eq 2792 . 2 (((𝐴𝐸𝐵𝐷) ∧ 𝐶 ∈ ℝ) → ((𝐴-𝑟𝐵)‘𝐶) = ((𝐴𝐶) − (𝐵𝐶)))
1093impa 1110 1 ((𝐴𝐸𝐵𝐷𝐶 ∈ ℝ) → ((𝐴-𝑟𝐵)‘𝐶) = ((𝐴𝐶) − (𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  cmpt 5231  cfv 6543  (class class class)co 7408  cr 11108  cmin 11443  -𝑟cminusr 43207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-cnex 11165  ax-resscn 11166
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-subr 43213
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator