![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > subrfv | Structured version Visualization version GIF version |
Description: Vector subtraction at a value. (Contributed by Andrew Salmon, 27-Jan-2012.) |
Ref | Expression |
---|---|
subrfv | ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴-𝑟𝐵)‘𝐶) = ((𝐴‘𝐶) − (𝐵‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrval 42839 | . . . 4 ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷) → (𝐴-𝑟𝐵) = (𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) − (𝐵‘𝑥)))) | |
2 | 1 | fveq1d 6848 | . . 3 ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷) → ((𝐴-𝑟𝐵)‘𝐶) = ((𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) − (𝐵‘𝑥)))‘𝐶)) |
3 | fveq2 6846 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐴‘𝑥) = (𝐴‘𝐶)) | |
4 | fveq2 6846 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐵‘𝑥) = (𝐵‘𝐶)) | |
5 | 3, 4 | oveq12d 7379 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐴‘𝑥) − (𝐵‘𝑥)) = ((𝐴‘𝐶) − (𝐵‘𝐶))) |
6 | eqid 2733 | . . . 4 ⊢ (𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) − (𝐵‘𝑥))) = (𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) − (𝐵‘𝑥))) | |
7 | ovex 7394 | . . . 4 ⊢ ((𝐴‘𝐶) − (𝐵‘𝐶)) ∈ V | |
8 | 5, 6, 7 | fvmpt 6952 | . . 3 ⊢ (𝐶 ∈ ℝ → ((𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) − (𝐵‘𝑥)))‘𝐶) = ((𝐴‘𝐶) − (𝐵‘𝐶))) |
9 | 2, 8 | sylan9eq 2793 | . 2 ⊢ (((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ ℝ) → ((𝐴-𝑟𝐵)‘𝐶) = ((𝐴‘𝐶) − (𝐵‘𝐶))) |
10 | 9 | 3impa 1111 | 1 ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴-𝑟𝐵)‘𝐶) = ((𝐴‘𝐶) − (𝐵‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ↦ cmpt 5192 ‘cfv 6500 (class class class)co 7361 ℝcr 11058 − cmin 11393 -𝑟cminusr 42830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pr 5388 ax-cnex 11115 ax-resscn 11116 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7364 df-oprab 7365 df-mpo 7366 df-subr 42836 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |