Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > subrfv | Structured version Visualization version GIF version |
Description: Vector subtraction at a value. (Contributed by Andrew Salmon, 27-Jan-2012.) |
Ref | Expression |
---|---|
subrfv | ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴-𝑟𝐵)‘𝐶) = ((𝐴‘𝐶) − (𝐵‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrval 41974 | . . . 4 ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷) → (𝐴-𝑟𝐵) = (𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) − (𝐵‘𝑥)))) | |
2 | 1 | fveq1d 6758 | . . 3 ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷) → ((𝐴-𝑟𝐵)‘𝐶) = ((𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) − (𝐵‘𝑥)))‘𝐶)) |
3 | fveq2 6756 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐴‘𝑥) = (𝐴‘𝐶)) | |
4 | fveq2 6756 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐵‘𝑥) = (𝐵‘𝐶)) | |
5 | 3, 4 | oveq12d 7273 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐴‘𝑥) − (𝐵‘𝑥)) = ((𝐴‘𝐶) − (𝐵‘𝐶))) |
6 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) − (𝐵‘𝑥))) = (𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) − (𝐵‘𝑥))) | |
7 | ovex 7288 | . . . 4 ⊢ ((𝐴‘𝐶) − (𝐵‘𝐶)) ∈ V | |
8 | 5, 6, 7 | fvmpt 6857 | . . 3 ⊢ (𝐶 ∈ ℝ → ((𝑥 ∈ ℝ ↦ ((𝐴‘𝑥) − (𝐵‘𝑥)))‘𝐶) = ((𝐴‘𝐶) − (𝐵‘𝐶))) |
9 | 2, 8 | sylan9eq 2799 | . 2 ⊢ (((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷) ∧ 𝐶 ∈ ℝ) → ((𝐴-𝑟𝐵)‘𝐶) = ((𝐴‘𝐶) − (𝐵‘𝐶))) |
10 | 9 | 3impa 1108 | 1 ⊢ ((𝐴 ∈ 𝐸 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ ℝ) → ((𝐴-𝑟𝐵)‘𝐶) = ((𝐴‘𝐶) − (𝐵‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 − cmin 11135 -𝑟cminusr 41965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-subr 41971 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |