MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofmulrt Structured version   Visualization version   GIF version

Theorem ofmulrt 24970
Description: The set of roots of a product is the union of the roots of the terms. (Contributed by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
ofmulrt ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹f · 𝐺) “ {0}) = ((𝐹 “ {0}) ∪ (𝐺 “ {0})))

Proof of Theorem ofmulrt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp2 1135 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ)
21ffnd 6500 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹 Fn 𝐴)
3 simp3 1136 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺:𝐴⟶ℂ)
43ffnd 6500 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺 Fn 𝐴)
5 simp1 1134 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐴𝑉)
6 inidm 4124 . . . . . . 7 (𝐴𝐴) = 𝐴
7 eqidd 2760 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
8 eqidd 2760 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
92, 4, 5, 5, 6, 7, 8ofval 7416 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → ((𝐹f · 𝐺)‘𝑥) = ((𝐹𝑥) · (𝐺𝑥)))
109eqeq1d 2761 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐹f · 𝐺)‘𝑥) = 0 ↔ ((𝐹𝑥) · (𝐺𝑥)) = 0))
111ffvelrnda 6843 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
123ffvelrnda 6843 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ ℂ)
1311, 12mul0ord 11321 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐹𝑥) · (𝐺𝑥)) = 0 ↔ ((𝐹𝑥) = 0 ∨ (𝐺𝑥) = 0)))
1410, 13bitrd 282 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐹f · 𝐺)‘𝑥) = 0 ↔ ((𝐹𝑥) = 0 ∨ (𝐺𝑥) = 0)))
1514pm5.32da 583 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝑥𝐴 ∧ ((𝐹f · 𝐺)‘𝑥) = 0) ↔ (𝑥𝐴 ∧ ((𝐹𝑥) = 0 ∨ (𝐺𝑥) = 0))))
162, 4, 5, 5, 6offn 7418 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹f · 𝐺) Fn 𝐴)
17 fniniseg 6822 . . . 4 ((𝐹f · 𝐺) Fn 𝐴 → (𝑥 ∈ ((𝐹f · 𝐺) “ {0}) ↔ (𝑥𝐴 ∧ ((𝐹f · 𝐺)‘𝑥) = 0)))
1816, 17syl 17 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ ((𝐹f · 𝐺) “ {0}) ↔ (𝑥𝐴 ∧ ((𝐹f · 𝐺)‘𝑥) = 0)))
19 fniniseg 6822 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ {0}) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 0)))
202, 19syl 17 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ (𝐹 “ {0}) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 0)))
21 fniniseg 6822 . . . . . 6 (𝐺 Fn 𝐴 → (𝑥 ∈ (𝐺 “ {0}) ↔ (𝑥𝐴 ∧ (𝐺𝑥) = 0)))
224, 21syl 17 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ (𝐺 “ {0}) ↔ (𝑥𝐴 ∧ (𝐺𝑥) = 0)))
2320, 22orbi12d 917 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝑥 ∈ (𝐹 “ {0}) ∨ 𝑥 ∈ (𝐺 “ {0})) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) = 0) ∨ (𝑥𝐴 ∧ (𝐺𝑥) = 0))))
24 elun 4055 . . . 4 (𝑥 ∈ ((𝐹 “ {0}) ∪ (𝐺 “ {0})) ↔ (𝑥 ∈ (𝐹 “ {0}) ∨ 𝑥 ∈ (𝐺 “ {0})))
25 andi 1006 . . . 4 ((𝑥𝐴 ∧ ((𝐹𝑥) = 0 ∨ (𝐺𝑥) = 0)) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) = 0) ∨ (𝑥𝐴 ∧ (𝐺𝑥) = 0)))
2623, 24, 253bitr4g 318 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ ((𝐹 “ {0}) ∪ (𝐺 “ {0})) ↔ (𝑥𝐴 ∧ ((𝐹𝑥) = 0 ∨ (𝐺𝑥) = 0))))
2715, 18, 263bitr4d 315 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ ((𝐹f · 𝐺) “ {0}) ↔ 𝑥 ∈ ((𝐹 “ {0}) ∪ (𝐺 “ {0}))))
2827eqrdv 2757 1 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹f · 𝐺) “ {0}) = ((𝐹 “ {0}) ∪ (𝐺 “ {0})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400  wo 845  w3a 1085   = wceq 1539  wcel 2112  cun 3857  {csn 4523  ccnv 5524  cima 5528   Fn wfn 6331  wf 6332  cfv 6336  (class class class)co 7151  f cof 7404  cc 10566  0cc0 10568   · cmul 10573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-po 5444  df-so 5445  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7406  df-er 8300  df-en 8529  df-dom 8530  df-sdom 8531  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904
This theorem is referenced by:  plyrem  24993  fta1lem  24995  vieta1lem2  24999
  Copyright terms: Public domain W3C validator