MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofmulrt Structured version   Visualization version   GIF version

Theorem ofmulrt 26341
Description: The set of roots of a product is the union of the roots of the terms. (Contributed by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
ofmulrt ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹f · 𝐺) “ {0}) = ((𝐹 “ {0}) ∪ (𝐺 “ {0})))

Proof of Theorem ofmulrt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ)
21ffnd 6748 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹 Fn 𝐴)
3 simp3 1138 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺:𝐴⟶ℂ)
43ffnd 6748 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺 Fn 𝐴)
5 simp1 1136 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐴𝑉)
6 inidm 4248 . . . . . . 7 (𝐴𝐴) = 𝐴
7 eqidd 2741 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
8 eqidd 2741 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
92, 4, 5, 5, 6, 7, 8ofval 7725 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → ((𝐹f · 𝐺)‘𝑥) = ((𝐹𝑥) · (𝐺𝑥)))
109eqeq1d 2742 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐹f · 𝐺)‘𝑥) = 0 ↔ ((𝐹𝑥) · (𝐺𝑥)) = 0))
111ffvelcdmda 7118 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
123ffvelcdmda 7118 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ ℂ)
1311, 12mul0ord 11940 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐹𝑥) · (𝐺𝑥)) = 0 ↔ ((𝐹𝑥) = 0 ∨ (𝐺𝑥) = 0)))
1410, 13bitrd 279 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐹f · 𝐺)‘𝑥) = 0 ↔ ((𝐹𝑥) = 0 ∨ (𝐺𝑥) = 0)))
1514pm5.32da 578 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝑥𝐴 ∧ ((𝐹f · 𝐺)‘𝑥) = 0) ↔ (𝑥𝐴 ∧ ((𝐹𝑥) = 0 ∨ (𝐺𝑥) = 0))))
162, 4, 5, 5, 6offn 7727 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹f · 𝐺) Fn 𝐴)
17 fniniseg 7093 . . . 4 ((𝐹f · 𝐺) Fn 𝐴 → (𝑥 ∈ ((𝐹f · 𝐺) “ {0}) ↔ (𝑥𝐴 ∧ ((𝐹f · 𝐺)‘𝑥) = 0)))
1816, 17syl 17 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ ((𝐹f · 𝐺) “ {0}) ↔ (𝑥𝐴 ∧ ((𝐹f · 𝐺)‘𝑥) = 0)))
19 fniniseg 7093 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ {0}) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 0)))
202, 19syl 17 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ (𝐹 “ {0}) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 0)))
21 fniniseg 7093 . . . . . 6 (𝐺 Fn 𝐴 → (𝑥 ∈ (𝐺 “ {0}) ↔ (𝑥𝐴 ∧ (𝐺𝑥) = 0)))
224, 21syl 17 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ (𝐺 “ {0}) ↔ (𝑥𝐴 ∧ (𝐺𝑥) = 0)))
2320, 22orbi12d 917 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝑥 ∈ (𝐹 “ {0}) ∨ 𝑥 ∈ (𝐺 “ {0})) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) = 0) ∨ (𝑥𝐴 ∧ (𝐺𝑥) = 0))))
24 elun 4176 . . . 4 (𝑥 ∈ ((𝐹 “ {0}) ∪ (𝐺 “ {0})) ↔ (𝑥 ∈ (𝐹 “ {0}) ∨ 𝑥 ∈ (𝐺 “ {0})))
25 andi 1008 . . . 4 ((𝑥𝐴 ∧ ((𝐹𝑥) = 0 ∨ (𝐺𝑥) = 0)) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) = 0) ∨ (𝑥𝐴 ∧ (𝐺𝑥) = 0)))
2623, 24, 253bitr4g 314 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ ((𝐹 “ {0}) ∪ (𝐺 “ {0})) ↔ (𝑥𝐴 ∧ ((𝐹𝑥) = 0 ∨ (𝐺𝑥) = 0))))
2715, 18, 263bitr4d 311 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ ((𝐹f · 𝐺) “ {0}) ↔ 𝑥 ∈ ((𝐹 “ {0}) ∪ (𝐺 “ {0}))))
2827eqrdv 2738 1 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹f · 𝐺) “ {0}) = ((𝐹 “ {0}) ∪ (𝐺 “ {0})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  cun 3974  {csn 4648  ccnv 5699  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  cc 11182  0cc0 11184   · cmul 11189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523
This theorem is referenced by:  plyrem  26365  fta1lem  26367  vieta1lem2  26371
  Copyright terms: Public domain W3C validator