MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofmulrt Structured version   Visualization version   GIF version

Theorem ofmulrt 25347
Description: The set of roots of a product is the union of the roots of the terms. (Contributed by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
ofmulrt ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹f · 𝐺) “ {0}) = ((𝐹 “ {0}) ∪ (𝐺 “ {0})))

Proof of Theorem ofmulrt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp2 1135 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ)
21ffnd 6585 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹 Fn 𝐴)
3 simp3 1136 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺:𝐴⟶ℂ)
43ffnd 6585 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺 Fn 𝐴)
5 simp1 1134 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐴𝑉)
6 inidm 4149 . . . . . . 7 (𝐴𝐴) = 𝐴
7 eqidd 2739 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
8 eqidd 2739 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
92, 4, 5, 5, 6, 7, 8ofval 7522 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → ((𝐹f · 𝐺)‘𝑥) = ((𝐹𝑥) · (𝐺𝑥)))
109eqeq1d 2740 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐹f · 𝐺)‘𝑥) = 0 ↔ ((𝐹𝑥) · (𝐺𝑥)) = 0))
111ffvelrnda 6943 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
123ffvelrnda 6943 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ ℂ)
1311, 12mul0ord 11555 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐹𝑥) · (𝐺𝑥)) = 0 ↔ ((𝐹𝑥) = 0 ∨ (𝐺𝑥) = 0)))
1410, 13bitrd 278 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐹f · 𝐺)‘𝑥) = 0 ↔ ((𝐹𝑥) = 0 ∨ (𝐺𝑥) = 0)))
1514pm5.32da 578 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝑥𝐴 ∧ ((𝐹f · 𝐺)‘𝑥) = 0) ↔ (𝑥𝐴 ∧ ((𝐹𝑥) = 0 ∨ (𝐺𝑥) = 0))))
162, 4, 5, 5, 6offn 7524 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹f · 𝐺) Fn 𝐴)
17 fniniseg 6919 . . . 4 ((𝐹f · 𝐺) Fn 𝐴 → (𝑥 ∈ ((𝐹f · 𝐺) “ {0}) ↔ (𝑥𝐴 ∧ ((𝐹f · 𝐺)‘𝑥) = 0)))
1816, 17syl 17 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ ((𝐹f · 𝐺) “ {0}) ↔ (𝑥𝐴 ∧ ((𝐹f · 𝐺)‘𝑥) = 0)))
19 fniniseg 6919 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ {0}) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 0)))
202, 19syl 17 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ (𝐹 “ {0}) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 0)))
21 fniniseg 6919 . . . . . 6 (𝐺 Fn 𝐴 → (𝑥 ∈ (𝐺 “ {0}) ↔ (𝑥𝐴 ∧ (𝐺𝑥) = 0)))
224, 21syl 17 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ (𝐺 “ {0}) ↔ (𝑥𝐴 ∧ (𝐺𝑥) = 0)))
2320, 22orbi12d 915 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝑥 ∈ (𝐹 “ {0}) ∨ 𝑥 ∈ (𝐺 “ {0})) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) = 0) ∨ (𝑥𝐴 ∧ (𝐺𝑥) = 0))))
24 elun 4079 . . . 4 (𝑥 ∈ ((𝐹 “ {0}) ∪ (𝐺 “ {0})) ↔ (𝑥 ∈ (𝐹 “ {0}) ∨ 𝑥 ∈ (𝐺 “ {0})))
25 andi 1004 . . . 4 ((𝑥𝐴 ∧ ((𝐹𝑥) = 0 ∨ (𝐺𝑥) = 0)) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) = 0) ∨ (𝑥𝐴 ∧ (𝐺𝑥) = 0)))
2623, 24, 253bitr4g 313 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ ((𝐹 “ {0}) ∪ (𝐺 “ {0})) ↔ (𝑥𝐴 ∧ ((𝐹𝑥) = 0 ∨ (𝐺𝑥) = 0))))
2715, 18, 263bitr4d 310 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ ((𝐹f · 𝐺) “ {0}) ↔ 𝑥 ∈ ((𝐹 “ {0}) ∪ (𝐺 “ {0}))))
2827eqrdv 2736 1 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹f · 𝐺) “ {0}) = ((𝐹 “ {0}) ∪ (𝐺 “ {0})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  cun 3881  {csn 4558  ccnv 5579  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  cc 10800  0cc0 10802   · cmul 10807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138
This theorem is referenced by:  plyrem  25370  fta1lem  25372  vieta1lem2  25376
  Copyright terms: Public domain W3C validator