Step | Hyp | Ref
| Expression |
1 | | simp2 1135 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ) |
2 | 1 | ffnd 6585 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹 Fn 𝐴) |
3 | | simp3 1136 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺:𝐴⟶ℂ) |
4 | 3 | ffnd 6585 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺 Fn 𝐴) |
5 | | simp1 1134 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐴 ∈ 𝑉) |
6 | | inidm 4149 |
. . . . . . 7
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
7 | | eqidd 2739 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
8 | | eqidd 2739 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝐺‘𝑥)) |
9 | 2, 4, 5, 5, 6, 7, 8 | ofval 7522 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘f · 𝐺)‘𝑥) = ((𝐹‘𝑥) · (𝐺‘𝑥))) |
10 | 9 | eqeq1d 2740 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (((𝐹 ∘f · 𝐺)‘𝑥) = 0 ↔ ((𝐹‘𝑥) · (𝐺‘𝑥)) = 0)) |
11 | 1 | ffvelrnda 6943 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) |
12 | 3 | ffvelrnda 6943 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ ℂ) |
13 | 11, 12 | mul0ord 11555 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (((𝐹‘𝑥) · (𝐺‘𝑥)) = 0 ↔ ((𝐹‘𝑥) = 0 ∨ (𝐺‘𝑥) = 0))) |
14 | 10, 13 | bitrd 278 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥 ∈ 𝐴) → (((𝐹 ∘f · 𝐺)‘𝑥) = 0 ↔ ((𝐹‘𝑥) = 0 ∨ (𝐺‘𝑥) = 0))) |
15 | 14 | pm5.32da 578 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝑥 ∈ 𝐴 ∧ ((𝐹 ∘f · 𝐺)‘𝑥) = 0) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐹‘𝑥) = 0 ∨ (𝐺‘𝑥) = 0)))) |
16 | 2, 4, 5, 5, 6 | offn 7524 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹 ∘f · 𝐺) Fn 𝐴) |
17 | | fniniseg 6919 |
. . . 4
⊢ ((𝐹 ∘f ·
𝐺) Fn 𝐴 → (𝑥 ∈ (◡(𝐹 ∘f · 𝐺) “ {0}) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐹 ∘f · 𝐺)‘𝑥) = 0))) |
18 | 16, 17 | syl 17 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ (◡(𝐹 ∘f · 𝐺) “ {0}) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐹 ∘f · 𝐺)‘𝑥) = 0))) |
19 | | fniniseg 6919 |
. . . . . 6
⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (◡𝐹 “ {0}) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 0))) |
20 | 2, 19 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ (◡𝐹 “ {0}) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 0))) |
21 | | fniniseg 6919 |
. . . . . 6
⊢ (𝐺 Fn 𝐴 → (𝑥 ∈ (◡𝐺 “ {0}) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) = 0))) |
22 | 4, 21 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ (◡𝐺 “ {0}) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) = 0))) |
23 | 20, 22 | orbi12d 915 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝑥 ∈ (◡𝐹 “ {0}) ∨ 𝑥 ∈ (◡𝐺 “ {0})) ↔ ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 0) ∨ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) = 0)))) |
24 | | elun 4079 |
. . . 4
⊢ (𝑥 ∈ ((◡𝐹 “ {0}) ∪ (◡𝐺 “ {0})) ↔ (𝑥 ∈ (◡𝐹 “ {0}) ∨ 𝑥 ∈ (◡𝐺 “ {0}))) |
25 | | andi 1004 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 ∧ ((𝐹‘𝑥) = 0 ∨ (𝐺‘𝑥) = 0)) ↔ ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 0) ∨ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) = 0))) |
26 | 23, 24, 25 | 3bitr4g 313 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ ((◡𝐹 “ {0}) ∪ (◡𝐺 “ {0})) ↔ (𝑥 ∈ 𝐴 ∧ ((𝐹‘𝑥) = 0 ∨ (𝐺‘𝑥) = 0)))) |
27 | 15, 18, 26 | 3bitr4d 310 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ (◡(𝐹 ∘f · 𝐺) “ {0}) ↔ 𝑥 ∈ ((◡𝐹 “ {0}) ∪ (◡𝐺 “ {0})))) |
28 | 27 | eqrdv 2736 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (◡(𝐹 ∘f · 𝐺) “ {0}) = ((◡𝐹 “ {0}) ∪ (◡𝐺 “ {0}))) |