MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofmulrt Structured version   Visualization version   GIF version

Theorem ofmulrt 25642
Description: The set of roots of a product is the union of the roots of the terms. (Contributed by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
ofmulrt ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹f · 𝐺) “ {0}) = ((𝐹 “ {0}) ∪ (𝐺 “ {0})))

Proof of Theorem ofmulrt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ)
21ffnd 6669 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹 Fn 𝐴)
3 simp3 1138 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺:𝐴⟶ℂ)
43ffnd 6669 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺 Fn 𝐴)
5 simp1 1136 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐴𝑉)
6 inidm 4178 . . . . . . 7 (𝐴𝐴) = 𝐴
7 eqidd 2737 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
8 eqidd 2737 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
92, 4, 5, 5, 6, 7, 8ofval 7628 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → ((𝐹f · 𝐺)‘𝑥) = ((𝐹𝑥) · (𝐺𝑥)))
109eqeq1d 2738 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐹f · 𝐺)‘𝑥) = 0 ↔ ((𝐹𝑥) · (𝐺𝑥)) = 0))
111ffvelcdmda 7035 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
123ffvelcdmda 7035 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ ℂ)
1311, 12mul0ord 11805 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐹𝑥) · (𝐺𝑥)) = 0 ↔ ((𝐹𝑥) = 0 ∨ (𝐺𝑥) = 0)))
1410, 13bitrd 278 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐹f · 𝐺)‘𝑥) = 0 ↔ ((𝐹𝑥) = 0 ∨ (𝐺𝑥) = 0)))
1514pm5.32da 579 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝑥𝐴 ∧ ((𝐹f · 𝐺)‘𝑥) = 0) ↔ (𝑥𝐴 ∧ ((𝐹𝑥) = 0 ∨ (𝐺𝑥) = 0))))
162, 4, 5, 5, 6offn 7630 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹f · 𝐺) Fn 𝐴)
17 fniniseg 7010 . . . 4 ((𝐹f · 𝐺) Fn 𝐴 → (𝑥 ∈ ((𝐹f · 𝐺) “ {0}) ↔ (𝑥𝐴 ∧ ((𝐹f · 𝐺)‘𝑥) = 0)))
1816, 17syl 17 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ ((𝐹f · 𝐺) “ {0}) ↔ (𝑥𝐴 ∧ ((𝐹f · 𝐺)‘𝑥) = 0)))
19 fniniseg 7010 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ {0}) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 0)))
202, 19syl 17 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ (𝐹 “ {0}) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 0)))
21 fniniseg 7010 . . . . . 6 (𝐺 Fn 𝐴 → (𝑥 ∈ (𝐺 “ {0}) ↔ (𝑥𝐴 ∧ (𝐺𝑥) = 0)))
224, 21syl 17 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ (𝐺 “ {0}) ↔ (𝑥𝐴 ∧ (𝐺𝑥) = 0)))
2320, 22orbi12d 917 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝑥 ∈ (𝐹 “ {0}) ∨ 𝑥 ∈ (𝐺 “ {0})) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) = 0) ∨ (𝑥𝐴 ∧ (𝐺𝑥) = 0))))
24 elun 4108 . . . 4 (𝑥 ∈ ((𝐹 “ {0}) ∪ (𝐺 “ {0})) ↔ (𝑥 ∈ (𝐹 “ {0}) ∨ 𝑥 ∈ (𝐺 “ {0})))
25 andi 1006 . . . 4 ((𝑥𝐴 ∧ ((𝐹𝑥) = 0 ∨ (𝐺𝑥) = 0)) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) = 0) ∨ (𝑥𝐴 ∧ (𝐺𝑥) = 0)))
2623, 24, 253bitr4g 313 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ ((𝐹 “ {0}) ∪ (𝐺 “ {0})) ↔ (𝑥𝐴 ∧ ((𝐹𝑥) = 0 ∨ (𝐺𝑥) = 0))))
2715, 18, 263bitr4d 310 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ ((𝐹f · 𝐺) “ {0}) ↔ 𝑥 ∈ ((𝐹 “ {0}) ∪ (𝐺 “ {0}))))
2827eqrdv 2734 1 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹f · 𝐺) “ {0}) = ((𝐹 “ {0}) ∪ (𝐺 “ {0})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  cun 3908  {csn 4586  ccnv 5632  cima 5636   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615  cc 11049  0cc0 11051   · cmul 11056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388
This theorem is referenced by:  plyrem  25665  fta1lem  25667  vieta1lem2  25671
  Copyright terms: Public domain W3C validator