MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofmulrt Structured version   Visualization version   GIF version

Theorem ofmulrt 26217
Description: The set of roots of a product is the union of the roots of the terms. (Contributed by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
ofmulrt ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹f · 𝐺) “ {0}) = ((𝐹 “ {0}) ∪ (𝐺 “ {0})))

Proof of Theorem ofmulrt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ)
21ffnd 6652 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐹 Fn 𝐴)
3 simp3 1138 . . . . . . . 8 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺:𝐴⟶ℂ)
43ffnd 6652 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐺 Fn 𝐴)
5 simp1 1136 . . . . . . 7 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → 𝐴𝑉)
6 inidm 4177 . . . . . . 7 (𝐴𝐴) = 𝐴
7 eqidd 2732 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
8 eqidd 2732 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
92, 4, 5, 5, 6, 7, 8ofval 7621 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → ((𝐹f · 𝐺)‘𝑥) = ((𝐹𝑥) · (𝐺𝑥)))
109eqeq1d 2733 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐹f · 𝐺)‘𝑥) = 0 ↔ ((𝐹𝑥) · (𝐺𝑥)) = 0))
111ffvelcdmda 7017 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
123ffvelcdmda 7017 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ ℂ)
1311, 12mul0ord 11765 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐹𝑥) · (𝐺𝑥)) = 0 ↔ ((𝐹𝑥) = 0 ∨ (𝐺𝑥) = 0)))
1410, 13bitrd 279 . . . 4 (((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) ∧ 𝑥𝐴) → (((𝐹f · 𝐺)‘𝑥) = 0 ↔ ((𝐹𝑥) = 0 ∨ (𝐺𝑥) = 0)))
1514pm5.32da 579 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝑥𝐴 ∧ ((𝐹f · 𝐺)‘𝑥) = 0) ↔ (𝑥𝐴 ∧ ((𝐹𝑥) = 0 ∨ (𝐺𝑥) = 0))))
162, 4, 5, 5, 6offn 7623 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝐹f · 𝐺) Fn 𝐴)
17 fniniseg 6993 . . . 4 ((𝐹f · 𝐺) Fn 𝐴 → (𝑥 ∈ ((𝐹f · 𝐺) “ {0}) ↔ (𝑥𝐴 ∧ ((𝐹f · 𝐺)‘𝑥) = 0)))
1816, 17syl 17 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ ((𝐹f · 𝐺) “ {0}) ↔ (𝑥𝐴 ∧ ((𝐹f · 𝐺)‘𝑥) = 0)))
19 fniniseg 6993 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ {0}) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 0)))
202, 19syl 17 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ (𝐹 “ {0}) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = 0)))
21 fniniseg 6993 . . . . . 6 (𝐺 Fn 𝐴 → (𝑥 ∈ (𝐺 “ {0}) ↔ (𝑥𝐴 ∧ (𝐺𝑥) = 0)))
224, 21syl 17 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ (𝐺 “ {0}) ↔ (𝑥𝐴 ∧ (𝐺𝑥) = 0)))
2320, 22orbi12d 918 . . . 4 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝑥 ∈ (𝐹 “ {0}) ∨ 𝑥 ∈ (𝐺 “ {0})) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) = 0) ∨ (𝑥𝐴 ∧ (𝐺𝑥) = 0))))
24 elun 4103 . . . 4 (𝑥 ∈ ((𝐹 “ {0}) ∪ (𝐺 “ {0})) ↔ (𝑥 ∈ (𝐹 “ {0}) ∨ 𝑥 ∈ (𝐺 “ {0})))
25 andi 1009 . . . 4 ((𝑥𝐴 ∧ ((𝐹𝑥) = 0 ∨ (𝐺𝑥) = 0)) ↔ ((𝑥𝐴 ∧ (𝐹𝑥) = 0) ∨ (𝑥𝐴 ∧ (𝐺𝑥) = 0)))
2623, 24, 253bitr4g 314 . . 3 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ ((𝐹 “ {0}) ∪ (𝐺 “ {0})) ↔ (𝑥𝐴 ∧ ((𝐹𝑥) = 0 ∨ (𝐺𝑥) = 0))))
2715, 18, 263bitr4d 311 . 2 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → (𝑥 ∈ ((𝐹f · 𝐺) “ {0}) ↔ 𝑥 ∈ ((𝐹 “ {0}) ∪ (𝐺 “ {0}))))
2827eqrdv 2729 1 ((𝐴𝑉𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ) → ((𝐹f · 𝐺) “ {0}) = ((𝐹 “ {0}) ∪ (𝐺 “ {0})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  cun 3900  {csn 4576  ccnv 5615  cima 5619   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608  cc 11004  0cc0 11006   · cmul 11011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347
This theorem is referenced by:  plyrem  26241  fta1lem  26243  vieta1lem2  26247
  Copyright terms: Public domain W3C validator