![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > arwdmcd | Structured version Visualization version GIF version |
Description: Decompose an arrow into domain, codomain, and morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
arwrcl.a | ⊢ 𝐴 = (Arrow‘𝐶) |
Ref | Expression |
---|---|
arwdmcd | ⊢ (𝐹 ∈ 𝐴 → 𝐹 = 〈(doma‘𝐹), (coda‘𝐹), (2nd ‘𝐹)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | arwrcl.a | . . 3 ⊢ 𝐴 = (Arrow‘𝐶) | |
2 | eqid 2728 | . . 3 ⊢ (Homa‘𝐶) = (Homa‘𝐶) | |
3 | 1, 2 | arwhoma 18028 | . 2 ⊢ (𝐹 ∈ 𝐴 → 𝐹 ∈ ((doma‘𝐹)(Homa‘𝐶)(coda‘𝐹))) |
4 | 2 | homadmcd 18025 | . 2 ⊢ (𝐹 ∈ ((doma‘𝐹)(Homa‘𝐶)(coda‘𝐹)) → 𝐹 = 〈(doma‘𝐹), (coda‘𝐹), (2nd ‘𝐹)〉) |
5 | 3, 4 | syl 17 | 1 ⊢ (𝐹 ∈ 𝐴 → 𝐹 = 〈(doma‘𝐹), (coda‘𝐹), (2nd ‘𝐹)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 〈cotp 4633 ‘cfv 6543 (class class class)co 7415 2nd c2nd 7987 domacdoma 18003 codaccoda 18004 Arrowcarw 18005 Homachoma 18006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-ot 4634 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7418 df-1st 7988 df-2nd 7989 df-doma 18007 df-coda 18008 df-homa 18009 df-arw 18010 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |