![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > arwdmcd | Structured version Visualization version GIF version |
Description: Decompose an arrow into domain, codomain, and morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
arwrcl.a | ⊢ 𝐴 = (Arrow‘𝐶) |
Ref | Expression |
---|---|
arwdmcd | ⊢ (𝐹 ∈ 𝐴 → 𝐹 = 〈(doma‘𝐹), (coda‘𝐹), (2nd ‘𝐹)〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | arwrcl.a | . . 3 ⊢ 𝐴 = (Arrow‘𝐶) | |
2 | eqid 2737 | . . 3 ⊢ (Homa‘𝐶) = (Homa‘𝐶) | |
3 | 1, 2 | arwhoma 18108 | . 2 ⊢ (𝐹 ∈ 𝐴 → 𝐹 ∈ ((doma‘𝐹)(Homa‘𝐶)(coda‘𝐹))) |
4 | 2 | homadmcd 18105 | . 2 ⊢ (𝐹 ∈ ((doma‘𝐹)(Homa‘𝐶)(coda‘𝐹)) → 𝐹 = 〈(doma‘𝐹), (coda‘𝐹), (2nd ‘𝐹)〉) |
5 | 3, 4 | syl 17 | 1 ⊢ (𝐹 ∈ 𝐴 → 𝐹 = 〈(doma‘𝐹), (coda‘𝐹), (2nd ‘𝐹)〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 〈cotp 4642 ‘cfv 6569 (class class class)co 7438 2nd c2nd 8021 domacdoma 18083 codaccoda 18084 Arrowcarw 18085 Homachoma 18086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-ot 4643 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-1st 8022 df-2nd 8023 df-doma 18087 df-coda 18088 df-homa 18089 df-arw 18090 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |