MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwdmcd Structured version   Visualization version   GIF version

Theorem arwdmcd 18035
Description: Decompose an arrow into domain, codomain, and morphism. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
arwrcl.a 𝐴 = (Arrow‘𝐶)
Assertion
Ref Expression
arwdmcd (𝐹𝐴𝐹 = ⟨(doma𝐹), (coda𝐹), (2nd𝐹)⟩)

Proof of Theorem arwdmcd
StepHypRef Expression
1 arwrcl.a . . 3 𝐴 = (Arrow‘𝐶)
2 eqid 2728 . . 3 (Homa𝐶) = (Homa𝐶)
31, 2arwhoma 18028 . 2 (𝐹𝐴𝐹 ∈ ((doma𝐹)(Homa𝐶)(coda𝐹)))
42homadmcd 18025 . 2 (𝐹 ∈ ((doma𝐹)(Homa𝐶)(coda𝐹)) → 𝐹 = ⟨(doma𝐹), (coda𝐹), (2nd𝐹)⟩)
53, 4syl 17 1 (𝐹𝐴𝐹 = ⟨(doma𝐹), (coda𝐹), (2nd𝐹)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  cotp 4633  cfv 6543  (class class class)co 7415  2nd c2nd 7987  domacdoma 18003  codaccoda 18004  Arrowcarw 18005  Homachoma 18006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-ot 4634  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7418  df-1st 7988  df-2nd 7989  df-doma 18007  df-coda 18008  df-homa 18009  df-arw 18010
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator