MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arwhom Structured version   Visualization version   GIF version

Theorem arwhom 17682
Description: The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a 𝐴 = (Arrow‘𝐶)
arwhom.j 𝐽 = (Hom ‘𝐶)
Assertion
Ref Expression
arwhom (𝐹𝐴 → (2nd𝐹) ∈ ((doma𝐹)𝐽(coda𝐹)))

Proof of Theorem arwhom
StepHypRef Expression
1 arwrcl.a . . 3 𝐴 = (Arrow‘𝐶)
2 eqid 2738 . . 3 (Homa𝐶) = (Homa𝐶)
31, 2arwhoma 17676 . 2 (𝐹𝐴𝐹 ∈ ((doma𝐹)(Homa𝐶)(coda𝐹)))
4 arwhom.j . . 3 𝐽 = (Hom ‘𝐶)
52, 4homahom 17670 . 2 (𝐹 ∈ ((doma𝐹)(Homa𝐶)(coda𝐹)) → (2nd𝐹) ∈ ((doma𝐹)𝐽(coda𝐹)))
63, 5syl 17 1 (𝐹𝐴 → (2nd𝐹) ∈ ((doma𝐹)𝐽(coda𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  2nd c2nd 7803  Hom chom 16899  domacdoma 17651  codaccoda 17652  Arrowcarw 17653  Homachoma 17654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-1st 7804  df-2nd 7805  df-doma 17655  df-coda 17656  df-homa 17657  df-arw 17658
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator