| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homahom | Structured version Visualization version GIF version | ||
| Description: The second component of an arrow is the corresponding morphism (without the domain/codomain tag). (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
| homahom.j | ⊢ 𝐽 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| homahom | ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘𝐹) ∈ (𝑋𝐽𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homahom.h | . . . 4 ⊢ 𝐻 = (Homa‘𝐶) | |
| 2 | 1 | homarel 18049 | . . 3 ⊢ Rel (𝑋𝐻𝑌) |
| 3 | 1st2ndbr 8041 | . . 3 ⊢ ((Rel (𝑋𝐻𝑌) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → (1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹)) | |
| 4 | 2, 3 | mpan 690 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹)) |
| 5 | homahom.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐶) | |
| 6 | 1, 5 | homahom2 18051 | . 2 ⊢ ((1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹) → (2nd ‘𝐹) ∈ (𝑋𝐽𝑌)) |
| 7 | 4, 6 | syl 17 | 1 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘𝐹) ∈ (𝑋𝐽𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 Rel wrel 5659 ‘cfv 6531 (class class class)co 7405 1st c1st 7986 2nd c2nd 7987 Hom chom 17282 Homachoma 18036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-1st 7988 df-2nd 7989 df-homa 18039 |
| This theorem is referenced by: arwhom 18064 coahom 18083 arwlid 18085 arwrid 18086 arwass 18087 |
| Copyright terms: Public domain | W3C validator |