| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cdaf | Structured version Visualization version GIF version | ||
| Description: The codomain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| arwrcl.a | ⊢ 𝐴 = (Arrow‘𝐶) |
| arwdm.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| cdaf | ⊢ (coda ↾ 𝐴):𝐴⟶𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fo2nd 7950 | . . . . . 6 ⊢ 2nd :V–onto→V | |
| 2 | fofn 6744 | . . . . . 6 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 2nd Fn V |
| 4 | fo1st 7949 | . . . . . 6 ⊢ 1st :V–onto→V | |
| 5 | fof 6742 | . . . . . 6 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
| 6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ 1st :V⟶V |
| 7 | fnfco 6695 | . . . . 5 ⊢ ((2nd Fn V ∧ 1st :V⟶V) → (2nd ∘ 1st ) Fn V) | |
| 8 | 3, 6, 7 | mp2an 692 | . . . 4 ⊢ (2nd ∘ 1st ) Fn V |
| 9 | df-coda 17936 | . . . . 5 ⊢ coda = (2nd ∘ 1st ) | |
| 10 | 9 | fneq1i 6585 | . . . 4 ⊢ (coda Fn V ↔ (2nd ∘ 1st ) Fn V) |
| 11 | 8, 10 | mpbir 231 | . . 3 ⊢ coda Fn V |
| 12 | ssv 3955 | . . 3 ⊢ 𝐴 ⊆ V | |
| 13 | fnssres 6611 | . . 3 ⊢ ((coda Fn V ∧ 𝐴 ⊆ V) → (coda ↾ 𝐴) Fn 𝐴) | |
| 14 | 11, 12, 13 | mp2an 692 | . 2 ⊢ (coda ↾ 𝐴) Fn 𝐴 |
| 15 | fvres 6849 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((coda ↾ 𝐴)‘𝑥) = (coda‘𝑥)) | |
| 16 | arwrcl.a | . . . . 5 ⊢ 𝐴 = (Arrow‘𝐶) | |
| 17 | arwdm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 18 | 16, 17 | arwcd 17959 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (coda‘𝑥) ∈ 𝐵) |
| 19 | 15, 18 | eqeltrd 2833 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ((coda ↾ 𝐴)‘𝑥) ∈ 𝐵) |
| 20 | 19 | rgen 3050 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ((coda ↾ 𝐴)‘𝑥) ∈ 𝐵 |
| 21 | ffnfv 7060 | . 2 ⊢ ((coda ↾ 𝐴):𝐴⟶𝐵 ↔ ((coda ↾ 𝐴) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((coda ↾ 𝐴)‘𝑥) ∈ 𝐵)) | |
| 22 | 14, 20, 21 | mpbir2an 711 | 1 ⊢ (coda ↾ 𝐴):𝐴⟶𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ⊆ wss 3898 ↾ cres 5623 ∘ ccom 5625 Fn wfn 6483 ⟶wf 6484 –onto→wfo 6486 ‘cfv 6488 1st c1st 7927 2nd c2nd 7928 Basecbs 17124 codaccoda 17932 Arrowcarw 17933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-1st 7929 df-2nd 7930 df-doma 17935 df-coda 17936 df-homa 17937 df-arw 17938 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |