MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdaf Structured version   Visualization version   GIF version

Theorem cdaf 17975
Description: The codomain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a 𝐴 = (Arrow‘𝐶)
arwdm.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
cdaf (coda𝐴):𝐴𝐵

Proof of Theorem cdaf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fo2nd 7952 . . . . . 6 2nd :V–onto→V
2 fofn 6742 . . . . . 6 (2nd :V–onto→V → 2nd Fn V)
31, 2ax-mp 5 . . . . 5 2nd Fn V
4 fo1st 7951 . . . . . 6 1st :V–onto→V
5 fof 6740 . . . . . 6 (1st :V–onto→V → 1st :V⟶V)
64, 5ax-mp 5 . . . . 5 1st :V⟶V
7 fnfco 6693 . . . . 5 ((2nd Fn V ∧ 1st :V⟶V) → (2nd ∘ 1st ) Fn V)
83, 6, 7mp2an 692 . . . 4 (2nd ∘ 1st ) Fn V
9 df-coda 17950 . . . . 5 coda = (2nd ∘ 1st )
109fneq1i 6583 . . . 4 (coda Fn V ↔ (2nd ∘ 1st ) Fn V)
118, 10mpbir 231 . . 3 coda Fn V
12 ssv 3962 . . 3 𝐴 ⊆ V
13 fnssres 6609 . . 3 ((coda Fn V ∧ 𝐴 ⊆ V) → (coda𝐴) Fn 𝐴)
1411, 12, 13mp2an 692 . 2 (coda𝐴) Fn 𝐴
15 fvres 6845 . . . 4 (𝑥𝐴 → ((coda𝐴)‘𝑥) = (coda𝑥))
16 arwrcl.a . . . . 5 𝐴 = (Arrow‘𝐶)
17 arwdm.b . . . . 5 𝐵 = (Base‘𝐶)
1816, 17arwcd 17973 . . . 4 (𝑥𝐴 → (coda𝑥) ∈ 𝐵)
1915, 18eqeltrd 2828 . . 3 (𝑥𝐴 → ((coda𝐴)‘𝑥) ∈ 𝐵)
2019rgen 3046 . 2 𝑥𝐴 ((coda𝐴)‘𝑥) ∈ 𝐵
21 ffnfv 7057 . 2 ((coda𝐴):𝐴𝐵 ↔ ((coda𝐴) Fn 𝐴 ∧ ∀𝑥𝐴 ((coda𝐴)‘𝑥) ∈ 𝐵))
2214, 20, 21mpbir2an 711 1 (coda𝐴):𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  wss 3905  cres 5625  ccom 5627   Fn wfn 6481  wf 6482  ontowfo 6484  cfv 6486  1st c1st 7929  2nd c2nd 7930  Basecbs 17138  codaccoda 17946  Arrowcarw 17947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-1st 7931  df-2nd 7932  df-doma 17949  df-coda 17950  df-homa 17951  df-arw 17952
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator