MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdaf Structured version   Visualization version   GIF version

Theorem cdaf 18095
Description: The codomain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a 𝐴 = (Arrow‘𝐶)
arwdm.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
cdaf (coda𝐴):𝐴𝐵

Proof of Theorem cdaf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fo2nd 8035 . . . . . 6 2nd :V–onto→V
2 fofn 6822 . . . . . 6 (2nd :V–onto→V → 2nd Fn V)
31, 2ax-mp 5 . . . . 5 2nd Fn V
4 fo1st 8034 . . . . . 6 1st :V–onto→V
5 fof 6820 . . . . . 6 (1st :V–onto→V → 1st :V⟶V)
64, 5ax-mp 5 . . . . 5 1st :V⟶V
7 fnfco 6773 . . . . 5 ((2nd Fn V ∧ 1st :V⟶V) → (2nd ∘ 1st ) Fn V)
83, 6, 7mp2an 692 . . . 4 (2nd ∘ 1st ) Fn V
9 df-coda 18070 . . . . 5 coda = (2nd ∘ 1st )
109fneq1i 6665 . . . 4 (coda Fn V ↔ (2nd ∘ 1st ) Fn V)
118, 10mpbir 231 . . 3 coda Fn V
12 ssv 4008 . . 3 𝐴 ⊆ V
13 fnssres 6691 . . 3 ((coda Fn V ∧ 𝐴 ⊆ V) → (coda𝐴) Fn 𝐴)
1411, 12, 13mp2an 692 . 2 (coda𝐴) Fn 𝐴
15 fvres 6925 . . . 4 (𝑥𝐴 → ((coda𝐴)‘𝑥) = (coda𝑥))
16 arwrcl.a . . . . 5 𝐴 = (Arrow‘𝐶)
17 arwdm.b . . . . 5 𝐵 = (Base‘𝐶)
1816, 17arwcd 18093 . . . 4 (𝑥𝐴 → (coda𝑥) ∈ 𝐵)
1915, 18eqeltrd 2841 . . 3 (𝑥𝐴 → ((coda𝐴)‘𝑥) ∈ 𝐵)
2019rgen 3063 . 2 𝑥𝐴 ((coda𝐴)‘𝑥) ∈ 𝐵
21 ffnfv 7139 . 2 ((coda𝐴):𝐴𝐵 ↔ ((coda𝐴) Fn 𝐴 ∧ ∀𝑥𝐴 ((coda𝐴)‘𝑥) ∈ 𝐵))
2214, 20, 21mpbir2an 711 1 (coda𝐴):𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  wss 3951  cres 5687  ccom 5689   Fn wfn 6556  wf 6557  ontowfo 6559  cfv 6561  1st c1st 8012  2nd c2nd 8013  Basecbs 17247  codaccoda 18066  Arrowcarw 18067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-1st 8014  df-2nd 8015  df-doma 18069  df-coda 18070  df-homa 18071  df-arw 18072
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator