MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdaf Structured version   Visualization version   GIF version

Theorem cdaf 18007
Description: The codomain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a 𝐴 = (Arrowβ€˜πΆ)
arwdm.b 𝐡 = (Baseβ€˜πΆ)
Assertion
Ref Expression
cdaf (coda β†Ύ 𝐴):𝐴⟢𝐡

Proof of Theorem cdaf
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 fo2nd 8000 . . . . . 6 2nd :V–ontoβ†’V
2 fofn 6807 . . . . . 6 (2nd :V–ontoβ†’V β†’ 2nd Fn V)
31, 2ax-mp 5 . . . . 5 2nd Fn V
4 fo1st 7999 . . . . . 6 1st :V–ontoβ†’V
5 fof 6805 . . . . . 6 (1st :V–ontoβ†’V β†’ 1st :V⟢V)
64, 5ax-mp 5 . . . . 5 1st :V⟢V
7 fnfco 6756 . . . . 5 ((2nd Fn V ∧ 1st :V⟢V) β†’ (2nd ∘ 1st ) Fn V)
83, 6, 7mp2an 689 . . . 4 (2nd ∘ 1st ) Fn V
9 df-coda 17982 . . . . 5 coda = (2nd ∘ 1st )
109fneq1i 6646 . . . 4 (coda Fn V ↔ (2nd ∘ 1st ) Fn V)
118, 10mpbir 230 . . 3 coda Fn V
12 ssv 4006 . . 3 𝐴 βŠ† V
13 fnssres 6673 . . 3 ((coda Fn V ∧ 𝐴 βŠ† V) β†’ (coda β†Ύ 𝐴) Fn 𝐴)
1411, 12, 13mp2an 689 . 2 (coda β†Ύ 𝐴) Fn 𝐴
15 fvres 6910 . . . 4 (π‘₯ ∈ 𝐴 β†’ ((coda β†Ύ 𝐴)β€˜π‘₯) = (codaβ€˜π‘₯))
16 arwrcl.a . . . . 5 𝐴 = (Arrowβ€˜πΆ)
17 arwdm.b . . . . 5 𝐡 = (Baseβ€˜πΆ)
1816, 17arwcd 18005 . . . 4 (π‘₯ ∈ 𝐴 β†’ (codaβ€˜π‘₯) ∈ 𝐡)
1915, 18eqeltrd 2832 . . 3 (π‘₯ ∈ 𝐴 β†’ ((coda β†Ύ 𝐴)β€˜π‘₯) ∈ 𝐡)
2019rgen 3062 . 2 βˆ€π‘₯ ∈ 𝐴 ((coda β†Ύ 𝐴)β€˜π‘₯) ∈ 𝐡
21 ffnfv 7120 . 2 ((coda β†Ύ 𝐴):𝐴⟢𝐡 ↔ ((coda β†Ύ 𝐴) Fn 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 ((coda β†Ύ 𝐴)β€˜π‘₯) ∈ 𝐡))
2214, 20, 21mpbir2an 708 1 (coda β†Ύ 𝐴):𝐴⟢𝐡
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  Vcvv 3473   βŠ† wss 3948   β†Ύ cres 5678   ∘ ccom 5680   Fn wfn 6538  βŸΆwf 6539  β€“ontoβ†’wfo 6541  β€˜cfv 6543  1st c1st 7977  2nd c2nd 7978  Basecbs 17151  codaccoda 17978  Arrowcarw 17979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-1st 7979  df-2nd 7980  df-doma 17981  df-coda 17982  df-homa 17983  df-arw 17984
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator