| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cdaf | Structured version Visualization version GIF version | ||
| Description: The codomain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| arwrcl.a | ⊢ 𝐴 = (Arrow‘𝐶) |
| arwdm.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| cdaf | ⊢ (coda ↾ 𝐴):𝐴⟶𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fo2nd 8035 | . . . . . 6 ⊢ 2nd :V–onto→V | |
| 2 | fofn 6822 | . . . . . 6 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 2nd Fn V |
| 4 | fo1st 8034 | . . . . . 6 ⊢ 1st :V–onto→V | |
| 5 | fof 6820 | . . . . . 6 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
| 6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ 1st :V⟶V |
| 7 | fnfco 6773 | . . . . 5 ⊢ ((2nd Fn V ∧ 1st :V⟶V) → (2nd ∘ 1st ) Fn V) | |
| 8 | 3, 6, 7 | mp2an 692 | . . . 4 ⊢ (2nd ∘ 1st ) Fn V |
| 9 | df-coda 18070 | . . . . 5 ⊢ coda = (2nd ∘ 1st ) | |
| 10 | 9 | fneq1i 6665 | . . . 4 ⊢ (coda Fn V ↔ (2nd ∘ 1st ) Fn V) |
| 11 | 8, 10 | mpbir 231 | . . 3 ⊢ coda Fn V |
| 12 | ssv 4008 | . . 3 ⊢ 𝐴 ⊆ V | |
| 13 | fnssres 6691 | . . 3 ⊢ ((coda Fn V ∧ 𝐴 ⊆ V) → (coda ↾ 𝐴) Fn 𝐴) | |
| 14 | 11, 12, 13 | mp2an 692 | . 2 ⊢ (coda ↾ 𝐴) Fn 𝐴 |
| 15 | fvres 6925 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((coda ↾ 𝐴)‘𝑥) = (coda‘𝑥)) | |
| 16 | arwrcl.a | . . . . 5 ⊢ 𝐴 = (Arrow‘𝐶) | |
| 17 | arwdm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 18 | 16, 17 | arwcd 18093 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (coda‘𝑥) ∈ 𝐵) |
| 19 | 15, 18 | eqeltrd 2841 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ((coda ↾ 𝐴)‘𝑥) ∈ 𝐵) |
| 20 | 19 | rgen 3063 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ((coda ↾ 𝐴)‘𝑥) ∈ 𝐵 |
| 21 | ffnfv 7139 | . 2 ⊢ ((coda ↾ 𝐴):𝐴⟶𝐵 ↔ ((coda ↾ 𝐴) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((coda ↾ 𝐴)‘𝑥) ∈ 𝐵)) | |
| 22 | 14, 20, 21 | mpbir2an 711 | 1 ⊢ (coda ↾ 𝐴):𝐴⟶𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∀wral 3061 Vcvv 3480 ⊆ wss 3951 ↾ cres 5687 ∘ ccom 5689 Fn wfn 6556 ⟶wf 6557 –onto→wfo 6559 ‘cfv 6561 1st c1st 8012 2nd c2nd 8013 Basecbs 17247 codaccoda 18066 Arrowcarw 18067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-1st 8014 df-2nd 8015 df-doma 18069 df-coda 18070 df-homa 18071 df-arw 18072 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |