MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdaf Structured version   Visualization version   GIF version

Theorem cdaf 17302
Description: The codomain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a 𝐴 = (Arrow‘𝐶)
arwdm.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
cdaf (coda𝐴):𝐴𝐵

Proof of Theorem cdaf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fo2nd 7692 . . . . . 6 2nd :V–onto→V
2 fofn 6567 . . . . . 6 (2nd :V–onto→V → 2nd Fn V)
31, 2ax-mp 5 . . . . 5 2nd Fn V
4 fo1st 7691 . . . . . 6 1st :V–onto→V
5 fof 6565 . . . . . 6 (1st :V–onto→V → 1st :V⟶V)
64, 5ax-mp 5 . . . . 5 1st :V⟶V
7 fnfco 6517 . . . . 5 ((2nd Fn V ∧ 1st :V⟶V) → (2nd ∘ 1st ) Fn V)
83, 6, 7mp2an 691 . . . 4 (2nd ∘ 1st ) Fn V
9 df-coda 17277 . . . . 5 coda = (2nd ∘ 1st )
109fneq1i 6420 . . . 4 (coda Fn V ↔ (2nd ∘ 1st ) Fn V)
118, 10mpbir 234 . . 3 coda Fn V
12 ssv 3939 . . 3 𝐴 ⊆ V
13 fnssres 6442 . . 3 ((coda Fn V ∧ 𝐴 ⊆ V) → (coda𝐴) Fn 𝐴)
1411, 12, 13mp2an 691 . 2 (coda𝐴) Fn 𝐴
15 fvres 6664 . . . 4 (𝑥𝐴 → ((coda𝐴)‘𝑥) = (coda𝑥))
16 arwrcl.a . . . . 5 𝐴 = (Arrow‘𝐶)
17 arwdm.b . . . . 5 𝐵 = (Base‘𝐶)
1816, 17arwcd 17300 . . . 4 (𝑥𝐴 → (coda𝑥) ∈ 𝐵)
1915, 18eqeltrd 2890 . . 3 (𝑥𝐴 → ((coda𝐴)‘𝑥) ∈ 𝐵)
2019rgen 3116 . 2 𝑥𝐴 ((coda𝐴)‘𝑥) ∈ 𝐵
21 ffnfv 6859 . 2 ((coda𝐴):𝐴𝐵 ↔ ((coda𝐴) Fn 𝐴 ∧ ∀𝑥𝐴 ((coda𝐴)‘𝑥) ∈ 𝐵))
2214, 20, 21mpbir2an 710 1 (coda𝐴):𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  wss 3881  cres 5521  ccom 5523   Fn wfn 6319  wf 6320  ontowfo 6322  cfv 6324  1st c1st 7669  2nd c2nd 7670  Basecbs 16475  codaccoda 17273  Arrowcarw 17274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-1st 7671  df-2nd 7672  df-doma 17276  df-coda 17277  df-homa 17278  df-arw 17279
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator