MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdaf Structured version   Visualization version   GIF version

Theorem cdaf 17753
Description: The codomain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a 𝐴 = (Arrow‘𝐶)
arwdm.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
cdaf (coda𝐴):𝐴𝐵

Proof of Theorem cdaf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fo2nd 7842 . . . . . 6 2nd :V–onto→V
2 fofn 6683 . . . . . 6 (2nd :V–onto→V → 2nd Fn V)
31, 2ax-mp 5 . . . . 5 2nd Fn V
4 fo1st 7841 . . . . . 6 1st :V–onto→V
5 fof 6681 . . . . . 6 (1st :V–onto→V → 1st :V⟶V)
64, 5ax-mp 5 . . . . 5 1st :V⟶V
7 fnfco 6632 . . . . 5 ((2nd Fn V ∧ 1st :V⟶V) → (2nd ∘ 1st ) Fn V)
83, 6, 7mp2an 689 . . . 4 (2nd ∘ 1st ) Fn V
9 df-coda 17728 . . . . 5 coda = (2nd ∘ 1st )
109fneq1i 6523 . . . 4 (coda Fn V ↔ (2nd ∘ 1st ) Fn V)
118, 10mpbir 230 . . 3 coda Fn V
12 ssv 3945 . . 3 𝐴 ⊆ V
13 fnssres 6548 . . 3 ((coda Fn V ∧ 𝐴 ⊆ V) → (coda𝐴) Fn 𝐴)
1411, 12, 13mp2an 689 . 2 (coda𝐴) Fn 𝐴
15 fvres 6786 . . . 4 (𝑥𝐴 → ((coda𝐴)‘𝑥) = (coda𝑥))
16 arwrcl.a . . . . 5 𝐴 = (Arrow‘𝐶)
17 arwdm.b . . . . 5 𝐵 = (Base‘𝐶)
1816, 17arwcd 17751 . . . 4 (𝑥𝐴 → (coda𝑥) ∈ 𝐵)
1915, 18eqeltrd 2839 . . 3 (𝑥𝐴 → ((coda𝐴)‘𝑥) ∈ 𝐵)
2019rgen 3074 . 2 𝑥𝐴 ((coda𝐴)‘𝑥) ∈ 𝐵
21 ffnfv 6985 . 2 ((coda𝐴):𝐴𝐵 ↔ ((coda𝐴) Fn 𝐴 ∧ ∀𝑥𝐴 ((coda𝐴)‘𝑥) ∈ 𝐵))
2214, 20, 21mpbir2an 708 1 (coda𝐴):𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  wral 3064  Vcvv 3430  wss 3887  cres 5587  ccom 5589   Fn wfn 6422  wf 6423  ontowfo 6425  cfv 6427  1st c1st 7819  2nd c2nd 7820  Basecbs 16900  codaccoda 17724  Arrowcarw 17725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-ov 7271  df-1st 7821  df-2nd 7822  df-doma 17727  df-coda 17728  df-homa 17729  df-arw 17730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator