![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cdaf | Structured version Visualization version GIF version |
Description: The codomain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
arwrcl.a | β’ π΄ = (ArrowβπΆ) |
arwdm.b | β’ π΅ = (BaseβπΆ) |
Ref | Expression |
---|---|
cdaf | β’ (coda βΎ π΄):π΄βΆπ΅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo2nd 8000 | . . . . . 6 β’ 2nd :VβontoβV | |
2 | fofn 6807 | . . . . . 6 β’ (2nd :VβontoβV β 2nd Fn V) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 β’ 2nd Fn V |
4 | fo1st 7999 | . . . . . 6 β’ 1st :VβontoβV | |
5 | fof 6805 | . . . . . 6 β’ (1st :VβontoβV β 1st :VβΆV) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 β’ 1st :VβΆV |
7 | fnfco 6756 | . . . . 5 β’ ((2nd Fn V β§ 1st :VβΆV) β (2nd β 1st ) Fn V) | |
8 | 3, 6, 7 | mp2an 689 | . . . 4 β’ (2nd β 1st ) Fn V |
9 | df-coda 17982 | . . . . 5 β’ coda = (2nd β 1st ) | |
10 | 9 | fneq1i 6646 | . . . 4 β’ (coda Fn V β (2nd β 1st ) Fn V) |
11 | 8, 10 | mpbir 230 | . . 3 β’ coda Fn V |
12 | ssv 4006 | . . 3 β’ π΄ β V | |
13 | fnssres 6673 | . . 3 β’ ((coda Fn V β§ π΄ β V) β (coda βΎ π΄) Fn π΄) | |
14 | 11, 12, 13 | mp2an 689 | . 2 β’ (coda βΎ π΄) Fn π΄ |
15 | fvres 6910 | . . . 4 β’ (π₯ β π΄ β ((coda βΎ π΄)βπ₯) = (codaβπ₯)) | |
16 | arwrcl.a | . . . . 5 β’ π΄ = (ArrowβπΆ) | |
17 | arwdm.b | . . . . 5 β’ π΅ = (BaseβπΆ) | |
18 | 16, 17 | arwcd 18005 | . . . 4 β’ (π₯ β π΄ β (codaβπ₯) β π΅) |
19 | 15, 18 | eqeltrd 2832 | . . 3 β’ (π₯ β π΄ β ((coda βΎ π΄)βπ₯) β π΅) |
20 | 19 | rgen 3062 | . 2 β’ βπ₯ β π΄ ((coda βΎ π΄)βπ₯) β π΅ |
21 | ffnfv 7120 | . 2 β’ ((coda βΎ π΄):π΄βΆπ΅ β ((coda βΎ π΄) Fn π΄ β§ βπ₯ β π΄ ((coda βΎ π΄)βπ₯) β π΅)) | |
22 | 14, 20, 21 | mpbir2an 708 | 1 β’ (coda βΎ π΄):π΄βΆπ΅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 β wcel 2105 βwral 3060 Vcvv 3473 β wss 3948 βΎ cres 5678 β ccom 5680 Fn wfn 6538 βΆwf 6539 βontoβwfo 6541 βcfv 6543 1st c1st 7977 2nd c2nd 7978 Basecbs 17151 codaccoda 17978 Arrowcarw 17979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-1st 7979 df-2nd 7980 df-doma 17981 df-coda 17982 df-homa 17983 df-arw 17984 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |