MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdaf Structured version   Visualization version   GIF version

Theorem cdaf 17765
Description: The codomain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
arwrcl.a 𝐴 = (Arrow‘𝐶)
arwdm.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
cdaf (coda𝐴):𝐴𝐵

Proof of Theorem cdaf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fo2nd 7852 . . . . . 6 2nd :V–onto→V
2 fofn 6690 . . . . . 6 (2nd :V–onto→V → 2nd Fn V)
31, 2ax-mp 5 . . . . 5 2nd Fn V
4 fo1st 7851 . . . . . 6 1st :V–onto→V
5 fof 6688 . . . . . 6 (1st :V–onto→V → 1st :V⟶V)
64, 5ax-mp 5 . . . . 5 1st :V⟶V
7 fnfco 6639 . . . . 5 ((2nd Fn V ∧ 1st :V⟶V) → (2nd ∘ 1st ) Fn V)
83, 6, 7mp2an 689 . . . 4 (2nd ∘ 1st ) Fn V
9 df-coda 17740 . . . . 5 coda = (2nd ∘ 1st )
109fneq1i 6530 . . . 4 (coda Fn V ↔ (2nd ∘ 1st ) Fn V)
118, 10mpbir 230 . . 3 coda Fn V
12 ssv 3945 . . 3 𝐴 ⊆ V
13 fnssres 6555 . . 3 ((coda Fn V ∧ 𝐴 ⊆ V) → (coda𝐴) Fn 𝐴)
1411, 12, 13mp2an 689 . 2 (coda𝐴) Fn 𝐴
15 fvres 6793 . . . 4 (𝑥𝐴 → ((coda𝐴)‘𝑥) = (coda𝑥))
16 arwrcl.a . . . . 5 𝐴 = (Arrow‘𝐶)
17 arwdm.b . . . . 5 𝐵 = (Base‘𝐶)
1816, 17arwcd 17763 . . . 4 (𝑥𝐴 → (coda𝑥) ∈ 𝐵)
1915, 18eqeltrd 2839 . . 3 (𝑥𝐴 → ((coda𝐴)‘𝑥) ∈ 𝐵)
2019rgen 3074 . 2 𝑥𝐴 ((coda𝐴)‘𝑥) ∈ 𝐵
21 ffnfv 6992 . 2 ((coda𝐴):𝐴𝐵 ↔ ((coda𝐴) Fn 𝐴 ∧ ∀𝑥𝐴 ((coda𝐴)‘𝑥) ∈ 𝐵))
2214, 20, 21mpbir2an 708 1 (coda𝐴):𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  wss 3887  cres 5591  ccom 5593   Fn wfn 6428  wf 6429  ontowfo 6431  cfv 6433  1st c1st 7829  2nd c2nd 7830  Basecbs 16912  codaccoda 17736  Arrowcarw 17737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-1st 7831  df-2nd 7832  df-doma 17739  df-coda 17740  df-homa 17741  df-arw 17742
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator