![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cdaf | Structured version Visualization version GIF version |
Description: The codomain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
arwrcl.a | ⊢ 𝐴 = (Arrow‘𝐶) |
arwdm.b | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
cdaf | ⊢ (coda ↾ 𝐴):𝐴⟶𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo2nd 7423 | . . . . . 6 ⊢ 2nd :V–onto→V | |
2 | fofn 6334 | . . . . . 6 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 2nd Fn V |
4 | fo1st 7422 | . . . . . 6 ⊢ 1st :V–onto→V | |
5 | fof 6332 | . . . . . 6 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ 1st :V⟶V |
7 | fnfco 6285 | . . . . 5 ⊢ ((2nd Fn V ∧ 1st :V⟶V) → (2nd ∘ 1st ) Fn V) | |
8 | 3, 6, 7 | mp2an 684 | . . . 4 ⊢ (2nd ∘ 1st ) Fn V |
9 | df-coda 16988 | . . . . 5 ⊢ coda = (2nd ∘ 1st ) | |
10 | 9 | fneq1i 6197 | . . . 4 ⊢ (coda Fn V ↔ (2nd ∘ 1st ) Fn V) |
11 | 8, 10 | mpbir 223 | . . 3 ⊢ coda Fn V |
12 | ssv 3822 | . . 3 ⊢ 𝐴 ⊆ V | |
13 | fnssres 6216 | . . 3 ⊢ ((coda Fn V ∧ 𝐴 ⊆ V) → (coda ↾ 𝐴) Fn 𝐴) | |
14 | 11, 12, 13 | mp2an 684 | . 2 ⊢ (coda ↾ 𝐴) Fn 𝐴 |
15 | fvres 6431 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((coda ↾ 𝐴)‘𝑥) = (coda‘𝑥)) | |
16 | arwrcl.a | . . . . 5 ⊢ 𝐴 = (Arrow‘𝐶) | |
17 | arwdm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
18 | 16, 17 | arwcd 17011 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (coda‘𝑥) ∈ 𝐵) |
19 | 15, 18 | eqeltrd 2879 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ((coda ↾ 𝐴)‘𝑥) ∈ 𝐵) |
20 | 19 | rgen 3104 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ((coda ↾ 𝐴)‘𝑥) ∈ 𝐵 |
21 | ffnfv 6615 | . 2 ⊢ ((coda ↾ 𝐴):𝐴⟶𝐵 ↔ ((coda ↾ 𝐴) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((coda ↾ 𝐴)‘𝑥) ∈ 𝐵)) | |
22 | 14, 20, 21 | mpbir2an 703 | 1 ⊢ (coda ↾ 𝐴):𝐴⟶𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∈ wcel 2157 ∀wral 3090 Vcvv 3386 ⊆ wss 3770 ↾ cres 5315 ∘ ccom 5317 Fn wfn 6097 ⟶wf 6098 –onto→wfo 6100 ‘cfv 6102 1st c1st 7400 2nd c2nd 7401 Basecbs 16183 codaccoda 16984 Arrowcarw 16985 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-ov 6882 df-1st 7402 df-2nd 7403 df-doma 16987 df-coda 16988 df-homa 16989 df-arw 16990 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |