| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cdaf | Structured version Visualization version GIF version | ||
| Description: The codomain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| arwrcl.a | ⊢ 𝐴 = (Arrow‘𝐶) |
| arwdm.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| cdaf | ⊢ (coda ↾ 𝐴):𝐴⟶𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fo2nd 7952 | . . . . . 6 ⊢ 2nd :V–onto→V | |
| 2 | fofn 6742 | . . . . . 6 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 2nd Fn V |
| 4 | fo1st 7951 | . . . . . 6 ⊢ 1st :V–onto→V | |
| 5 | fof 6740 | . . . . . 6 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
| 6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ 1st :V⟶V |
| 7 | fnfco 6693 | . . . . 5 ⊢ ((2nd Fn V ∧ 1st :V⟶V) → (2nd ∘ 1st ) Fn V) | |
| 8 | 3, 6, 7 | mp2an 692 | . . . 4 ⊢ (2nd ∘ 1st ) Fn V |
| 9 | df-coda 17950 | . . . . 5 ⊢ coda = (2nd ∘ 1st ) | |
| 10 | 9 | fneq1i 6583 | . . . 4 ⊢ (coda Fn V ↔ (2nd ∘ 1st ) Fn V) |
| 11 | 8, 10 | mpbir 231 | . . 3 ⊢ coda Fn V |
| 12 | ssv 3962 | . . 3 ⊢ 𝐴 ⊆ V | |
| 13 | fnssres 6609 | . . 3 ⊢ ((coda Fn V ∧ 𝐴 ⊆ V) → (coda ↾ 𝐴) Fn 𝐴) | |
| 14 | 11, 12, 13 | mp2an 692 | . 2 ⊢ (coda ↾ 𝐴) Fn 𝐴 |
| 15 | fvres 6845 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((coda ↾ 𝐴)‘𝑥) = (coda‘𝑥)) | |
| 16 | arwrcl.a | . . . . 5 ⊢ 𝐴 = (Arrow‘𝐶) | |
| 17 | arwdm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 18 | 16, 17 | arwcd 17973 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (coda‘𝑥) ∈ 𝐵) |
| 19 | 15, 18 | eqeltrd 2828 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ((coda ↾ 𝐴)‘𝑥) ∈ 𝐵) |
| 20 | 19 | rgen 3046 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ((coda ↾ 𝐴)‘𝑥) ∈ 𝐵 |
| 21 | ffnfv 7057 | . 2 ⊢ ((coda ↾ 𝐴):𝐴⟶𝐵 ↔ ((coda ↾ 𝐴) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((coda ↾ 𝐴)‘𝑥) ∈ 𝐵)) | |
| 22 | 14, 20, 21 | mpbir2an 711 | 1 ⊢ (coda ↾ 𝐴):𝐴⟶𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 ⊆ wss 3905 ↾ cres 5625 ∘ ccom 5627 Fn wfn 6481 ⟶wf 6482 –onto→wfo 6484 ‘cfv 6486 1st c1st 7929 2nd c2nd 7930 Basecbs 17138 codaccoda 17946 Arrowcarw 17947 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-1st 7931 df-2nd 7932 df-doma 17949 df-coda 17950 df-homa 17951 df-arw 17952 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |