MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem10 Structured version   Visualization version   GIF version

Theorem axlowdimlem10 28914
Description: Lemma for axlowdim 28924. Set up a family of points in Euclidean space. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem10.1 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
Assertion
Ref Expression
axlowdimlem10 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁))

Proof of Theorem axlowdimlem10
StepHypRef Expression
1 ovex 7386 . . . . . . . . 9 (𝐼 + 1) ∈ V
2 1ex 11130 . . . . . . . . 9 1 ∈ V
31, 2f1osn 6808 . . . . . . . 8 {⟨(𝐼 + 1), 1⟩}:{(𝐼 + 1)}–1-1-onto→{1}
4 f1of 6768 . . . . . . . 8 ({⟨(𝐼 + 1), 1⟩}:{(𝐼 + 1)}–1-1-onto→{1} → {⟨(𝐼 + 1), 1⟩}:{(𝐼 + 1)}⟶{1})
53, 4ax-mp 5 . . . . . . 7 {⟨(𝐼 + 1), 1⟩}:{(𝐼 + 1)}⟶{1}
6 c0ex 11128 . . . . . . . 8 0 ∈ V
76fconst 6714 . . . . . . 7 (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0}
85, 7pm3.2i 470 . . . . . 6 ({⟨(𝐼 + 1), 1⟩}:{(𝐼 + 1)}⟶{1} ∧ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0})
9 disjdif 4425 . . . . . 6 ({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅
10 fun 6690 . . . . . 6 ((({⟨(𝐼 + 1), 1⟩}:{(𝐼 + 1)}⟶{1} ∧ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0}) ∧ ({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅) → ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})):({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0}))
118, 9, 10mp2an 692 . . . . 5 ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})):({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0})
12 axlowdimlem10.1 . . . . . 6 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
1312feq1i 6647 . . . . 5 (𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0}) ↔ ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})):({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0}))
1411, 13mpbir 231 . . . 4 𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0})
15 1re 11134 . . . . . 6 1 ∈ ℝ
16 snssi 4762 . . . . . 6 (1 ∈ ℝ → {1} ⊆ ℝ)
1715, 16ax-mp 5 . . . . 5 {1} ⊆ ℝ
18 0re 11136 . . . . . 6 0 ∈ ℝ
19 snssi 4762 . . . . . 6 (0 ∈ ℝ → {0} ⊆ ℝ)
2018, 19ax-mp 5 . . . . 5 {0} ⊆ ℝ
2117, 20unssi 4144 . . . 4 ({1} ∪ {0}) ⊆ ℝ
22 fss 6672 . . . 4 ((𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0}) ∧ ({1} ∪ {0}) ⊆ ℝ) → 𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶ℝ)
2314, 21, 22mp2an 692 . . 3 𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶ℝ
24 fznatpl1 13499 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁))
2524snssd 4763 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → {(𝐼 + 1)} ⊆ (1...𝑁))
26 undif 4435 . . . . 5 ({(𝐼 + 1)} ⊆ (1...𝑁) ↔ ({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)})) = (1...𝑁))
2725, 26sylib 218 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)})) = (1...𝑁))
2827feq2d 6640 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶ℝ ↔ 𝑄:(1...𝑁)⟶ℝ))
2923, 28mpbii 233 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄:(1...𝑁)⟶ℝ)
30 elee 28857 . . 3 (𝑁 ∈ ℕ → (𝑄 ∈ (𝔼‘𝑁) ↔ 𝑄:(1...𝑁)⟶ℝ))
3130adantr 480 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝑄 ∈ (𝔼‘𝑁) ↔ 𝑄:(1...𝑁)⟶ℝ))
3229, 31mpbird 257 1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286  {csn 4579  cop 4585   × cxp 5621  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028  1c1 11029   + caddc 11031  cmin 11365  cn 12146  ...cfz 13428  𝔼cee 28851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-ee 28854
This theorem is referenced by:  axlowdimlem14  28918  axlowdimlem15  28919  axlowdimlem16  28920  axlowdimlem17  28921
  Copyright terms: Public domain W3C validator