| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axlowdimlem10 | Structured version Visualization version GIF version | ||
| Description: Lemma for axlowdim 28924. Set up a family of points in Euclidean space. (Contributed by Scott Fenton, 21-Apr-2013.) |
| Ref | Expression |
|---|---|
| axlowdimlem10.1 | ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) |
| Ref | Expression |
|---|---|
| axlowdimlem10 | ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7386 | . . . . . . . . 9 ⊢ (𝐼 + 1) ∈ V | |
| 2 | 1ex 11130 | . . . . . . . . 9 ⊢ 1 ∈ V | |
| 3 | 1, 2 | f1osn 6808 | . . . . . . . 8 ⊢ {〈(𝐼 + 1), 1〉}:{(𝐼 + 1)}–1-1-onto→{1} |
| 4 | f1of 6768 | . . . . . . . 8 ⊢ ({〈(𝐼 + 1), 1〉}:{(𝐼 + 1)}–1-1-onto→{1} → {〈(𝐼 + 1), 1〉}:{(𝐼 + 1)}⟶{1}) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ {〈(𝐼 + 1), 1〉}:{(𝐼 + 1)}⟶{1} |
| 6 | c0ex 11128 | . . . . . . . 8 ⊢ 0 ∈ V | |
| 7 | 6 | fconst 6714 | . . . . . . 7 ⊢ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0} |
| 8 | 5, 7 | pm3.2i 470 | . . . . . 6 ⊢ ({〈(𝐼 + 1), 1〉}:{(𝐼 + 1)}⟶{1} ∧ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0}) |
| 9 | disjdif 4425 | . . . . . 6 ⊢ ({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ | |
| 10 | fun 6690 | . . . . . 6 ⊢ ((({〈(𝐼 + 1), 1〉}:{(𝐼 + 1)}⟶{1} ∧ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0}) ∧ ({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅) → ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})):({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0})) | |
| 11 | 8, 9, 10 | mp2an 692 | . . . . 5 ⊢ ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})):({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0}) |
| 12 | axlowdimlem10.1 | . . . . . 6 ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) | |
| 13 | 12 | feq1i 6647 | . . . . 5 ⊢ (𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0}) ↔ ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})):({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0})) |
| 14 | 11, 13 | mpbir 231 | . . . 4 ⊢ 𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0}) |
| 15 | 1re 11134 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 16 | snssi 4762 | . . . . . 6 ⊢ (1 ∈ ℝ → {1} ⊆ ℝ) | |
| 17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ {1} ⊆ ℝ |
| 18 | 0re 11136 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 19 | snssi 4762 | . . . . . 6 ⊢ (0 ∈ ℝ → {0} ⊆ ℝ) | |
| 20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ {0} ⊆ ℝ |
| 21 | 17, 20 | unssi 4144 | . . . 4 ⊢ ({1} ∪ {0}) ⊆ ℝ |
| 22 | fss 6672 | . . . 4 ⊢ ((𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0}) ∧ ({1} ∪ {0}) ⊆ ℝ) → 𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶ℝ) | |
| 23 | 14, 21, 22 | mp2an 692 | . . 3 ⊢ 𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶ℝ |
| 24 | fznatpl1 13499 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁)) | |
| 25 | 24 | snssd 4763 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → {(𝐼 + 1)} ⊆ (1...𝑁)) |
| 26 | undif 4435 | . . . . 5 ⊢ ({(𝐼 + 1)} ⊆ (1...𝑁) ↔ ({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)})) = (1...𝑁)) | |
| 27 | 25, 26 | sylib 218 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)})) = (1...𝑁)) |
| 28 | 27 | feq2d 6640 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶ℝ ↔ 𝑄:(1...𝑁)⟶ℝ)) |
| 29 | 23, 28 | mpbii 233 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄:(1...𝑁)⟶ℝ) |
| 30 | elee 28857 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑄 ∈ (𝔼‘𝑁) ↔ 𝑄:(1...𝑁)⟶ℝ)) | |
| 31 | 30 | adantr 480 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝑄 ∈ (𝔼‘𝑁) ↔ 𝑄:(1...𝑁)⟶ℝ)) |
| 32 | 29, 31 | mpbird 257 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3902 ∪ cun 3903 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 {csn 4579 〈cop 4585 × cxp 5621 ⟶wf 6482 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 − cmin 11365 ℕcn 12146 ...cfz 13428 𝔼cee 28851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-ee 28854 |
| This theorem is referenced by: axlowdimlem14 28918 axlowdimlem15 28919 axlowdimlem16 28920 axlowdimlem17 28921 |
| Copyright terms: Public domain | W3C validator |