Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axlowdimlem10 | Structured version Visualization version GIF version |
Description: Lemma for axlowdim 27374. Set up a family of points in Euclidean space. (Contributed by Scott Fenton, 21-Apr-2013.) |
Ref | Expression |
---|---|
axlowdimlem10.1 | ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) |
Ref | Expression |
---|---|
axlowdimlem10 | ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7340 | . . . . . . . . 9 ⊢ (𝐼 + 1) ∈ V | |
2 | 1ex 11017 | . . . . . . . . 9 ⊢ 1 ∈ V | |
3 | 1, 2 | f1osn 6786 | . . . . . . . 8 ⊢ {〈(𝐼 + 1), 1〉}:{(𝐼 + 1)}–1-1-onto→{1} |
4 | f1of 6746 | . . . . . . . 8 ⊢ ({〈(𝐼 + 1), 1〉}:{(𝐼 + 1)}–1-1-onto→{1} → {〈(𝐼 + 1), 1〉}:{(𝐼 + 1)}⟶{1}) | |
5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ {〈(𝐼 + 1), 1〉}:{(𝐼 + 1)}⟶{1} |
6 | c0ex 11015 | . . . . . . . 8 ⊢ 0 ∈ V | |
7 | 6 | fconst 6690 | . . . . . . 7 ⊢ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0} |
8 | 5, 7 | pm3.2i 472 | . . . . . 6 ⊢ ({〈(𝐼 + 1), 1〉}:{(𝐼 + 1)}⟶{1} ∧ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0}) |
9 | disjdif 4411 | . . . . . 6 ⊢ ({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ | |
10 | fun 6666 | . . . . . 6 ⊢ ((({〈(𝐼 + 1), 1〉}:{(𝐼 + 1)}⟶{1} ∧ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0}) ∧ ({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅) → ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})):({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0})) | |
11 | 8, 9, 10 | mp2an 690 | . . . . 5 ⊢ ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})):({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0}) |
12 | axlowdimlem10.1 | . . . . . 6 ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) | |
13 | 12 | feq1i 6621 | . . . . 5 ⊢ (𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0}) ↔ ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})):({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0})) |
14 | 11, 13 | mpbir 230 | . . . 4 ⊢ 𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0}) |
15 | 1re 11021 | . . . . . 6 ⊢ 1 ∈ ℝ | |
16 | snssi 4747 | . . . . . 6 ⊢ (1 ∈ ℝ → {1} ⊆ ℝ) | |
17 | 15, 16 | ax-mp 5 | . . . . 5 ⊢ {1} ⊆ ℝ |
18 | 0re 11023 | . . . . . 6 ⊢ 0 ∈ ℝ | |
19 | snssi 4747 | . . . . . 6 ⊢ (0 ∈ ℝ → {0} ⊆ ℝ) | |
20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ {0} ⊆ ℝ |
21 | 17, 20 | unssi 4125 | . . . 4 ⊢ ({1} ∪ {0}) ⊆ ℝ |
22 | fss 6647 | . . . 4 ⊢ ((𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0}) ∧ ({1} ∪ {0}) ⊆ ℝ) → 𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶ℝ) | |
23 | 14, 21, 22 | mp2an 690 | . . 3 ⊢ 𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶ℝ |
24 | fznatpl1 13356 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁)) | |
25 | 24 | snssd 4748 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → {(𝐼 + 1)} ⊆ (1...𝑁)) |
26 | undif 4421 | . . . . 5 ⊢ ({(𝐼 + 1)} ⊆ (1...𝑁) ↔ ({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)})) = (1...𝑁)) | |
27 | 25, 26 | sylib 217 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)})) = (1...𝑁)) |
28 | 27 | feq2d 6616 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶ℝ ↔ 𝑄:(1...𝑁)⟶ℝ)) |
29 | 23, 28 | mpbii 232 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄:(1...𝑁)⟶ℝ) |
30 | elee 27307 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑄 ∈ (𝔼‘𝑁) ↔ 𝑄:(1...𝑁)⟶ℝ)) | |
31 | 30 | adantr 482 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝑄 ∈ (𝔼‘𝑁) ↔ 𝑄:(1...𝑁)⟶ℝ)) |
32 | 29, 31 | mpbird 257 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∖ cdif 3889 ∪ cun 3890 ∩ cin 3891 ⊆ wss 3892 ∅c0 4262 {csn 4565 〈cop 4571 × cxp 5598 ⟶wf 6454 –1-1-onto→wf1o 6457 ‘cfv 6458 (class class class)co 7307 ℝcr 10916 0cc0 10917 1c1 10918 + caddc 10920 − cmin 11251 ℕcn 12019 ...cfz 13285 𝔼cee 27301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-n0 12280 df-z 12366 df-uz 12629 df-fz 13286 df-ee 27304 |
This theorem is referenced by: axlowdimlem14 27368 axlowdimlem15 27369 axlowdimlem16 27370 axlowdimlem17 27371 |
Copyright terms: Public domain | W3C validator |