MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem10 Structured version   Visualization version   GIF version

Theorem axlowdimlem10 26745
Description: Lemma for axlowdim 26755. Set up a family of points in Euclidean space. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem10.1 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
Assertion
Ref Expression
axlowdimlem10 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁))

Proof of Theorem axlowdimlem10
StepHypRef Expression
1 ovex 7168 . . . . . . . . 9 (𝐼 + 1) ∈ V
2 1ex 10626 . . . . . . . . 9 1 ∈ V
31, 2f1osn 6629 . . . . . . . 8 {⟨(𝐼 + 1), 1⟩}:{(𝐼 + 1)}–1-1-onto→{1}
4 f1of 6590 . . . . . . . 8 ({⟨(𝐼 + 1), 1⟩}:{(𝐼 + 1)}–1-1-onto→{1} → {⟨(𝐼 + 1), 1⟩}:{(𝐼 + 1)}⟶{1})
53, 4ax-mp 5 . . . . . . 7 {⟨(𝐼 + 1), 1⟩}:{(𝐼 + 1)}⟶{1}
6 c0ex 10624 . . . . . . . 8 0 ∈ V
76fconst 6539 . . . . . . 7 (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0}
85, 7pm3.2i 474 . . . . . 6 ({⟨(𝐼 + 1), 1⟩}:{(𝐼 + 1)}⟶{1} ∧ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0})
9 disjdif 4379 . . . . . 6 ({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅
10 fun 6514 . . . . . 6 ((({⟨(𝐼 + 1), 1⟩}:{(𝐼 + 1)}⟶{1} ∧ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0}) ∧ ({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅) → ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})):({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0}))
118, 9, 10mp2an 691 . . . . 5 ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})):({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0})
12 axlowdimlem10.1 . . . . . 6 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
1312feq1i 6478 . . . . 5 (𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0}) ↔ ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})):({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0}))
1411, 13mpbir 234 . . . 4 𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0})
15 1re 10630 . . . . . 6 1 ∈ ℝ
16 snssi 4701 . . . . . 6 (1 ∈ ℝ → {1} ⊆ ℝ)
1715, 16ax-mp 5 . . . . 5 {1} ⊆ ℝ
18 0re 10632 . . . . . 6 0 ∈ ℝ
19 snssi 4701 . . . . . 6 (0 ∈ ℝ → {0} ⊆ ℝ)
2018, 19ax-mp 5 . . . . 5 {0} ⊆ ℝ
2117, 20unssi 4112 . . . 4 ({1} ∪ {0}) ⊆ ℝ
22 fss 6501 . . . 4 ((𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶({1} ∪ {0}) ∧ ({1} ∪ {0}) ⊆ ℝ) → 𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶ℝ)
2314, 21, 22mp2an 691 . . 3 𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶ℝ
24 fznatpl1 12956 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝐼 + 1) ∈ (1...𝑁))
2524snssd 4702 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → {(𝐼 + 1)} ⊆ (1...𝑁))
26 undif 4388 . . . . 5 ({(𝐼 + 1)} ⊆ (1...𝑁) ↔ ({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)})) = (1...𝑁))
2725, 26sylib 221 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → ({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)})) = (1...𝑁))
2827feq2d 6473 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝑄:({(𝐼 + 1)} ∪ ((1...𝑁) ∖ {(𝐼 + 1)}))⟶ℝ ↔ 𝑄:(1...𝑁)⟶ℝ))
2923, 28mpbii 236 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄:(1...𝑁)⟶ℝ)
30 elee 26688 . . 3 (𝑁 ∈ ℕ → (𝑄 ∈ (𝔼‘𝑁) ↔ 𝑄:(1...𝑁)⟶ℝ))
3130adantr 484 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → (𝑄 ∈ (𝔼‘𝑁) ↔ 𝑄:(1...𝑁)⟶ℝ))
3229, 31mpbird 260 1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  cdif 3878  cun 3879  cin 3880  wss 3881  c0 4243  {csn 4525  cop 4531   × cxp 5517  wf 6320  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  cmin 10859  cn 11625  ...cfz 12885  𝔼cee 26682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-ee 26685
This theorem is referenced by:  axlowdimlem14  26749  axlowdimlem15  26750  axlowdimlem16  26751  axlowdimlem17  26752
  Copyright terms: Public domain W3C validator