MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binomlem Structured version   Visualization version   GIF version

Theorem binomlem 15862
Description: Lemma for binom 15863 (binomial theorem). Inductive step. (Contributed by NM, 6-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
binomlem.1 (𝜑𝐴 ∈ ℂ)
binomlem.2 (𝜑𝐵 ∈ ℂ)
binomlem.3 (𝜑𝑁 ∈ ℕ0)
binomlem.4 (𝜓 → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
Assertion
Ref Expression
binomlem ((𝜑𝜓) → ((𝐴 + 𝐵)↑(𝑁 + 1)) = Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝜓(𝑘)

Proof of Theorem binomlem
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 binomlem.4 . . . . . 6 (𝜓 → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
21adantl 481 . . . . 5 ((𝜑𝜓) → ((𝐴 + 𝐵)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))))
32oveq1d 7446 . . . 4 ((𝜑𝜓) → (((𝐴 + 𝐵)↑𝑁) · 𝐴) = (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐴))
4 fzfid 14011 . . . . . . 7 (𝜑 → (0...𝑁) ∈ Fin)
5 binomlem.1 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
6 fzelp1 13613 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ (0...(𝑁 + 1)))
7 binomlem.3 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
8 elfzelz 13561 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℤ)
9 bccl 14358 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
107, 8, 9syl2an 596 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C𝑘) ∈ ℕ0)
1110nn0cnd 12587 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C𝑘) ∈ ℂ)
126, 11sylan2 593 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℂ)
13 fznn0sub 13593 . . . . . . . . . 10 (𝑘 ∈ (0...𝑁) → (𝑁𝑘) ∈ ℕ0)
14 expcl 14117 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑁𝑘) ∈ ℕ0) → (𝐴↑(𝑁𝑘)) ∈ ℂ)
155, 13, 14syl2an 596 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴↑(𝑁𝑘)) ∈ ℂ)
16 binomlem.2 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
17 elfznn0 13657 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑁 + 1)) → 𝑘 ∈ ℕ0)
18 expcl 14117 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℂ)
1916, 17, 18syl2an 596 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝐵𝑘) ∈ ℂ)
206, 19sylan2 593 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐵𝑘) ∈ ℂ)
2115, 20mulcld 11279 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝐴↑(𝑁𝑘)) · (𝐵𝑘)) ∈ ℂ)
2212, 21mulcld 11279 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) ∈ ℂ)
234, 5, 22fsummulc1 15818 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐴) = Σ𝑘 ∈ (0...𝑁)(((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐴))
245adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
2512, 21, 24mulassd 11282 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐴) = ((𝑁C𝑘) · (((𝐴↑(𝑁𝑘)) · (𝐵𝑘)) · 𝐴)))
267nn0cnd 12587 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℂ)
2726adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑁 ∈ ℂ)
28 1cnd 11254 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...𝑁)) → 1 ∈ ℂ)
29 elfzelz 13561 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
3029adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℤ)
3130zcnd 12721 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℂ)
3227, 28, 31addsubd 11639 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁 + 1) − 𝑘) = ((𝑁𝑘) + 1))
3332oveq2d 7447 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴↑((𝑁 + 1) − 𝑘)) = (𝐴↑((𝑁𝑘) + 1)))
34 expp1 14106 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (𝑁𝑘) ∈ ℕ0) → (𝐴↑((𝑁𝑘) + 1)) = ((𝐴↑(𝑁𝑘)) · 𝐴))
355, 13, 34syl2an 596 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴↑((𝑁𝑘) + 1)) = ((𝐴↑(𝑁𝑘)) · 𝐴))
3633, 35eqtrd 2775 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴↑((𝑁 + 1) − 𝑘)) = ((𝐴↑(𝑁𝑘)) · 𝐴))
3736oveq1d 7446 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)) = (((𝐴↑(𝑁𝑘)) · 𝐴) · (𝐵𝑘)))
3815, 24, 20mul32d 11469 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝐴↑(𝑁𝑘)) · 𝐴) · (𝐵𝑘)) = (((𝐴↑(𝑁𝑘)) · (𝐵𝑘)) · 𝐴))
3937, 38eqtrd 2775 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)) = (((𝐴↑(𝑁𝑘)) · (𝐵𝑘)) · 𝐴))
4039oveq2d 7447 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = ((𝑁C𝑘) · (((𝐴↑(𝑁𝑘)) · (𝐵𝑘)) · 𝐴)))
4125, 40eqtr4d 2778 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐴) = ((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
4241sumeq2dv 15735 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...𝑁)(((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐴) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
43 fzssp1 13604 . . . . . . . 8 (0...𝑁) ⊆ (0...(𝑁 + 1))
4443a1i 11 . . . . . . 7 (𝜑 → (0...𝑁) ⊆ (0...(𝑁 + 1)))
45 fznn0sub 13593 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝑁 + 1)) → ((𝑁 + 1) − 𝑘) ∈ ℕ0)
46 expcl 14117 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ ((𝑁 + 1) − 𝑘) ∈ ℕ0) → (𝐴↑((𝑁 + 1) − 𝑘)) ∈ ℂ)
475, 45, 46syl2an 596 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝐴↑((𝑁 + 1) − 𝑘)) ∈ ℂ)
4847, 19mulcld 11279 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)) ∈ ℂ)
4911, 48mulcld 11279 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) ∈ ℂ)
506, 49sylan2 593 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) ∈ ℂ)
517adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ (0...𝑁))) → 𝑁 ∈ ℕ0)
52 eldifi 4141 . . . . . . . . . . . 12 (𝑘 ∈ ((0...(𝑁 + 1)) ∖ (0...𝑁)) → 𝑘 ∈ (0...(𝑁 + 1)))
5352, 8syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...(𝑁 + 1)) ∖ (0...𝑁)) → 𝑘 ∈ ℤ)
5453adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ (0...𝑁))) → 𝑘 ∈ ℤ)
55 eldifn 4142 . . . . . . . . . . 11 (𝑘 ∈ ((0...(𝑁 + 1)) ∖ (0...𝑁)) → ¬ 𝑘 ∈ (0...𝑁))
5655adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ (0...𝑁))) → ¬ 𝑘 ∈ (0...𝑁))
57 bcval3 14342 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) = 0)
5851, 54, 56, 57syl3anc 1370 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ (0...𝑁))) → (𝑁C𝑘) = 0)
5958oveq1d 7446 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ (0...𝑁))) → ((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = (0 · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
6048mul02d 11457 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (0 · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = 0)
6152, 60sylan2 593 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ (0...𝑁))) → (0 · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = 0)
6259, 61eqtrd 2775 . . . . . . 7 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ (0...𝑁))) → ((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = 0)
63 fzssuz 13602 . . . . . . . 8 (0...(𝑁 + 1)) ⊆ (ℤ‘0)
6463a1i 11 . . . . . . 7 (𝜑 → (0...(𝑁 + 1)) ⊆ (ℤ‘0))
6544, 50, 62, 64sumss 15757 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
6623, 42, 653eqtrd 2779 . . . . 5 (𝜑 → (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐴) = Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
6766adantr 480 . . . 4 ((𝜑𝜓) → (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐴) = Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
683, 67eqtrd 2775 . . 3 ((𝜑𝜓) → (((𝐴 + 𝐵)↑𝑁) · 𝐴) = Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
691oveq1d 7446 . . . 4 (𝜓 → (((𝐴 + 𝐵)↑𝑁) · 𝐵) = (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐵))
704, 16, 22fsummulc1 15818 . . . . 5 (𝜑 → (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐵) = Σ𝑘 ∈ (0...𝑁)(((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐵))
71 1zzd 12646 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
72 0z 12622 . . . . . . . . 9 0 ∈ ℤ
7372a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
747nn0zd 12637 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
7516adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑁)) → 𝐵 ∈ ℂ)
7622, 75mulcld 11279 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑁)) → (((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐵) ∈ ℂ)
77 oveq2 7439 . . . . . . . . . 10 (𝑘 = (𝑗 − 1) → (𝑁C𝑘) = (𝑁C(𝑗 − 1)))
78 oveq2 7439 . . . . . . . . . . . 12 (𝑘 = (𝑗 − 1) → (𝑁𝑘) = (𝑁 − (𝑗 − 1)))
7978oveq2d 7447 . . . . . . . . . . 11 (𝑘 = (𝑗 − 1) → (𝐴↑(𝑁𝑘)) = (𝐴↑(𝑁 − (𝑗 − 1))))
80 oveq2 7439 . . . . . . . . . . 11 (𝑘 = (𝑗 − 1) → (𝐵𝑘) = (𝐵↑(𝑗 − 1)))
8179, 80oveq12d 7449 . . . . . . . . . 10 (𝑘 = (𝑗 − 1) → ((𝐴↑(𝑁𝑘)) · (𝐵𝑘)) = ((𝐴↑(𝑁 − (𝑗 − 1))) · (𝐵↑(𝑗 − 1))))
8277, 81oveq12d 7449 . . . . . . . . 9 (𝑘 = (𝑗 − 1) → ((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) = ((𝑁C(𝑗 − 1)) · ((𝐴↑(𝑁 − (𝑗 − 1))) · (𝐵↑(𝑗 − 1)))))
8382oveq1d 7446 . . . . . . . 8 (𝑘 = (𝑗 − 1) → (((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐵) = (((𝑁C(𝑗 − 1)) · ((𝐴↑(𝑁 − (𝑗 − 1))) · (𝐵↑(𝑗 − 1)))) · 𝐵))
8471, 73, 74, 76, 83fsumshft 15813 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (0...𝑁)(((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐵) = Σ𝑗 ∈ ((0 + 1)...(𝑁 + 1))(((𝑁C(𝑗 − 1)) · ((𝐴↑(𝑁 − (𝑗 − 1))) · (𝐵↑(𝑗 − 1)))) · 𝐵))
85 oveq1 7438 . . . . . . . . . . 11 (𝑗 = 𝑘 → (𝑗 − 1) = (𝑘 − 1))
8685oveq2d 7447 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑁C(𝑗 − 1)) = (𝑁C(𝑘 − 1)))
8785oveq2d 7447 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝑁 − (𝑗 − 1)) = (𝑁 − (𝑘 − 1)))
8887oveq2d 7447 . . . . . . . . . . 11 (𝑗 = 𝑘 → (𝐴↑(𝑁 − (𝑗 − 1))) = (𝐴↑(𝑁 − (𝑘 − 1))))
8985oveq2d 7447 . . . . . . . . . . 11 (𝑗 = 𝑘 → (𝐵↑(𝑗 − 1)) = (𝐵↑(𝑘 − 1)))
9088, 89oveq12d 7449 . . . . . . . . . 10 (𝑗 = 𝑘 → ((𝐴↑(𝑁 − (𝑗 − 1))) · (𝐵↑(𝑗 − 1))) = ((𝐴↑(𝑁 − (𝑘 − 1))) · (𝐵↑(𝑘 − 1))))
9186, 90oveq12d 7449 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑁C(𝑗 − 1)) · ((𝐴↑(𝑁 − (𝑗 − 1))) · (𝐵↑(𝑗 − 1)))) = ((𝑁C(𝑘 − 1)) · ((𝐴↑(𝑁 − (𝑘 − 1))) · (𝐵↑(𝑘 − 1)))))
9291oveq1d 7446 . . . . . . . 8 (𝑗 = 𝑘 → (((𝑁C(𝑗 − 1)) · ((𝐴↑(𝑁 − (𝑗 − 1))) · (𝐵↑(𝑗 − 1)))) · 𝐵) = (((𝑁C(𝑘 − 1)) · ((𝐴↑(𝑁 − (𝑘 − 1))) · (𝐵↑(𝑘 − 1)))) · 𝐵))
9392cbvsumv 15729 . . . . . . 7 Σ𝑗 ∈ ((0 + 1)...(𝑁 + 1))(((𝑁C(𝑗 − 1)) · ((𝐴↑(𝑁 − (𝑗 − 1))) · (𝐵↑(𝑗 − 1)))) · 𝐵) = Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))(((𝑁C(𝑘 − 1)) · ((𝐴↑(𝑁 − (𝑘 − 1))) · (𝐵↑(𝑘 − 1)))) · 𝐵)
9484, 93eqtrdi 2791 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...𝑁)(((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐵) = Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))(((𝑁C(𝑘 − 1)) · ((𝐴↑(𝑁 − (𝑘 − 1))) · (𝐵↑(𝑘 − 1)))) · 𝐵))
9526adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑁 ∈ ℂ)
96 elfzelz 13561 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((0 + 1)...(𝑁 + 1)) → 𝑘 ∈ ℤ)
9796adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑘 ∈ ℤ)
9897zcnd 12721 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑘 ∈ ℂ)
99 1cnd 11254 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → 1 ∈ ℂ)
10095, 98, 99subsub3d 11648 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (𝑁 − (𝑘 − 1)) = ((𝑁 + 1) − 𝑘))
101100oveq2d 7447 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (𝐴↑(𝑁 − (𝑘 − 1))) = (𝐴↑((𝑁 + 1) − 𝑘)))
102101oveq1d 7446 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝐴↑(𝑁 − (𝑘 − 1))) · (𝐵↑(𝑘 − 1))) = ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵↑(𝑘 − 1))))
103102oveq2d 7447 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((𝐴↑(𝑁 − (𝑘 − 1))) · (𝐵↑(𝑘 − 1)))) = ((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵↑(𝑘 − 1)))))
104103oveq1d 7446 . . . . . . . 8 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑘 − 1)) · ((𝐴↑(𝑁 − (𝑘 − 1))) · (𝐵↑(𝑘 − 1)))) · 𝐵) = (((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵↑(𝑘 − 1)))) · 𝐵))
105 fzp1ss 13612 . . . . . . . . . . . 12 (0 ∈ ℤ → ((0 + 1)...(𝑁 + 1)) ⊆ (0...(𝑁 + 1)))
10672, 105ax-mp 5 . . . . . . . . . . 11 ((0 + 1)...(𝑁 + 1)) ⊆ (0...(𝑁 + 1))
107106sseli 3991 . . . . . . . . . 10 (𝑘 ∈ ((0 + 1)...(𝑁 + 1)) → 𝑘 ∈ (0...(𝑁 + 1)))
1088adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → 𝑘 ∈ ℤ)
109 peano2zm 12658 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
110108, 109syl 17 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑘 − 1) ∈ ℤ)
111 bccl 14358 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝑘 − 1) ∈ ℤ) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
1127, 110, 111syl2an2r 685 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
113112nn0cnd 12587 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℂ)
114107, 113sylan2 593 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (𝑁C(𝑘 − 1)) ∈ ℂ)
115107, 47sylan2 593 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (𝐴↑((𝑁 + 1) − 𝑘)) ∈ ℂ)
11616adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → 𝐵 ∈ ℂ)
117 elfznn 13590 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℕ)
118 0p1e1 12386 . . . . . . . . . . . . . . 15 (0 + 1) = 1
119118oveq1i 7441 . . . . . . . . . . . . . 14 ((0 + 1)...(𝑁 + 1)) = (1...(𝑁 + 1))
120117, 119eleq2s 2857 . . . . . . . . . . . . 13 (𝑘 ∈ ((0 + 1)...(𝑁 + 1)) → 𝑘 ∈ ℕ)
121120adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → 𝑘 ∈ ℕ)
122 nnm1nn0 12565 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
123121, 122syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (𝑘 − 1) ∈ ℕ0)
124116, 123expcld 14183 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (𝐵↑(𝑘 − 1)) ∈ ℂ)
125115, 124mulcld 11279 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵↑(𝑘 − 1))) ∈ ℂ)
126114, 125, 116mulassd 11282 . . . . . . . 8 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵↑(𝑘 − 1)))) · 𝐵) = ((𝑁C(𝑘 − 1)) · (((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵↑(𝑘 − 1))) · 𝐵)))
127115, 124, 116mulassd 11282 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵↑(𝑘 − 1))) · 𝐵) = ((𝐴↑((𝑁 + 1) − 𝑘)) · ((𝐵↑(𝑘 − 1)) · 𝐵)))
128 expm1t 14128 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (𝐵𝑘) = ((𝐵↑(𝑘 − 1)) · 𝐵))
12916, 120, 128syl2an 596 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (𝐵𝑘) = ((𝐵↑(𝑘 − 1)) · 𝐵))
130129oveq2d 7447 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)) = ((𝐴↑((𝑁 + 1) − 𝑘)) · ((𝐵↑(𝑘 − 1)) · 𝐵)))
131127, 130eqtr4d 2778 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵↑(𝑘 − 1))) · 𝐵) = ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)))
132131oveq2d 7447 . . . . . . . 8 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · (((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵↑(𝑘 − 1))) · 𝐵)) = ((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
133104, 126, 1323eqtrd 2779 . . . . . . 7 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → (((𝑁C(𝑘 − 1)) · ((𝐴↑(𝑁 − (𝑘 − 1))) · (𝐵↑(𝑘 − 1)))) · 𝐵) = ((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
134133sumeq2dv 15735 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))(((𝑁C(𝑘 − 1)) · ((𝐴↑(𝑁 − (𝑘 − 1))) · (𝐵↑(𝑘 − 1)))) · 𝐵) = Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
135106a1i 11 . . . . . . 7 (𝜑 → ((0 + 1)...(𝑁 + 1)) ⊆ (0...(𝑁 + 1)))
136113, 48mulcld 11279 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) ∈ ℂ)
137107, 136sylan2 593 . . . . . . 7 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) ∈ ℂ)
1387adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → 𝑁 ∈ ℕ0)
139 eldifi 4141 . . . . . . . . . . . . 13 (𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1))) → 𝑘 ∈ (0...(𝑁 + 1)))
140139adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → 𝑘 ∈ (0...(𝑁 + 1)))
141140, 8syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → 𝑘 ∈ ℤ)
142141, 109syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → (𝑘 − 1) ∈ ℤ)
143 eldifn 4142 . . . . . . . . . . . 12 (𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1))) → ¬ 𝑘 ∈ ((0 + 1)...(𝑁 + 1)))
144143adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → ¬ 𝑘 ∈ ((0 + 1)...(𝑁 + 1)))
14572a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → 0 ∈ ℤ)
146138nn0zd 12637 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → 𝑁 ∈ ℤ)
147 1zzd 12646 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → 1 ∈ ℤ)
148 fzaddel 13595 . . . . . . . . . . . . 13 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑘 − 1) ∈ ℤ ∧ 1 ∈ ℤ)) → ((𝑘 − 1) ∈ (0...𝑁) ↔ ((𝑘 − 1) + 1) ∈ ((0 + 1)...(𝑁 + 1))))
149145, 146, 142, 147, 148syl22anc 839 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → ((𝑘 − 1) ∈ (0...𝑁) ↔ ((𝑘 − 1) + 1) ∈ ((0 + 1)...(𝑁 + 1))))
150141zcnd 12721 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → 𝑘 ∈ ℂ)
151 ax-1cn 11211 . . . . . . . . . . . . . 14 1 ∈ ℂ
152 npcan 11515 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 − 1) + 1) = 𝑘)
153150, 151, 152sylancl 586 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → ((𝑘 − 1) + 1) = 𝑘)
154153eleq1d 2824 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → (((𝑘 − 1) + 1) ∈ ((0 + 1)...(𝑁 + 1)) ↔ 𝑘 ∈ ((0 + 1)...(𝑁 + 1))))
155149, 154bitrd 279 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → ((𝑘 − 1) ∈ (0...𝑁) ↔ 𝑘 ∈ ((0 + 1)...(𝑁 + 1))))
156144, 155mtbird 325 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → ¬ (𝑘 − 1) ∈ (0...𝑁))
157 bcval3 14342 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑘 − 1) ∈ ℤ ∧ ¬ (𝑘 − 1) ∈ (0...𝑁)) → (𝑁C(𝑘 − 1)) = 0)
158138, 142, 156, 157syl3anc 1370 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → (𝑁C(𝑘 − 1)) = 0)
159158oveq1d 7446 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → ((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = (0 · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
160139, 60sylan2 593 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → (0 · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = 0)
161159, 160eqtrd 2775 . . . . . . 7 ((𝜑𝑘 ∈ ((0...(𝑁 + 1)) ∖ ((0 + 1)...(𝑁 + 1)))) → ((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = 0)
162135, 137, 161, 64sumss 15757 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
16394, 134, 1623eqtrd 2779 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝑁)(((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐵) = Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
16470, 163eqtrd 2775 . . . 4 (𝜑 → (Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝐴↑(𝑁𝑘)) · (𝐵𝑘))) · 𝐵) = Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
16569, 164sylan9eqr 2797 . . 3 ((𝜑𝜓) → (((𝐴 + 𝐵)↑𝑁) · 𝐵) = Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
16668, 165oveq12d 7449 . 2 ((𝜑𝜓) → ((((𝐴 + 𝐵)↑𝑁) · 𝐴) + (((𝐴 + 𝐵)↑𝑁) · 𝐵)) = (Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)))))
1675, 16addcld 11278 . . . . 5 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
168167, 7expp1d 14184 . . . 4 (𝜑 → ((𝐴 + 𝐵)↑(𝑁 + 1)) = (((𝐴 + 𝐵)↑𝑁) · (𝐴 + 𝐵)))
169167, 7expcld 14183 . . . . 5 (𝜑 → ((𝐴 + 𝐵)↑𝑁) ∈ ℂ)
170169, 5, 16adddid 11283 . . . 4 (𝜑 → (((𝐴 + 𝐵)↑𝑁) · (𝐴 + 𝐵)) = ((((𝐴 + 𝐵)↑𝑁) · 𝐴) + (((𝐴 + 𝐵)↑𝑁) · 𝐵)))
171168, 170eqtrd 2775 . . 3 (𝜑 → ((𝐴 + 𝐵)↑(𝑁 + 1)) = ((((𝐴 + 𝐵)↑𝑁) · 𝐴) + (((𝐴 + 𝐵)↑𝑁) · 𝐵)))
172171adantr 480 . 2 ((𝜑𝜓) → ((𝐴 + 𝐵)↑(𝑁 + 1)) = ((((𝐴 + 𝐵)↑𝑁) · 𝐴) + (((𝐴 + 𝐵)↑𝑁) · 𝐵)))
173 bcpasc 14357 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁 + 1)C𝑘))
1747, 8, 173syl2an 596 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → ((𝑁C𝑘) + (𝑁C(𝑘 − 1))) = ((𝑁 + 1)C𝑘))
175174oveq1d 7446 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = (((𝑁 + 1)C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
17611, 113, 48adddird 11284 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁C𝑘) + (𝑁C(𝑘 − 1))) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = (((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) + ((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)))))
177175, 176eqtr3d 2777 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 + 1))) → (((𝑁 + 1)C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = (((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) + ((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)))))
178177sumeq2dv 15735 . . . 4 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) + ((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)))))
179 fzfid 14011 . . . . 5 (𝜑 → (0...(𝑁 + 1)) ∈ Fin)
180179, 49, 136fsumadd 15773 . . . 4 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) + ((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)))) = (Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)))))
181178, 180eqtrd 2775 . . 3 (𝜑 → Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = (Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)))))
182181adantr 480 . 2 ((𝜑𝜓) → Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) = (Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))) + Σ𝑘 ∈ (0...(𝑁 + 1))((𝑁C(𝑘 − 1)) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘)))))
183166, 172, 1823eqtr4d 2785 1 ((𝜑𝜓) → ((𝐴 + 𝐵)↑(𝑁 + 1)) = Σ𝑘 ∈ (0...(𝑁 + 1))(((𝑁 + 1)C𝑘) · ((𝐴↑((𝑁 + 1) − 𝑘)) · (𝐵𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  cdif 3960  wss 3963  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  cn 12264  0cn0 12524  cz 12611  cuz 12876  ...cfz 13544  cexp 14099  Ccbc 14338  Σcsu 15719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720
This theorem is referenced by:  binom  15863
  Copyright terms: Public domain W3C validator