| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bcval4 | Structured version Visualization version GIF version | ||
| Description: Value of the binomial coefficient, 𝑁 choose 𝐾, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| Ref | Expression |
|---|---|
| bcval4 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → (𝑁C𝐾) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzle1 13422 | . . . . . . . . 9 ⊢ (𝐾 ∈ (0...𝑁) → 0 ≤ 𝐾) | |
| 2 | 0re 11109 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
| 3 | elfzelz 13419 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ) | |
| 4 | 3 | zred 12572 | . . . . . . . . . 10 ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℝ) |
| 5 | lenlt 11186 | . . . . . . . . . 10 ⊢ ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ 𝐾 ↔ ¬ 𝐾 < 0)) | |
| 6 | 2, 4, 5 | sylancr 587 | . . . . . . . . 9 ⊢ (𝐾 ∈ (0...𝑁) → (0 ≤ 𝐾 ↔ ¬ 𝐾 < 0)) |
| 7 | 1, 6 | mpbid 232 | . . . . . . . 8 ⊢ (𝐾 ∈ (0...𝑁) → ¬ 𝐾 < 0) |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (0...𝑁)) → ¬ 𝐾 < 0) |
| 9 | elfzle2 13423 | . . . . . . . . 9 ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ≤ 𝑁) | |
| 10 | 9 | adantl 481 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ≤ 𝑁) |
| 11 | nn0re 12385 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 12 | lenlt 11186 | . . . . . . . . 9 ⊢ ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 ≤ 𝑁 ↔ ¬ 𝑁 < 𝐾)) | |
| 13 | 4, 11, 12 | syl2anr 597 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (0...𝑁)) → (𝐾 ≤ 𝑁 ↔ ¬ 𝑁 < 𝐾)) |
| 14 | 10, 13 | mpbid 232 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (0...𝑁)) → ¬ 𝑁 < 𝐾) |
| 15 | ioran 985 | . . . . . . 7 ⊢ (¬ (𝐾 < 0 ∨ 𝑁 < 𝐾) ↔ (¬ 𝐾 < 0 ∧ ¬ 𝑁 < 𝐾)) | |
| 16 | 8, 14, 15 | sylanbrc 583 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (0...𝑁)) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾)) |
| 17 | 16 | ex 412 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...𝑁) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾))) |
| 18 | 17 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (0...𝑁) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾))) |
| 19 | 18 | con2d 134 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → ((𝐾 < 0 ∨ 𝑁 < 𝐾) → ¬ 𝐾 ∈ (0...𝑁))) |
| 20 | 19 | 3impia 1117 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → ¬ 𝐾 ∈ (0...𝑁)) |
| 21 | bcval3 14208 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0) | |
| 22 | 20, 21 | syld3an3 1411 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → (𝑁C𝐾) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5086 (class class class)co 7341 ℝcr 11000 0cc0 11001 < clt 11141 ≤ cle 11142 ℕ0cn0 12376 ℤcz 12463 ...cfz 13402 Ccbc 14204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-i2m1 11069 ax-1ne0 11070 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-xr 11145 df-le 11147 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-bc 14205 |
| This theorem is referenced by: bc0k 14213 bcn1 14215 bcpasc 14223 hashf1 14359 binomfallfaclem2 15942 ram0 16929 srgbinomlem3 20141 srgbinomlem4 20142 basellem2 27014 bcmono 27210 cusgrsizeindb1 29424 altgsumbcALT 48384 |
| Copyright terms: Public domain | W3C validator |