MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcval4 Structured version   Visualization version   GIF version

Theorem bcval4 14233
Description: Value of the binomial coefficient, 𝑁 choose 𝐾, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
bcval4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → (𝑁C𝐾) = 0)

Proof of Theorem bcval4
StepHypRef Expression
1 elfzle1 13449 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 0 ≤ 𝐾)
2 0re 11136 . . . . . . . . . 10 0 ∈ ℝ
3 elfzelz 13446 . . . . . . . . . . 11 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
43zred 12599 . . . . . . . . . 10 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℝ)
5 lenlt 11213 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ 𝐾 ↔ ¬ 𝐾 < 0))
62, 4, 5sylancr 587 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → (0 ≤ 𝐾 ↔ ¬ 𝐾 < 0))
71, 6mpbid 232 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → ¬ 𝐾 < 0)
87adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ (0...𝑁)) → ¬ 𝐾 < 0)
9 elfzle2 13450 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾𝑁)
109adantl 481 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ (0...𝑁)) → 𝐾𝑁)
11 nn0re 12412 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
12 lenlt 11213 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
134, 11, 12syl2anr 597 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ (0...𝑁)) → (𝐾𝑁 ↔ ¬ 𝑁 < 𝐾))
1410, 13mpbid 232 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ (0...𝑁)) → ¬ 𝑁 < 𝐾)
15 ioran 985 . . . . . . 7 (¬ (𝐾 < 0 ∨ 𝑁 < 𝐾) ↔ (¬ 𝐾 < 0 ∧ ¬ 𝑁 < 𝐾))
168, 14, 15sylanbrc 583 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ (0...𝑁)) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾))
1716ex 412 . . . . 5 (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...𝑁) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾)))
1817adantr 480 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝐾 ∈ (0...𝑁) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾)))
1918con2d 134 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝐾 < 0 ∨ 𝑁 < 𝐾) → ¬ 𝐾 ∈ (0...𝑁)))
20193impia 1117 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → ¬ 𝐾 ∈ (0...𝑁))
21 bcval3 14232 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
2220, 21syld3an3 1411 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → (𝑁C𝐾) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095  (class class class)co 7353  cr 11027  0cc0 11028   < clt 11168  cle 11169  0cn0 12403  cz 12490  ...cfz 13429  Ccbc 14228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-i2m1 11096  ax-1ne0 11097  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-xr 11172  df-le 11174  df-neg 11369  df-nn 12148  df-n0 12404  df-z 12491  df-uz 12755  df-fz 13430  df-bc 14229
This theorem is referenced by:  bc0k  14237  bcn1  14239  bcpasc  14247  hashf1  14383  binomfallfaclem2  15966  ram0  16953  srgbinomlem3  20132  srgbinomlem4  20133  basellem2  27009  bcmono  27205  cusgrsizeindb1  29415  altgsumbcALT  48357
  Copyright terms: Public domain W3C validator