| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bcval4 | Structured version Visualization version GIF version | ||
| Description: Value of the binomial coefficient, 𝑁 choose 𝐾, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| Ref | Expression |
|---|---|
| bcval4 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → (𝑁C𝐾) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzle1 13464 | . . . . . . . . 9 ⊢ (𝐾 ∈ (0...𝑁) → 0 ≤ 𝐾) | |
| 2 | 0re 11152 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
| 3 | elfzelz 13461 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ) | |
| 4 | 3 | zred 12614 | . . . . . . . . . 10 ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℝ) |
| 5 | lenlt 11228 | . . . . . . . . . 10 ⊢ ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ 𝐾 ↔ ¬ 𝐾 < 0)) | |
| 6 | 2, 4, 5 | sylancr 587 | . . . . . . . . 9 ⊢ (𝐾 ∈ (0...𝑁) → (0 ≤ 𝐾 ↔ ¬ 𝐾 < 0)) |
| 7 | 1, 6 | mpbid 232 | . . . . . . . 8 ⊢ (𝐾 ∈ (0...𝑁) → ¬ 𝐾 < 0) |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (0...𝑁)) → ¬ 𝐾 < 0) |
| 9 | elfzle2 13465 | . . . . . . . . 9 ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ≤ 𝑁) | |
| 10 | 9 | adantl 481 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ≤ 𝑁) |
| 11 | nn0re 12427 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 12 | lenlt 11228 | . . . . . . . . 9 ⊢ ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 ≤ 𝑁 ↔ ¬ 𝑁 < 𝐾)) | |
| 13 | 4, 11, 12 | syl2anr 597 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (0...𝑁)) → (𝐾 ≤ 𝑁 ↔ ¬ 𝑁 < 𝐾)) |
| 14 | 10, 13 | mpbid 232 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (0...𝑁)) → ¬ 𝑁 < 𝐾) |
| 15 | ioran 985 | . . . . . . 7 ⊢ (¬ (𝐾 < 0 ∨ 𝑁 < 𝐾) ↔ (¬ 𝐾 < 0 ∧ ¬ 𝑁 < 𝐾)) | |
| 16 | 8, 14, 15 | sylanbrc 583 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (0...𝑁)) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾)) |
| 17 | 16 | ex 412 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...𝑁) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾))) |
| 18 | 17 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (0...𝑁) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾))) |
| 19 | 18 | con2d 134 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → ((𝐾 < 0 ∨ 𝑁 < 𝐾) → ¬ 𝐾 ∈ (0...𝑁))) |
| 20 | 19 | 3impia 1117 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → ¬ 𝐾 ∈ (0...𝑁)) |
| 21 | bcval3 14247 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0) | |
| 22 | 20, 21 | syld3an3 1411 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → (𝑁C𝐾) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 ℝcr 11043 0cc0 11044 < clt 11184 ≤ cle 11185 ℕ0cn0 12418 ℤcz 12505 ...cfz 13444 Ccbc 14243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-i2m1 11112 ax-1ne0 11113 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-xr 11188 df-le 11190 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-bc 14244 |
| This theorem is referenced by: bc0k 14252 bcn1 14254 bcpasc 14262 hashf1 14398 binomfallfaclem2 15982 ram0 16969 srgbinomlem3 20113 srgbinomlem4 20114 basellem2 26968 bcmono 27164 cusgrsizeindb1 29354 altgsumbcALT 48314 |
| Copyright terms: Public domain | W3C validator |