| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bcval4 | Structured version Visualization version GIF version | ||
| Description: Value of the binomial coefficient, 𝑁 choose 𝐾, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| Ref | Expression |
|---|---|
| bcval4 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → (𝑁C𝐾) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzle1 13449 | . . . . . . . . 9 ⊢ (𝐾 ∈ (0...𝑁) → 0 ≤ 𝐾) | |
| 2 | 0re 11136 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
| 3 | elfzelz 13446 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ) | |
| 4 | 3 | zred 12599 | . . . . . . . . . 10 ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℝ) |
| 5 | lenlt 11213 | . . . . . . . . . 10 ⊢ ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ 𝐾 ↔ ¬ 𝐾 < 0)) | |
| 6 | 2, 4, 5 | sylancr 587 | . . . . . . . . 9 ⊢ (𝐾 ∈ (0...𝑁) → (0 ≤ 𝐾 ↔ ¬ 𝐾 < 0)) |
| 7 | 1, 6 | mpbid 232 | . . . . . . . 8 ⊢ (𝐾 ∈ (0...𝑁) → ¬ 𝐾 < 0) |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (0...𝑁)) → ¬ 𝐾 < 0) |
| 9 | elfzle2 13450 | . . . . . . . . 9 ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ≤ 𝑁) | |
| 10 | 9 | adantl 481 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ≤ 𝑁) |
| 11 | nn0re 12412 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 12 | lenlt 11213 | . . . . . . . . 9 ⊢ ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 ≤ 𝑁 ↔ ¬ 𝑁 < 𝐾)) | |
| 13 | 4, 11, 12 | syl2anr 597 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (0...𝑁)) → (𝐾 ≤ 𝑁 ↔ ¬ 𝑁 < 𝐾)) |
| 14 | 10, 13 | mpbid 232 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (0...𝑁)) → ¬ 𝑁 < 𝐾) |
| 15 | ioran 985 | . . . . . . 7 ⊢ (¬ (𝐾 < 0 ∨ 𝑁 < 𝐾) ↔ (¬ 𝐾 < 0 ∧ ¬ 𝑁 < 𝐾)) | |
| 16 | 8, 14, 15 | sylanbrc 583 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (0...𝑁)) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾)) |
| 17 | 16 | ex 412 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...𝑁) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾))) |
| 18 | 17 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (0...𝑁) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾))) |
| 19 | 18 | con2d 134 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → ((𝐾 < 0 ∨ 𝑁 < 𝐾) → ¬ 𝐾 ∈ (0...𝑁))) |
| 20 | 19 | 3impia 1117 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → ¬ 𝐾 ∈ (0...𝑁)) |
| 21 | bcval3 14232 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0) | |
| 22 | 20, 21 | syld3an3 1411 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → (𝑁C𝐾) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 (class class class)co 7353 ℝcr 11027 0cc0 11028 < clt 11168 ≤ cle 11169 ℕ0cn0 12403 ℤcz 12490 ...cfz 13429 Ccbc 14228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-i2m1 11096 ax-1ne0 11097 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-xr 11172 df-le 11174 df-neg 11369 df-nn 12148 df-n0 12404 df-z 12491 df-uz 12755 df-fz 13430 df-bc 14229 |
| This theorem is referenced by: bc0k 14237 bcn1 14239 bcpasc 14247 hashf1 14383 binomfallfaclem2 15966 ram0 16953 srgbinomlem3 20132 srgbinomlem4 20133 basellem2 27009 bcmono 27205 cusgrsizeindb1 29415 altgsumbcALT 48357 |
| Copyright terms: Public domain | W3C validator |