Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bcle2d Structured version   Visualization version   GIF version

Theorem bcle2d 42167
Description: Inequality for binomial coefficients. (Contributed by metakunt, 12-May-2025.)
Hypotheses
Ref Expression
bcle2d.1 (𝜑𝐴 ∈ ℕ0)
bcle2d.2 (𝜑𝐵 ∈ ℕ0)
bcle2d.3 (𝜑𝐶 ∈ ℕ0)
bcle2d.4 (𝜑𝐷 ∈ ℤ)
bcle2d.5 (𝜑𝐴𝐵)
bcle2d.6 (𝜑𝐷𝐶)
Assertion
Ref Expression
bcle2d (𝜑 → ((𝐴 + 𝐶)C(𝐴 + 𝐷)) ≤ ((𝐵 + 𝐶)C(𝐵 + 𝐷)))

Proof of Theorem bcle2d
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 bcval2 14270 . . . 4 ((𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶)) → ((𝐴 + 𝐶)C(𝐴 + 𝐷)) = ((!‘(𝐴 + 𝐶)) / ((!‘((𝐴 + 𝐶) − (𝐴 + 𝐷))) · (!‘(𝐴 + 𝐷)))))
21adantl 481 . . 3 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐴 + 𝐶)C(𝐴 + 𝐷)) = ((!‘(𝐴 + 𝐶)) / ((!‘((𝐴 + 𝐶) − (𝐴 + 𝐷))) · (!‘(𝐴 + 𝐷)))))
3 bcle2d.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℕ0)
4 bcle2d.3 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℕ0)
53, 4nn0addcld 12507 . . . . . . . . . . 11 (𝜑 → (𝐴 + 𝐶) ∈ ℕ0)
65adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐴 + 𝐶) ∈ ℕ0)
76faccld 14249 . . . . . . . . 9 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘(𝐴 + 𝐶)) ∈ ℕ)
87nncnd 12202 . . . . . . . 8 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘(𝐴 + 𝐶)) ∈ ℂ)
93nn0zd 12555 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℤ)
10 bcle2d.4 . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ ℤ)
119, 10zaddcld 12642 . . . . . . . . . . . . 13 (𝜑 → (𝐴 + 𝐷) ∈ ℤ)
12 elfzle1 13488 . . . . . . . . . . . . 13 ((𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶)) → 0 ≤ (𝐴 + 𝐷))
1311, 12anim12i 613 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐴 + 𝐷) ∈ ℤ ∧ 0 ≤ (𝐴 + 𝐷)))
14 elnn0z 12542 . . . . . . . . . . . 12 ((𝐴 + 𝐷) ∈ ℕ0 ↔ ((𝐴 + 𝐷) ∈ ℤ ∧ 0 ≤ (𝐴 + 𝐷)))
1513, 14sylibr 234 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐴 + 𝐷) ∈ ℕ0)
1615faccld 14249 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘(𝐴 + 𝐷)) ∈ ℕ)
1716nnnn0d 12503 . . . . . . . . 9 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘(𝐴 + 𝐷)) ∈ ℕ0)
1817nn0cnd 12505 . . . . . . . 8 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘(𝐴 + 𝐷)) ∈ ℂ)
193nn0red 12504 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℝ)
2019adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → 𝐴 ∈ ℝ)
2120recnd 11202 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → 𝐴 ∈ ℂ)
224nn0cnd 12505 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℂ)
2322adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → 𝐶 ∈ ℂ)
2410zred 12638 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℝ)
2524adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → 𝐷 ∈ ℝ)
2625recnd 11202 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → 𝐷 ∈ ℂ)
2721, 23, 21, 26addsub4d 11580 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐴 + 𝐶) − (𝐴 + 𝐷)) = ((𝐴𝐴) + (𝐶𝐷)))
2821subidd 11521 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐴𝐴) = 0)
2928oveq1d 7402 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐴𝐴) + (𝐶𝐷)) = (0 + (𝐶𝐷)))
3023, 26subcld 11533 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐶𝐷) ∈ ℂ)
3130addlidd 11375 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (0 + (𝐶𝐷)) = (𝐶𝐷))
3229, 31eqtrd 2764 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐴𝐴) + (𝐶𝐷)) = (𝐶𝐷))
3327, 32eqtrd 2764 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐴 + 𝐶) − (𝐴 + 𝐷)) = (𝐶𝐷))
344nn0zd 12555 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℤ)
3534adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → 𝐶 ∈ ℤ)
3610adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → 𝐷 ∈ ℤ)
3735, 36zsubcld 12643 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐶𝐷) ∈ ℤ)
38 bcle2d.6 . . . . . . . . . . . . . . . 16 (𝜑𝐷𝐶)
3938adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → 𝐷𝐶)
4035zred 12638 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → 𝐶 ∈ ℝ)
4140, 25subge0d 11768 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (0 ≤ (𝐶𝐷) ↔ 𝐷𝐶))
4239, 41mpbird 257 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → 0 ≤ (𝐶𝐷))
4337, 42jca 511 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐶𝐷) ∈ ℤ ∧ 0 ≤ (𝐶𝐷)))
44 elnn0z 12542 . . . . . . . . . . . . 13 ((𝐶𝐷) ∈ ℕ0 ↔ ((𝐶𝐷) ∈ ℤ ∧ 0 ≤ (𝐶𝐷)))
4543, 44sylibr 234 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐶𝐷) ∈ ℕ0)
4633, 45eqeltrd 2828 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐴 + 𝐶) − (𝐴 + 𝐷)) ∈ ℕ0)
4746faccld 14249 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘((𝐴 + 𝐶) − (𝐴 + 𝐷))) ∈ ℕ)
4847nnnn0d 12503 . . . . . . . . 9 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘((𝐴 + 𝐶) − (𝐴 + 𝐷))) ∈ ℕ0)
4948nn0cnd 12505 . . . . . . . 8 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘((𝐴 + 𝐶) − (𝐴 + 𝐷))) ∈ ℂ)
5016nnne0d 12236 . . . . . . . 8 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘(𝐴 + 𝐷)) ≠ 0)
5147nnne0d 12236 . . . . . . . 8 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘((𝐴 + 𝐶) − (𝐴 + 𝐷))) ≠ 0)
528, 18, 49, 50, 51divdiv1d 11989 . . . . . . 7 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (((!‘(𝐴 + 𝐶)) / (!‘(𝐴 + 𝐷))) / (!‘((𝐴 + 𝐶) − (𝐴 + 𝐷)))) = ((!‘(𝐴 + 𝐶)) / ((!‘(𝐴 + 𝐷)) · (!‘((𝐴 + 𝐶) − (𝐴 + 𝐷))))))
5352eqcomd 2735 . . . . . 6 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((!‘(𝐴 + 𝐶)) / ((!‘(𝐴 + 𝐷)) · (!‘((𝐴 + 𝐶) − (𝐴 + 𝐷))))) = (((!‘(𝐴 + 𝐶)) / (!‘(𝐴 + 𝐷))) / (!‘((𝐴 + 𝐶) − (𝐴 + 𝐷)))))
54 0zd 12541 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → 0 ∈ ℤ)
556nn0zd 12555 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐴 + 𝐶) ∈ ℤ)
5625renegcld 11605 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → -𝐷 ∈ ℝ)
574adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → 𝐶 ∈ ℕ0)
5857nn0red 12504 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → 𝐶 ∈ ℝ)
59 df-neg 11408 . . . . . . . . . . . . . . . . . 18 -𝐷 = (0 − 𝐷)
6059a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → -𝐷 = (0 − 𝐷))
6112adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → 0 ≤ (𝐴 + 𝐷))
62 0red 11177 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → 0 ∈ ℝ)
6362, 25, 20lesubaddd 11775 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((0 − 𝐷) ≤ 𝐴 ↔ 0 ≤ (𝐴 + 𝐷)))
6461, 63mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (0 − 𝐷) ≤ 𝐴)
6560, 64eqbrtrd 5129 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → -𝐷𝐴)
6656, 20, 58, 65leadd2dd 11793 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐶 + -𝐷) ≤ (𝐶 + 𝐴))
6723, 26negsubd 11539 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐶 + -𝐷) = (𝐶𝐷))
6823, 21addcomd 11376 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐶 + 𝐴) = (𝐴 + 𝐶))
6966, 67, 683brtr3d 5138 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐶𝐷) ≤ (𝐴 + 𝐶))
7054, 55, 37, 42, 69elfzd 13476 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐶𝐷) ∈ (0...(𝐴 + 𝐶)))
71 fallfacval4 16009 . . . . . . . . . . . . 13 ((𝐶𝐷) ∈ (0...(𝐴 + 𝐶)) → ((𝐴 + 𝐶) FallFac (𝐶𝐷)) = ((!‘(𝐴 + 𝐶)) / (!‘((𝐴 + 𝐶) − (𝐶𝐷)))))
7270, 71syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐴 + 𝐶) FallFac (𝐶𝐷)) = ((!‘(𝐴 + 𝐶)) / (!‘((𝐴 + 𝐶) − (𝐶𝐷)))))
735nn0cnd 12505 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 + 𝐶) ∈ ℂ)
7424recnd 11202 . . . . . . . . . . . . . . . . 17 (𝜑𝐷 ∈ ℂ)
7573, 22, 74subsubd 11561 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 + 𝐶) − (𝐶𝐷)) = (((𝐴 + 𝐶) − 𝐶) + 𝐷))
7619recnd 11202 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℂ)
7776, 22pncand 11534 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴 + 𝐶) − 𝐶) = 𝐴)
7877oveq1d 7402 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐴 + 𝐶) − 𝐶) + 𝐷) = (𝐴 + 𝐷))
7975, 78eqtrd 2764 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 + 𝐶) − (𝐶𝐷)) = (𝐴 + 𝐷))
8079adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐴 + 𝐶) − (𝐶𝐷)) = (𝐴 + 𝐷))
8180fveq2d 6862 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘((𝐴 + 𝐶) − (𝐶𝐷))) = (!‘(𝐴 + 𝐷)))
8281oveq2d 7403 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((!‘(𝐴 + 𝐶)) / (!‘((𝐴 + 𝐶) − (𝐶𝐷)))) = ((!‘(𝐴 + 𝐶)) / (!‘(𝐴 + 𝐷))))
8372, 82eqtrd 2764 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐴 + 𝐶) FallFac (𝐶𝐷)) = ((!‘(𝐴 + 𝐶)) / (!‘(𝐴 + 𝐷))))
8483eqcomd 2735 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((!‘(𝐴 + 𝐶)) / (!‘(𝐴 + 𝐷))) = ((𝐴 + 𝐶) FallFac (𝐶𝐷)))
85 nfv 1914 . . . . . . . . . . . . 13 𝑘(𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶)))
86 fzfid 13938 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (0...((𝐶𝐷) − 1)) ∈ Fin)
8720adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → 𝐴 ∈ ℝ)
884nn0red 12504 . . . . . . . . . . . . . . . . 17 (𝜑𝐶 ∈ ℝ)
8988adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → 𝐶 ∈ ℝ)
9089adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → 𝐶 ∈ ℝ)
9187, 90readdcld 11203 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → (𝐴 + 𝐶) ∈ ℝ)
92 elfzelz 13485 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...((𝐶𝐷) − 1)) → 𝑘 ∈ ℤ)
9392zred 12638 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...((𝐶𝐷) − 1)) → 𝑘 ∈ ℝ)
9493adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → 𝑘 ∈ ℝ)
9591, 94resubcld 11606 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → ((𝐴 + 𝐶) − 𝑘) ∈ ℝ)
96 0red 11177 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → 0 ∈ ℝ)
9796, 94readdcld 11203 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → (0 + 𝑘) ∈ ℝ)
9825adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → 𝐷 ∈ ℝ)
9990, 98resubcld 11606 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → (𝐶𝐷) ∈ ℝ)
100 1red 11175 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → 1 ∈ ℝ)
10199, 100resubcld 11606 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → ((𝐶𝐷) − 1) ∈ ℝ)
10294recnd 11202 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → 𝑘 ∈ ℂ)
103102addlidd 11375 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → (0 + 𝑘) = 𝑘)
104 elfzle2 13489 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...((𝐶𝐷) − 1)) → 𝑘 ≤ ((𝐶𝐷) − 1))
105104adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → 𝑘 ≤ ((𝐶𝐷) − 1))
106103, 105eqbrtrd 5129 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → (0 + 𝑘) ≤ ((𝐶𝐷) − 1))
10799lem1d 12116 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → ((𝐶𝐷) − 1) ≤ (𝐶𝐷))
10869adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → (𝐶𝐷) ≤ (𝐴 + 𝐶))
109101, 99, 91, 107, 108letrd 11331 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → ((𝐶𝐷) − 1) ≤ (𝐴 + 𝐶))
11097, 101, 91, 106, 109letrd 11331 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → (0 + 𝑘) ≤ (𝐴 + 𝐶))
11162adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → 0 ∈ ℝ)
112 leaddsub 11654 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝐴 + 𝐶) ∈ ℝ) → ((0 + 𝑘) ≤ (𝐴 + 𝐶) ↔ 0 ≤ ((𝐴 + 𝐶) − 𝑘)))
113111, 94, 91, 112syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → ((0 + 𝑘) ≤ (𝐴 + 𝐶) ↔ 0 ≤ ((𝐴 + 𝐶) − 𝑘)))
114110, 113mpbid 232 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → 0 ≤ ((𝐴 + 𝐶) − 𝑘))
115 bcle2d.2 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℕ0)
116115nn0red 12504 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℝ)
117116adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → 𝐵 ∈ ℝ)
118117adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → 𝐵 ∈ ℝ)
119118, 90readdcld 11203 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → (𝐵 + 𝐶) ∈ ℝ)
120119, 94resubcld 11606 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → ((𝐵 + 𝐶) − 𝑘) ∈ ℝ)
121 bcle2d.5 . . . . . . . . . . . . . . . . 17 (𝜑𝐴𝐵)
122121adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → 𝐴𝐵)
123122adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → 𝐴𝐵)
12487, 118, 90, 123leadd1dd 11792 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → (𝐴 + 𝐶) ≤ (𝐵 + 𝐶))
12591, 119, 94, 124lesub1dd 11794 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ 𝑘 ∈ (0...((𝐶𝐷) − 1))) → ((𝐴 + 𝐶) − 𝑘) ≤ ((𝐵 + 𝐶) − 𝑘))
12685, 86, 95, 114, 120, 125fprodle 15962 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ∏𝑘 ∈ (0...((𝐶𝐷) − 1))((𝐴 + 𝐶) − 𝑘) ≤ ∏𝑘 ∈ (0...((𝐶𝐷) − 1))((𝐵 + 𝐶) − 𝑘))
12773adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐴 + 𝐶) ∈ ℂ)
128 fallfacval 15975 . . . . . . . . . . . . . 14 (((𝐴 + 𝐶) ∈ ℂ ∧ (𝐶𝐷) ∈ ℕ0) → ((𝐴 + 𝐶) FallFac (𝐶𝐷)) = ∏𝑘 ∈ (0...((𝐶𝐷) − 1))((𝐴 + 𝐶) − 𝑘))
129127, 45, 128syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐴 + 𝐶) FallFac (𝐶𝐷)) = ∏𝑘 ∈ (0...((𝐶𝐷) − 1))((𝐴 + 𝐶) − 𝑘))
130129eqcomd 2735 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ∏𝑘 ∈ (0...((𝐶𝐷) − 1))((𝐴 + 𝐶) − 𝑘) = ((𝐴 + 𝐶) FallFac (𝐶𝐷)))
131117recnd 11202 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → 𝐵 ∈ ℂ)
132131, 23addcld 11193 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐵 + 𝐶) ∈ ℂ)
133 fallfacval 15975 . . . . . . . . . . . . . 14 (((𝐵 + 𝐶) ∈ ℂ ∧ (𝐶𝐷) ∈ ℕ0) → ((𝐵 + 𝐶) FallFac (𝐶𝐷)) = ∏𝑘 ∈ (0...((𝐶𝐷) − 1))((𝐵 + 𝐶) − 𝑘))
134132, 45, 133syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐵 + 𝐶) FallFac (𝐶𝐷)) = ∏𝑘 ∈ (0...((𝐶𝐷) − 1))((𝐵 + 𝐶) − 𝑘))
135134eqcomd 2735 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ∏𝑘 ∈ (0...((𝐶𝐷) − 1))((𝐵 + 𝐶) − 𝑘) = ((𝐵 + 𝐶) FallFac (𝐶𝐷)))
136126, 130, 1353brtr3d 5138 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐴 + 𝐶) FallFac (𝐶𝐷)) ≤ ((𝐵 + 𝐶) FallFac (𝐶𝐷)))
137115nn0zd 12555 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℤ)
138137, 34zaddcld 12642 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 + 𝐶) ∈ ℤ)
139138adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐵 + 𝐶) ∈ ℤ)
14020, 25readdcld 11203 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐴 + 𝐷) ∈ ℝ)
141137, 10zaddcld 12642 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵 + 𝐷) ∈ ℤ)
142141adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐵 + 𝐷) ∈ ℤ)
143142zred 12638 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐵 + 𝐷) ∈ ℝ)
14420, 117, 25, 122leadd1dd 11792 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐴 + 𝐷) ≤ (𝐵 + 𝐷))
14562, 140, 143, 61, 144letrd 11331 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → 0 ≤ (𝐵 + 𝐷))
14662, 25, 117lesubaddd 11775 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((0 − 𝐷) ≤ 𝐵 ↔ 0 ≤ (𝐵 + 𝐷)))
147145, 146mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (0 − 𝐷) ≤ 𝐵)
14860, 147eqbrtrd 5129 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → -𝐷𝐵)
14956, 117, 58, 148leadd2dd 11793 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐶 + -𝐷) ≤ (𝐶 + 𝐵))
15023, 131addcomd 11376 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐶 + 𝐵) = (𝐵 + 𝐶))
151149, 67, 1503brtr3d 5138 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐶𝐷) ≤ (𝐵 + 𝐶))
15254, 139, 37, 42, 151elfzd 13476 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐶𝐷) ∈ (0...(𝐵 + 𝐶)))
153 fallfacval4 16009 . . . . . . . . . . . . 13 ((𝐶𝐷) ∈ (0...(𝐵 + 𝐶)) → ((𝐵 + 𝐶) FallFac (𝐶𝐷)) = ((!‘(𝐵 + 𝐶)) / (!‘((𝐵 + 𝐶) − (𝐶𝐷)))))
154152, 153syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐵 + 𝐶) FallFac (𝐶𝐷)) = ((!‘(𝐵 + 𝐶)) / (!‘((𝐵 + 𝐶) − (𝐶𝐷)))))
155132, 23, 26subsubd 11561 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐵 + 𝐶) − (𝐶𝐷)) = (((𝐵 + 𝐶) − 𝐶) + 𝐷))
156131, 23pncand 11534 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐵 + 𝐶) − 𝐶) = 𝐵)
157156oveq1d 7402 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (((𝐵 + 𝐶) − 𝐶) + 𝐷) = (𝐵 + 𝐷))
158155, 157eqtrd 2764 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐵 + 𝐶) − (𝐶𝐷)) = (𝐵 + 𝐷))
159158fveq2d 6862 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘((𝐵 + 𝐶) − (𝐶𝐷))) = (!‘(𝐵 + 𝐷)))
160159oveq2d 7403 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((!‘(𝐵 + 𝐶)) / (!‘((𝐵 + 𝐶) − (𝐶𝐷)))) = ((!‘(𝐵 + 𝐶)) / (!‘(𝐵 + 𝐷))))
161154, 160eqtrd 2764 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐵 + 𝐶) FallFac (𝐶𝐷)) = ((!‘(𝐵 + 𝐶)) / (!‘(𝐵 + 𝐷))))
162136, 161breqtrd 5133 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐴 + 𝐶) FallFac (𝐶𝐷)) ≤ ((!‘(𝐵 + 𝐶)) / (!‘(𝐵 + 𝐷))))
16384, 162eqbrtrd 5129 . . . . . . . . 9 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((!‘(𝐴 + 𝐶)) / (!‘(𝐴 + 𝐷))) ≤ ((!‘(𝐵 + 𝐶)) / (!‘(𝐵 + 𝐷))))
1647nnred 12201 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘(𝐴 + 𝐶)) ∈ ℝ)
16516nnred 12201 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘(𝐴 + 𝐷)) ∈ ℝ)
166164, 165, 50redivcld 12010 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((!‘(𝐴 + 𝐶)) / (!‘(𝐴 + 𝐷))) ∈ ℝ)
167115adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → 𝐵 ∈ ℕ0)
168167, 57nn0addcld 12507 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐵 + 𝐶) ∈ ℕ0)
169168faccld 14249 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘(𝐵 + 𝐶)) ∈ ℕ)
170169nnred 12201 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘(𝐵 + 𝐶)) ∈ ℝ)
171142, 145jca 511 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐵 + 𝐷) ∈ ℤ ∧ 0 ≤ (𝐵 + 𝐷)))
172 elnn0z 12542 . . . . . . . . . . . . . 14 ((𝐵 + 𝐷) ∈ ℕ0 ↔ ((𝐵 + 𝐷) ∈ ℤ ∧ 0 ≤ (𝐵 + 𝐷)))
173171, 172sylibr 234 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐵 + 𝐷) ∈ ℕ0)
174173faccld 14249 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘(𝐵 + 𝐷)) ∈ ℕ)
175174nnred 12201 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘(𝐵 + 𝐷)) ∈ ℝ)
176174nnne0d 12236 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘(𝐵 + 𝐷)) ≠ 0)
177170, 175, 176redivcld 12010 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((!‘(𝐵 + 𝐶)) / (!‘(𝐵 + 𝐷))) ∈ ℝ)
17832eqcomd 2735 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐶𝐷) = ((𝐴𝐴) + (𝐶𝐷)))
17927eqcomd 2735 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐴𝐴) + (𝐶𝐷)) = ((𝐴 + 𝐶) − (𝐴 + 𝐷)))
180178, 179eqtrd 2764 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐶𝐷) = ((𝐴 + 𝐶) − (𝐴 + 𝐷)))
181180fveq2d 6862 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘(𝐶𝐷)) = (!‘((𝐴 + 𝐶) − (𝐴 + 𝐷))))
182181, 47eqeltrd 2828 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘(𝐶𝐷)) ∈ ℕ)
183182nnrpd 12993 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘(𝐶𝐷)) ∈ ℝ+)
184166, 177, 183lediv1d 13041 . . . . . . . . 9 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (((!‘(𝐴 + 𝐶)) / (!‘(𝐴 + 𝐷))) ≤ ((!‘(𝐵 + 𝐶)) / (!‘(𝐵 + 𝐷))) ↔ (((!‘(𝐴 + 𝐶)) / (!‘(𝐴 + 𝐷))) / (!‘(𝐶𝐷))) ≤ (((!‘(𝐵 + 𝐶)) / (!‘(𝐵 + 𝐷))) / (!‘(𝐶𝐷)))))
185163, 184mpbid 232 . . . . . . . 8 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (((!‘(𝐴 + 𝐶)) / (!‘(𝐴 + 𝐷))) / (!‘(𝐶𝐷))) ≤ (((!‘(𝐵 + 𝐶)) / (!‘(𝐵 + 𝐷))) / (!‘(𝐶𝐷))))
186181oveq2d 7403 . . . . . . . 8 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (((!‘(𝐴 + 𝐶)) / (!‘(𝐴 + 𝐷))) / (!‘(𝐶𝐷))) = (((!‘(𝐴 + 𝐶)) / (!‘(𝐴 + 𝐷))) / (!‘((𝐴 + 𝐶) − (𝐴 + 𝐷)))))
187131, 23pncan2d 11535 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐵 + 𝐶) − 𝐵) = 𝐶)
188187eqcomd 2735 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → 𝐶 = ((𝐵 + 𝐶) − 𝐵))
189188oveq1d 7402 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐶𝐷) = (((𝐵 + 𝐶) − 𝐵) − 𝐷))
190132, 131, 26subsub4d 11564 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (((𝐵 + 𝐶) − 𝐵) − 𝐷) = ((𝐵 + 𝐶) − (𝐵 + 𝐷)))
191189, 190eqtrd 2764 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐶𝐷) = ((𝐵 + 𝐶) − (𝐵 + 𝐷)))
192191fveq2d 6862 . . . . . . . . 9 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘(𝐶𝐷)) = (!‘((𝐵 + 𝐶) − (𝐵 + 𝐷))))
193192oveq2d 7403 . . . . . . . 8 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (((!‘(𝐵 + 𝐶)) / (!‘(𝐵 + 𝐷))) / (!‘(𝐶𝐷))) = (((!‘(𝐵 + 𝐶)) / (!‘(𝐵 + 𝐷))) / (!‘((𝐵 + 𝐶) − (𝐵 + 𝐷)))))
194185, 186, 1933brtr3d 5138 . . . . . . 7 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (((!‘(𝐴 + 𝐶)) / (!‘(𝐴 + 𝐷))) / (!‘((𝐴 + 𝐶) − (𝐴 + 𝐷)))) ≤ (((!‘(𝐵 + 𝐶)) / (!‘(𝐵 + 𝐷))) / (!‘((𝐵 + 𝐶) − (𝐵 + 𝐷)))))
195169nncnd 12202 . . . . . . . 8 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘(𝐵 + 𝐶)) ∈ ℂ)
196174nncnd 12202 . . . . . . . 8 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘(𝐵 + 𝐷)) ∈ ℂ)
197131, 23, 26pnpcand 11570 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐵 + 𝐶) − (𝐵 + 𝐷)) = (𝐶𝐷))
198197, 45eqeltrd 2828 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐵 + 𝐶) − (𝐵 + 𝐷)) ∈ ℕ0)
199198faccld 14249 . . . . . . . . 9 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘((𝐵 + 𝐶) − (𝐵 + 𝐷))) ∈ ℕ)
200199nncnd 12202 . . . . . . . 8 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘((𝐵 + 𝐶) − (𝐵 + 𝐷))) ∈ ℂ)
201199nnne0d 12236 . . . . . . . 8 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘((𝐵 + 𝐶) − (𝐵 + 𝐷))) ≠ 0)
202195, 196, 200, 176, 201divdiv1d 11989 . . . . . . 7 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (((!‘(𝐵 + 𝐶)) / (!‘(𝐵 + 𝐷))) / (!‘((𝐵 + 𝐶) − (𝐵 + 𝐷)))) = ((!‘(𝐵 + 𝐶)) / ((!‘(𝐵 + 𝐷)) · (!‘((𝐵 + 𝐶) − (𝐵 + 𝐷))))))
203194, 202breqtrd 5133 . . . . . 6 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (((!‘(𝐴 + 𝐶)) / (!‘(𝐴 + 𝐷))) / (!‘((𝐴 + 𝐶) − (𝐴 + 𝐷)))) ≤ ((!‘(𝐵 + 𝐶)) / ((!‘(𝐵 + 𝐷)) · (!‘((𝐵 + 𝐶) − (𝐵 + 𝐷))))))
20453, 203eqbrtrd 5129 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((!‘(𝐴 + 𝐶)) / ((!‘(𝐴 + 𝐷)) · (!‘((𝐴 + 𝐶) − (𝐴 + 𝐷))))) ≤ ((!‘(𝐵 + 𝐶)) / ((!‘(𝐵 + 𝐷)) · (!‘((𝐵 + 𝐶) − (𝐵 + 𝐷))))))
20516nncnd 12202 . . . . . . 7 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘(𝐴 + 𝐷)) ∈ ℂ)
20647nncnd 12202 . . . . . . 7 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (!‘((𝐴 + 𝐶) − (𝐴 + 𝐷))) ∈ ℂ)
207205, 206mulcomd 11195 . . . . . 6 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((!‘(𝐴 + 𝐷)) · (!‘((𝐴 + 𝐶) − (𝐴 + 𝐷)))) = ((!‘((𝐴 + 𝐶) − (𝐴 + 𝐷))) · (!‘(𝐴 + 𝐷))))
208207oveq2d 7403 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((!‘(𝐴 + 𝐶)) / ((!‘(𝐴 + 𝐷)) · (!‘((𝐴 + 𝐶) − (𝐴 + 𝐷))))) = ((!‘(𝐴 + 𝐶)) / ((!‘((𝐴 + 𝐶) − (𝐴 + 𝐷))) · (!‘(𝐴 + 𝐷)))))
209196, 200mulcomd 11195 . . . . . 6 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((!‘(𝐵 + 𝐷)) · (!‘((𝐵 + 𝐶) − (𝐵 + 𝐷)))) = ((!‘((𝐵 + 𝐶) − (𝐵 + 𝐷))) · (!‘(𝐵 + 𝐷))))
210209oveq2d 7403 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((!‘(𝐵 + 𝐶)) / ((!‘(𝐵 + 𝐷)) · (!‘((𝐵 + 𝐶) − (𝐵 + 𝐷))))) = ((!‘(𝐵 + 𝐶)) / ((!‘((𝐵 + 𝐶) − (𝐵 + 𝐷))) · (!‘(𝐵 + 𝐷)))))
211204, 208, 2103brtr3d 5138 . . . 4 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((!‘(𝐴 + 𝐶)) / ((!‘((𝐴 + 𝐶) − (𝐴 + 𝐷))) · (!‘(𝐴 + 𝐷)))) ≤ ((!‘(𝐵 + 𝐶)) / ((!‘((𝐵 + 𝐶) − (𝐵 + 𝐷))) · (!‘(𝐵 + 𝐷)))))
212 elfzle2 13489 . . . . . . . . . 10 ((𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶)) → (𝐴 + 𝐷) ≤ (𝐴 + 𝐶))
213212adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐴 + 𝐷) ≤ (𝐴 + 𝐶))
214131, 26addcomd 11376 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐵 + 𝐷) = (𝐷 + 𝐵))
215214oveq1d 7402 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐵 + 𝐷) + (𝐴𝐵)) = ((𝐷 + 𝐵) + (𝐴𝐵)))
21626, 131addcld 11193 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐷 + 𝐵) ∈ ℂ)
21720, 117resubcld 11606 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐴𝐵) ∈ ℝ)
218217recnd 11202 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐴𝐵) ∈ ℂ)
219216, 218addcomd 11376 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐷 + 𝐵) + (𝐴𝐵)) = ((𝐴𝐵) + (𝐷 + 𝐵)))
220215, 219eqtrd 2764 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐵 + 𝐷) + (𝐴𝐵)) = ((𝐴𝐵) + (𝐷 + 𝐵)))
221218, 26, 131addassd 11196 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (((𝐴𝐵) + 𝐷) + 𝐵) = ((𝐴𝐵) + (𝐷 + 𝐵)))
222221eqcomd 2735 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐴𝐵) + (𝐷 + 𝐵)) = (((𝐴𝐵) + 𝐷) + 𝐵))
223220, 222eqtrd 2764 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐵 + 𝐷) + (𝐴𝐵)) = (((𝐴𝐵) + 𝐷) + 𝐵))
22421, 131, 26nppcand 11558 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (((𝐴𝐵) + 𝐷) + 𝐵) = (𝐴 + 𝐷))
225223, 224eqtr2d 2765 . . . . . . . . 9 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐴 + 𝐷) = ((𝐵 + 𝐷) + (𝐴𝐵)))
226132, 218addcomd 11376 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐵 + 𝐶) + (𝐴𝐵)) = ((𝐴𝐵) + (𝐵 + 𝐶)))
227131, 23addcomd 11376 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐵 + 𝐶) = (𝐶 + 𝐵))
228227oveq2d 7403 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐴𝐵) + (𝐵 + 𝐶)) = ((𝐴𝐵) + (𝐶 + 𝐵)))
229226, 228eqtrd 2764 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐵 + 𝐶) + (𝐴𝐵)) = ((𝐴𝐵) + (𝐶 + 𝐵)))
230218, 23, 131addassd 11196 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (((𝐴𝐵) + 𝐶) + 𝐵) = ((𝐴𝐵) + (𝐶 + 𝐵)))
231230eqcomd 2735 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐴𝐵) + (𝐶 + 𝐵)) = (((𝐴𝐵) + 𝐶) + 𝐵))
232229, 231eqtrd 2764 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐵 + 𝐶) + (𝐴𝐵)) = (((𝐴𝐵) + 𝐶) + 𝐵))
23321, 131, 23nppcand 11558 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (((𝐴𝐵) + 𝐶) + 𝐵) = (𝐴 + 𝐶))
234232, 233eqtr2d 2765 . . . . . . . . 9 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐴 + 𝐶) = ((𝐵 + 𝐶) + (𝐴𝐵)))
235213, 225, 2343brtr3d 5138 . . . . . . . 8 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐵 + 𝐷) + (𝐴𝐵)) ≤ ((𝐵 + 𝐶) + (𝐴𝐵)))
236139zred 12638 . . . . . . . . 9 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐵 + 𝐶) ∈ ℝ)
237143, 236, 217leadd1d 11772 . . . . . . . 8 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐵 + 𝐷) ≤ (𝐵 + 𝐶) ↔ ((𝐵 + 𝐷) + (𝐴𝐵)) ≤ ((𝐵 + 𝐶) + (𝐴𝐵))))
238235, 237mpbird 257 . . . . . . 7 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐵 + 𝐷) ≤ (𝐵 + 𝐶))
23954, 139, 142, 145, 238elfzd 13476 . . . . . 6 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐵 + 𝐷) ∈ (0...(𝐵 + 𝐶)))
240 bcval2 14270 . . . . . 6 ((𝐵 + 𝐷) ∈ (0...(𝐵 + 𝐶)) → ((𝐵 + 𝐶)C(𝐵 + 𝐷)) = ((!‘(𝐵 + 𝐶)) / ((!‘((𝐵 + 𝐶) − (𝐵 + 𝐷))) · (!‘(𝐵 + 𝐷)))))
241239, 240syl 17 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐵 + 𝐶)C(𝐵 + 𝐷)) = ((!‘(𝐵 + 𝐶)) / ((!‘((𝐵 + 𝐶) − (𝐵 + 𝐷))) · (!‘(𝐵 + 𝐷)))))
242241eqcomd 2735 . . . 4 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((!‘(𝐵 + 𝐶)) / ((!‘((𝐵 + 𝐶) − (𝐵 + 𝐷))) · (!‘(𝐵 + 𝐷)))) = ((𝐵 + 𝐶)C(𝐵 + 𝐷)))
243211, 242breqtrd 5133 . . 3 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((!‘(𝐴 + 𝐶)) / ((!‘((𝐴 + 𝐶) − (𝐴 + 𝐷))) · (!‘(𝐴 + 𝐷)))) ≤ ((𝐵 + 𝐶)C(𝐵 + 𝐷)))
2442, 243eqbrtrd 5129 . 2 ((𝜑 ∧ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐴 + 𝐶)C(𝐴 + 𝐷)) ≤ ((𝐵 + 𝐶)C(𝐵 + 𝐷)))
2455adantr 480 . . . 4 ((𝜑 ∧ ¬ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐴 + 𝐶) ∈ ℕ0)
24611adantr 480 . . . 4 ((𝜑 ∧ ¬ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐴 + 𝐷) ∈ ℤ)
247 simpr 484 . . . 4 ((𝜑 ∧ ¬ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ¬ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶)))
248 bcval3 14271 . . . 4 (((𝐴 + 𝐶) ∈ ℕ0 ∧ (𝐴 + 𝐷) ∈ ℤ ∧ ¬ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐴 + 𝐶)C(𝐴 + 𝐷)) = 0)
249245, 246, 247, 248syl3anc 1373 . . 3 ((𝜑 ∧ ¬ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐴 + 𝐶)C(𝐴 + 𝐷)) = 0)
250 bccl2 14288 . . . . . . 7 ((𝐵 + 𝐷) ∈ (0...(𝐵 + 𝐶)) → ((𝐵 + 𝐶)C(𝐵 + 𝐷)) ∈ ℕ)
251250adantl 481 . . . . . 6 (((𝜑 ∧ ¬ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ (𝐵 + 𝐷) ∈ (0...(𝐵 + 𝐶))) → ((𝐵 + 𝐶)C(𝐵 + 𝐷)) ∈ ℕ)
252251nnnn0d 12503 . . . . 5 (((𝜑 ∧ ¬ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ (𝐵 + 𝐷) ∈ (0...(𝐵 + 𝐶))) → ((𝐵 + 𝐶)C(𝐵 + 𝐷)) ∈ ℕ0)
253252nn0ge0d 12506 . . . 4 (((𝜑 ∧ ¬ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ (𝐵 + 𝐷) ∈ (0...(𝐵 + 𝐶))) → 0 ≤ ((𝐵 + 𝐶)C(𝐵 + 𝐷)))
254 0le0 12287 . . . . . 6 0 ≤ 0
255254a1i 11 . . . . 5 (((𝜑 ∧ ¬ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ ¬ (𝐵 + 𝐷) ∈ (0...(𝐵 + 𝐶))) → 0 ≤ 0)
256115ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ¬ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ ¬ (𝐵 + 𝐷) ∈ (0...(𝐵 + 𝐶))) → 𝐵 ∈ ℕ0)
2574ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ¬ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ ¬ (𝐵 + 𝐷) ∈ (0...(𝐵 + 𝐶))) → 𝐶 ∈ ℕ0)
258256, 257nn0addcld 12507 . . . . . . 7 (((𝜑 ∧ ¬ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ ¬ (𝐵 + 𝐷) ∈ (0...(𝐵 + 𝐶))) → (𝐵 + 𝐶) ∈ ℕ0)
259141adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → (𝐵 + 𝐷) ∈ ℤ)
260259adantr 480 . . . . . . 7 (((𝜑 ∧ ¬ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ ¬ (𝐵 + 𝐷) ∈ (0...(𝐵 + 𝐶))) → (𝐵 + 𝐷) ∈ ℤ)
261 simpr 484 . . . . . . 7 (((𝜑 ∧ ¬ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ ¬ (𝐵 + 𝐷) ∈ (0...(𝐵 + 𝐶))) → ¬ (𝐵 + 𝐷) ∈ (0...(𝐵 + 𝐶)))
262 bcval3 14271 . . . . . . 7 (((𝐵 + 𝐶) ∈ ℕ0 ∧ (𝐵 + 𝐷) ∈ ℤ ∧ ¬ (𝐵 + 𝐷) ∈ (0...(𝐵 + 𝐶))) → ((𝐵 + 𝐶)C(𝐵 + 𝐷)) = 0)
263258, 260, 261, 262syl3anc 1373 . . . . . 6 (((𝜑 ∧ ¬ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ ¬ (𝐵 + 𝐷) ∈ (0...(𝐵 + 𝐶))) → ((𝐵 + 𝐶)C(𝐵 + 𝐷)) = 0)
264263eqcomd 2735 . . . . 5 (((𝜑 ∧ ¬ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ ¬ (𝐵 + 𝐷) ∈ (0...(𝐵 + 𝐶))) → 0 = ((𝐵 + 𝐶)C(𝐵 + 𝐷)))
265255, 264breqtrd 5133 . . . 4 (((𝜑 ∧ ¬ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) ∧ ¬ (𝐵 + 𝐷) ∈ (0...(𝐵 + 𝐶))) → 0 ≤ ((𝐵 + 𝐶)C(𝐵 + 𝐷)))
266253, 265pm2.61dan 812 . . 3 ((𝜑 ∧ ¬ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → 0 ≤ ((𝐵 + 𝐶)C(𝐵 + 𝐷)))
267249, 266eqbrtrd 5129 . 2 ((𝜑 ∧ ¬ (𝐴 + 𝐷) ∈ (0...(𝐴 + 𝐶))) → ((𝐴 + 𝐶)C(𝐴 + 𝐷)) ≤ ((𝐵 + 𝐶)C(𝐵 + 𝐷)))
268244, 267pm2.61dan 812 1 (𝜑 → ((𝐴 + 𝐶)C(𝐴 + 𝐷)) ≤ ((𝐵 + 𝐶)C(𝐵 + 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  0cn0 12442  cz 12529  ...cfz 13468  !cfa 14238  Ccbc 14267  cprod 15869   FallFac cfallfac 15970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ico 13312  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-prod 15870  df-fallfac 15973
This theorem is referenced by:  aks6d1c7lem1  42168
  Copyright terms: Public domain W3C validator