MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bccl Structured version   Visualization version   GIF version

Theorem bccl 14340
Description: A binomial coefficient, in its extended domain, is a nonnegative integer. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 9-Nov-2013.)
Assertion
Ref Expression
bccl ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) ∈ ℕ0)

Proof of Theorem bccl
Dummy variables 𝑘 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7412 . . . . 5 (𝑚 = 0 → (𝑚C𝑘) = (0C𝑘))
21eleq1d 2819 . . . 4 (𝑚 = 0 → ((𝑚C𝑘) ∈ ℕ0 ↔ (0C𝑘) ∈ ℕ0))
32ralbidv 3163 . . 3 (𝑚 = 0 → (∀𝑘 ∈ ℤ (𝑚C𝑘) ∈ ℕ0 ↔ ∀𝑘 ∈ ℤ (0C𝑘) ∈ ℕ0))
4 oveq1 7412 . . . . 5 (𝑚 = 𝑛 → (𝑚C𝑘) = (𝑛C𝑘))
54eleq1d 2819 . . . 4 (𝑚 = 𝑛 → ((𝑚C𝑘) ∈ ℕ0 ↔ (𝑛C𝑘) ∈ ℕ0))
65ralbidv 3163 . . 3 (𝑚 = 𝑛 → (∀𝑘 ∈ ℤ (𝑚C𝑘) ∈ ℕ0 ↔ ∀𝑘 ∈ ℤ (𝑛C𝑘) ∈ ℕ0))
7 oveq1 7412 . . . . 5 (𝑚 = (𝑛 + 1) → (𝑚C𝑘) = ((𝑛 + 1)C𝑘))
87eleq1d 2819 . . . 4 (𝑚 = (𝑛 + 1) → ((𝑚C𝑘) ∈ ℕ0 ↔ ((𝑛 + 1)C𝑘) ∈ ℕ0))
98ralbidv 3163 . . 3 (𝑚 = (𝑛 + 1) → (∀𝑘 ∈ ℤ (𝑚C𝑘) ∈ ℕ0 ↔ ∀𝑘 ∈ ℤ ((𝑛 + 1)C𝑘) ∈ ℕ0))
10 oveq1 7412 . . . . 5 (𝑚 = 𝑁 → (𝑚C𝑘) = (𝑁C𝑘))
1110eleq1d 2819 . . . 4 (𝑚 = 𝑁 → ((𝑚C𝑘) ∈ ℕ0 ↔ (𝑁C𝑘) ∈ ℕ0))
1211ralbidv 3163 . . 3 (𝑚 = 𝑁 → (∀𝑘 ∈ ℤ (𝑚C𝑘) ∈ ℕ0 ↔ ∀𝑘 ∈ ℤ (𝑁C𝑘) ∈ ℕ0))
13 elfz1eq 13552 . . . . . . 7 (𝑘 ∈ (0...0) → 𝑘 = 0)
1413adantl 481 . . . . . 6 ((𝑘 ∈ ℤ ∧ 𝑘 ∈ (0...0)) → 𝑘 = 0)
15 oveq2 7413 . . . . . . 7 (𝑘 = 0 → (0C𝑘) = (0C0))
16 0nn0 12516 . . . . . . . . 9 0 ∈ ℕ0
17 bcn0 14328 . . . . . . . . 9 (0 ∈ ℕ0 → (0C0) = 1)
1816, 17ax-mp 5 . . . . . . . 8 (0C0) = 1
19 1nn0 12517 . . . . . . . 8 1 ∈ ℕ0
2018, 19eqeltri 2830 . . . . . . 7 (0C0) ∈ ℕ0
2115, 20eqeltrdi 2842 . . . . . 6 (𝑘 = 0 → (0C𝑘) ∈ ℕ0)
2214, 21syl 17 . . . . 5 ((𝑘 ∈ ℤ ∧ 𝑘 ∈ (0...0)) → (0C𝑘) ∈ ℕ0)
23 bcval3 14324 . . . . . . 7 ((0 ∈ ℕ0𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) = 0)
2416, 23mp3an1 1450 . . . . . 6 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) = 0)
2524, 16eqeltrdi 2842 . . . . 5 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) ∈ ℕ0)
2622, 25pm2.61dan 812 . . . 4 (𝑘 ∈ ℤ → (0C𝑘) ∈ ℕ0)
2726rgen 3053 . . 3 𝑘 ∈ ℤ (0C𝑘) ∈ ℕ0
28 oveq2 7413 . . . . . 6 (𝑘 = 𝑚 → (𝑛C𝑘) = (𝑛C𝑚))
2928eleq1d 2819 . . . . 5 (𝑘 = 𝑚 → ((𝑛C𝑘) ∈ ℕ0 ↔ (𝑛C𝑚) ∈ ℕ0))
3029cbvralvw 3220 . . . 4 (∀𝑘 ∈ ℤ (𝑛C𝑘) ∈ ℕ0 ↔ ∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0)
31 bcpasc 14339 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑘 ∈ ℤ) → ((𝑛C𝑘) + (𝑛C(𝑘 − 1))) = ((𝑛 + 1)C𝑘))
3231adantlr 715 . . . . . . 7 (((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑛C𝑘) + (𝑛C(𝑘 − 1))) = ((𝑛 + 1)C𝑘))
33 oveq2 7413 . . . . . . . . . . 11 (𝑚 = 𝑘 → (𝑛C𝑚) = (𝑛C𝑘))
3433eleq1d 2819 . . . . . . . . . 10 (𝑚 = 𝑘 → ((𝑛C𝑚) ∈ ℕ0 ↔ (𝑛C𝑘) ∈ ℕ0))
3534rspccva 3600 . . . . . . . . 9 ((∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0𝑘 ∈ ℤ) → (𝑛C𝑘) ∈ ℕ0)
36 peano2zm 12635 . . . . . . . . . 10 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
37 oveq2 7413 . . . . . . . . . . . 12 (𝑚 = (𝑘 − 1) → (𝑛C𝑚) = (𝑛C(𝑘 − 1)))
3837eleq1d 2819 . . . . . . . . . . 11 (𝑚 = (𝑘 − 1) → ((𝑛C𝑚) ∈ ℕ0 ↔ (𝑛C(𝑘 − 1)) ∈ ℕ0))
3938rspccva 3600 . . . . . . . . . 10 ((∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0 ∧ (𝑘 − 1) ∈ ℤ) → (𝑛C(𝑘 − 1)) ∈ ℕ0)
4036, 39sylan2 593 . . . . . . . . 9 ((∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0𝑘 ∈ ℤ) → (𝑛C(𝑘 − 1)) ∈ ℕ0)
4135, 40nn0addcld 12566 . . . . . . . 8 ((∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0𝑘 ∈ ℤ) → ((𝑛C𝑘) + (𝑛C(𝑘 − 1))) ∈ ℕ0)
4241adantll 714 . . . . . . 7 (((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑛C𝑘) + (𝑛C(𝑘 − 1))) ∈ ℕ0)
4332, 42eqeltrrd 2835 . . . . . 6 (((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑛 + 1)C𝑘) ∈ ℕ0)
4443ralrimiva 3132 . . . . 5 ((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0) → ∀𝑘 ∈ ℤ ((𝑛 + 1)C𝑘) ∈ ℕ0)
4544ex 412 . . . 4 (𝑛 ∈ ℕ0 → (∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0 → ∀𝑘 ∈ ℤ ((𝑛 + 1)C𝑘) ∈ ℕ0))
4630, 45biimtrid 242 . . 3 (𝑛 ∈ ℕ0 → (∀𝑘 ∈ ℤ (𝑛C𝑘) ∈ ℕ0 → ∀𝑘 ∈ ℤ ((𝑛 + 1)C𝑘) ∈ ℕ0))
473, 6, 9, 12, 27, 46nn0ind 12688 . 2 (𝑁 ∈ ℕ0 → ∀𝑘 ∈ ℤ (𝑁C𝑘) ∈ ℕ0)
48 oveq2 7413 . . . 4 (𝑘 = 𝐾 → (𝑁C𝑘) = (𝑁C𝐾))
4948eleq1d 2819 . . 3 (𝑘 = 𝐾 → ((𝑁C𝑘) ∈ ℕ0 ↔ (𝑁C𝐾) ∈ ℕ0))
5049rspccva 3600 . 2 ((∀𝑘 ∈ ℤ (𝑁C𝑘) ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) ∈ ℕ0)
5147, 50sylan 580 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  (class class class)co 7405  0cc0 11129  1c1 11130   + caddc 11132  cmin 11466  0cn0 12501  cz 12588  ...cfz 13524  Ccbc 14320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-seq 14020  df-fac 14292  df-bc 14321
This theorem is referenced by:  bccl2  14341  bcn2m1  14342  bcn2p1  14343  binomlem  15845  bcxmas  15851  binomfallfaclem1  16055  binomfallfaclem2  16056  binomrisefac  16058  bpolycl  16068  bpolysum  16069  bpolydiflem  16070  bpoly4  16075  prmdvdsbc  16745  srgbinomlem3  20188  srgbinomlem4  20189  srgbinomlem  20190  freshmansdream  21535  chpscmatgsummon  22783  basellem2  27044  basellem3  27045  basellem5  27047  chtublem  27174  bcmono  27240  bcp1ctr  27242  bclbnd  27243  bcprod  35755  bccolsum  35756  fwddifnp1  36183  lcmineqlem1  42042  lcmineqlem2  42043  lcmineqlem17  42058  2ap1caineq  42158  aks6d1c6lem3  42185  aks6d1c7lem1  42193  aks6d1c7lem2  42194  jm2.22  43019  jm2.23  43020  bccld  45344  altgsumbc  48327  altgsumbcALT  48328
  Copyright terms: Public domain W3C validator