MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bccl Structured version   Visualization version   GIF version

Theorem bccl 13964
Description: A binomial coefficient, in its extended domain, is a nonnegative integer. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 9-Nov-2013.)
Assertion
Ref Expression
bccl ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) ∈ ℕ0)

Proof of Theorem bccl
Dummy variables 𝑘 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7262 . . . . 5 (𝑚 = 0 → (𝑚C𝑘) = (0C𝑘))
21eleq1d 2823 . . . 4 (𝑚 = 0 → ((𝑚C𝑘) ∈ ℕ0 ↔ (0C𝑘) ∈ ℕ0))
32ralbidv 3120 . . 3 (𝑚 = 0 → (∀𝑘 ∈ ℤ (𝑚C𝑘) ∈ ℕ0 ↔ ∀𝑘 ∈ ℤ (0C𝑘) ∈ ℕ0))
4 oveq1 7262 . . . . 5 (𝑚 = 𝑛 → (𝑚C𝑘) = (𝑛C𝑘))
54eleq1d 2823 . . . 4 (𝑚 = 𝑛 → ((𝑚C𝑘) ∈ ℕ0 ↔ (𝑛C𝑘) ∈ ℕ0))
65ralbidv 3120 . . 3 (𝑚 = 𝑛 → (∀𝑘 ∈ ℤ (𝑚C𝑘) ∈ ℕ0 ↔ ∀𝑘 ∈ ℤ (𝑛C𝑘) ∈ ℕ0))
7 oveq1 7262 . . . . 5 (𝑚 = (𝑛 + 1) → (𝑚C𝑘) = ((𝑛 + 1)C𝑘))
87eleq1d 2823 . . . 4 (𝑚 = (𝑛 + 1) → ((𝑚C𝑘) ∈ ℕ0 ↔ ((𝑛 + 1)C𝑘) ∈ ℕ0))
98ralbidv 3120 . . 3 (𝑚 = (𝑛 + 1) → (∀𝑘 ∈ ℤ (𝑚C𝑘) ∈ ℕ0 ↔ ∀𝑘 ∈ ℤ ((𝑛 + 1)C𝑘) ∈ ℕ0))
10 oveq1 7262 . . . . 5 (𝑚 = 𝑁 → (𝑚C𝑘) = (𝑁C𝑘))
1110eleq1d 2823 . . . 4 (𝑚 = 𝑁 → ((𝑚C𝑘) ∈ ℕ0 ↔ (𝑁C𝑘) ∈ ℕ0))
1211ralbidv 3120 . . 3 (𝑚 = 𝑁 → (∀𝑘 ∈ ℤ (𝑚C𝑘) ∈ ℕ0 ↔ ∀𝑘 ∈ ℤ (𝑁C𝑘) ∈ ℕ0))
13 elfz1eq 13196 . . . . . . 7 (𝑘 ∈ (0...0) → 𝑘 = 0)
1413adantl 481 . . . . . 6 ((𝑘 ∈ ℤ ∧ 𝑘 ∈ (0...0)) → 𝑘 = 0)
15 oveq2 7263 . . . . . . 7 (𝑘 = 0 → (0C𝑘) = (0C0))
16 0nn0 12178 . . . . . . . . 9 0 ∈ ℕ0
17 bcn0 13952 . . . . . . . . 9 (0 ∈ ℕ0 → (0C0) = 1)
1816, 17ax-mp 5 . . . . . . . 8 (0C0) = 1
19 1nn0 12179 . . . . . . . 8 1 ∈ ℕ0
2018, 19eqeltri 2835 . . . . . . 7 (0C0) ∈ ℕ0
2115, 20eqeltrdi 2847 . . . . . 6 (𝑘 = 0 → (0C𝑘) ∈ ℕ0)
2214, 21syl 17 . . . . 5 ((𝑘 ∈ ℤ ∧ 𝑘 ∈ (0...0)) → (0C𝑘) ∈ ℕ0)
23 bcval3 13948 . . . . . . 7 ((0 ∈ ℕ0𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) = 0)
2416, 23mp3an1 1446 . . . . . 6 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) = 0)
2524, 16eqeltrdi 2847 . . . . 5 ((𝑘 ∈ ℤ ∧ ¬ 𝑘 ∈ (0...0)) → (0C𝑘) ∈ ℕ0)
2622, 25pm2.61dan 809 . . . 4 (𝑘 ∈ ℤ → (0C𝑘) ∈ ℕ0)
2726rgen 3073 . . 3 𝑘 ∈ ℤ (0C𝑘) ∈ ℕ0
28 oveq2 7263 . . . . . 6 (𝑘 = 𝑚 → (𝑛C𝑘) = (𝑛C𝑚))
2928eleq1d 2823 . . . . 5 (𝑘 = 𝑚 → ((𝑛C𝑘) ∈ ℕ0 ↔ (𝑛C𝑚) ∈ ℕ0))
3029cbvralvw 3372 . . . 4 (∀𝑘 ∈ ℤ (𝑛C𝑘) ∈ ℕ0 ↔ ∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0)
31 bcpasc 13963 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑘 ∈ ℤ) → ((𝑛C𝑘) + (𝑛C(𝑘 − 1))) = ((𝑛 + 1)C𝑘))
3231adantlr 711 . . . . . . 7 (((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑛C𝑘) + (𝑛C(𝑘 − 1))) = ((𝑛 + 1)C𝑘))
33 oveq2 7263 . . . . . . . . . . 11 (𝑚 = 𝑘 → (𝑛C𝑚) = (𝑛C𝑘))
3433eleq1d 2823 . . . . . . . . . 10 (𝑚 = 𝑘 → ((𝑛C𝑚) ∈ ℕ0 ↔ (𝑛C𝑘) ∈ ℕ0))
3534rspccva 3551 . . . . . . . . 9 ((∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0𝑘 ∈ ℤ) → (𝑛C𝑘) ∈ ℕ0)
36 peano2zm 12293 . . . . . . . . . 10 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
37 oveq2 7263 . . . . . . . . . . . 12 (𝑚 = (𝑘 − 1) → (𝑛C𝑚) = (𝑛C(𝑘 − 1)))
3837eleq1d 2823 . . . . . . . . . . 11 (𝑚 = (𝑘 − 1) → ((𝑛C𝑚) ∈ ℕ0 ↔ (𝑛C(𝑘 − 1)) ∈ ℕ0))
3938rspccva 3551 . . . . . . . . . 10 ((∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0 ∧ (𝑘 − 1) ∈ ℤ) → (𝑛C(𝑘 − 1)) ∈ ℕ0)
4036, 39sylan2 592 . . . . . . . . 9 ((∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0𝑘 ∈ ℤ) → (𝑛C(𝑘 − 1)) ∈ ℕ0)
4135, 40nn0addcld 12227 . . . . . . . 8 ((∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0𝑘 ∈ ℤ) → ((𝑛C𝑘) + (𝑛C(𝑘 − 1))) ∈ ℕ0)
4241adantll 710 . . . . . . 7 (((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑛C𝑘) + (𝑛C(𝑘 − 1))) ∈ ℕ0)
4332, 42eqeltrrd 2840 . . . . . 6 (((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0) ∧ 𝑘 ∈ ℤ) → ((𝑛 + 1)C𝑘) ∈ ℕ0)
4443ralrimiva 3107 . . . . 5 ((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0) → ∀𝑘 ∈ ℤ ((𝑛 + 1)C𝑘) ∈ ℕ0)
4544ex 412 . . . 4 (𝑛 ∈ ℕ0 → (∀𝑚 ∈ ℤ (𝑛C𝑚) ∈ ℕ0 → ∀𝑘 ∈ ℤ ((𝑛 + 1)C𝑘) ∈ ℕ0))
4630, 45syl5bi 241 . . 3 (𝑛 ∈ ℕ0 → (∀𝑘 ∈ ℤ (𝑛C𝑘) ∈ ℕ0 → ∀𝑘 ∈ ℤ ((𝑛 + 1)C𝑘) ∈ ℕ0))
473, 6, 9, 12, 27, 46nn0ind 12345 . 2 (𝑁 ∈ ℕ0 → ∀𝑘 ∈ ℤ (𝑁C𝑘) ∈ ℕ0)
48 oveq2 7263 . . . 4 (𝑘 = 𝐾 → (𝑁C𝑘) = (𝑁C𝐾))
4948eleq1d 2823 . . 3 (𝑘 = 𝐾 → ((𝑁C𝑘) ∈ ℕ0 ↔ (𝑁C𝐾) ∈ ℕ0))
5049rspccva 3551 . 2 ((∀𝑘 ∈ ℤ (𝑁C𝑘) ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) ∈ ℕ0)
5147, 50sylan 579 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  cmin 11135  0cn0 12163  cz 12249  ...cfz 13168  Ccbc 13944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-seq 13650  df-fac 13916  df-bc 13945
This theorem is referenced by:  bccl2  13965  bcn2m1  13966  bcn2p1  13967  binomlem  15469  bcxmas  15475  binomfallfaclem1  15677  binomfallfaclem2  15678  binomrisefac  15680  bpolycl  15690  bpolysum  15691  bpolydiflem  15692  bpoly4  15697  srgbinomlem3  19693  srgbinomlem4  19694  srgbinomlem  19695  chpscmatgsummon  21902  basellem2  26136  basellem3  26137  basellem5  26139  chtublem  26264  bcmono  26330  bcp1ctr  26332  bclbnd  26333  prmdvdsbc  31032  freshmansdream  31386  bcprod  33610  bccolsum  33611  fwddifnp1  34394  lcmineqlem1  39965  lcmineqlem2  39966  lcmineqlem17  39981  2ap1caineq  40029  jm2.22  40733  jm2.23  40734  bccld  42744  altgsumbc  45576  altgsumbcALT  45577
  Copyright terms: Public domain W3C validator