Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bcled Structured version   Visualization version   GIF version

Theorem bcled 41889
Description: Inequality for binomial coefficients. (Contributed by metakunt, 12-May-2025.)
Hypotheses
Ref Expression
bcled.1 (𝜑𝐴 ∈ ℕ0)
bcled.2 (𝜑𝐵 ∈ ℕ0)
bcled.3 (𝜑𝐶 ∈ ℤ)
bcled.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
bcled (𝜑 → (𝐴C𝐶) ≤ (𝐵C𝐶))

Proof of Theorem bcled
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 bcval2 14316 . . . 4 (𝐶 ∈ (0...𝐴) → (𝐴C𝐶) = ((!‘𝐴) / ((!‘(𝐴𝐶)) · (!‘𝐶))))
21adantl 480 . . 3 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴C𝐶) = ((!‘𝐴) / ((!‘(𝐴𝐶)) · (!‘𝐶))))
3 bcled.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℕ0)
43adantr 479 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℕ0)
54faccld 14295 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐴) ∈ ℕ)
65nncnd 12273 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐴) ∈ ℂ)
74nn0zd 12629 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℤ)
8 bcled.3 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℤ)
98adantr 479 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℤ)
107, 9zsubcld 12716 . . . . . . . . . . 11 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴𝐶) ∈ ℤ)
119zred 12711 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℝ)
124nn0red 12578 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℝ)
13 0red 11257 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 0 ∈ ℝ)
14 elfzle2 13552 . . . . . . . . . . . . . 14 (𝐶 ∈ (0...𝐴) → 𝐶𝐴)
1514adantl 480 . . . . . . . . . . . . 13 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶𝐴)
1612recnd 11282 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℂ)
1716subid1d 11600 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴 − 0) = 𝐴)
1817eqcomd 2732 . . . . . . . . . . . . 13 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 = (𝐴 − 0))
1915, 18breqtrd 5171 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ≤ (𝐴 − 0))
2011, 12, 13, 19lesubd 11858 . . . . . . . . . . 11 ((𝜑𝐶 ∈ (0...𝐴)) → 0 ≤ (𝐴𝐶))
2110, 20jca 510 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → ((𝐴𝐶) ∈ ℤ ∧ 0 ≤ (𝐴𝐶)))
22 elnn0z 12616 . . . . . . . . . 10 ((𝐴𝐶) ∈ ℕ0 ↔ ((𝐴𝐶) ∈ ℤ ∧ 0 ≤ (𝐴𝐶)))
2321, 22sylibr 233 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴𝐶) ∈ ℕ0)
2423faccld 14295 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐴𝐶)) ∈ ℕ)
2524nncnd 12273 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐴𝐶)) ∈ ℂ)
26 elfznn0 13641 . . . . . . . . . 10 (𝐶 ∈ (0...𝐴) → 𝐶 ∈ ℕ0)
2726adantl 480 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℕ0)
2827faccld 14295 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐶) ∈ ℕ)
2928nncnd 12273 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐶) ∈ ℂ)
3024nnne0d 12307 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐴𝐶)) ≠ 0)
3128nnne0d 12307 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐶) ≠ 0)
326, 25, 29, 30, 31divdiv1d 12065 . . . . . 6 ((𝜑𝐶 ∈ (0...𝐴)) → (((!‘𝐴) / (!‘(𝐴𝐶))) / (!‘𝐶)) = ((!‘𝐴) / ((!‘(𝐴𝐶)) · (!‘𝐶))))
3332eqcomd 2732 . . . . 5 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐴) / ((!‘(𝐴𝐶)) · (!‘𝐶))) = (((!‘𝐴) / (!‘(𝐴𝐶))) / (!‘𝐶)))
345nnred 12272 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐴) ∈ ℝ)
3524nnred 12272 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐴𝐶)) ∈ ℝ)
3634, 35, 30redivcld 12086 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐴) / (!‘(𝐴𝐶))) ∈ ℝ)
37 bcled.2 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℕ0)
3837adantr 479 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℕ0)
3938faccld 14295 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐵) ∈ ℕ)
4039nnred 12272 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐵) ∈ ℝ)
4138nn0zd 12629 . . . . . . . . . . . . 13 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℤ)
4241, 9zsubcld 12716 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐵𝐶) ∈ ℤ)
4338nn0red 12578 . . . . . . . . . . . . 13 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℝ)
44 bcled.4 . . . . . . . . . . . . . . . 16 (𝜑𝐴𝐵)
4544adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴𝐵)
4611, 12, 43, 15, 45letrd 11411 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶𝐵)
4743recnd 11282 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℂ)
4847subid1d 11600 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐵 − 0) = 𝐵)
4948eqcomd 2732 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 = (𝐵 − 0))
5046, 49breqtrd 5171 . . . . . . . . . . . . 13 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ≤ (𝐵 − 0))
5111, 43, 13, 50lesubd 11858 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 0 ≤ (𝐵𝐶))
5242, 51jca 510 . . . . . . . . . . 11 ((𝜑𝐶 ∈ (0...𝐴)) → ((𝐵𝐶) ∈ ℤ ∧ 0 ≤ (𝐵𝐶)))
53 elnn0z 12616 . . . . . . . . . . 11 ((𝐵𝐶) ∈ ℕ0 ↔ ((𝐵𝐶) ∈ ℤ ∧ 0 ≤ (𝐵𝐶)))
5452, 53sylibr 233 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐵𝐶) ∈ ℕ0)
5554faccld 14295 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐵𝐶)) ∈ ℕ)
5655nnred 12272 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐵𝐶)) ∈ ℝ)
5755nnne0d 12307 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐵𝐶)) ≠ 0)
5840, 56, 57redivcld 12086 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐵) / (!‘(𝐵𝐶))) ∈ ℝ)
5928nnrpd 13061 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐶) ∈ ℝ+)
60 nfv 1910 . . . . . . . . . 10 𝑘(𝜑𝐶 ∈ (0...𝐴))
61 fzfid 13986 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → (0...(𝐶 − 1)) ∈ Fin)
6212adantr 479 . . . . . . . . . . 11 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝐴 ∈ ℝ)
63 elfzelz 13548 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(𝐶 − 1)) → 𝑘 ∈ ℤ)
6463adantl 480 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝑘 ∈ ℤ)
6564zred 12711 . . . . . . . . . . 11 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝑘 ∈ ℝ)
6662, 65resubcld 11682 . . . . . . . . . 10 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐴𝑘) ∈ ℝ)
67 0red 11257 . . . . . . . . . . 11 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 0 ∈ ℝ)
6827nn0red 12578 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℝ)
6968adantr 479 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝐶 ∈ ℝ)
70 1red 11255 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 1 ∈ ℝ)
7169, 70resubcld 11682 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐶 − 1) ∈ ℝ)
7262, 67resubcld 11682 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐴 − 0) ∈ ℝ)
73 elfzle2 13552 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(𝐶 − 1)) → 𝑘 ≤ (𝐶 − 1))
7473adantl 480 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝑘 ≤ (𝐶 − 1))
7515adantr 479 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝐶𝐴)
76 0le1 11777 . . . . . . . . . . . . . 14 0 ≤ 1
7776a1i 11 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 0 ≤ 1)
7869, 67, 62, 70, 75, 77le2subd 11874 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐶 − 1) ≤ (𝐴 − 0))
7965, 71, 72, 74, 78letrd 11411 . . . . . . . . . . 11 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝑘 ≤ (𝐴 − 0))
8065, 62, 67, 79lesubd 11858 . . . . . . . . . 10 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 0 ≤ (𝐴𝑘))
8143adantr 479 . . . . . . . . . . 11 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝐵 ∈ ℝ)
8281, 65resubcld 11682 . . . . . . . . . 10 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐵𝑘) ∈ ℝ)
8344ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝐴𝐵)
8462, 81, 65, 83lesub1dd 11870 . . . . . . . . . 10 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐴𝑘) ≤ (𝐵𝑘))
8560, 61, 66, 80, 82, 84fprodle 15992 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → ∏𝑘 ∈ (0...(𝐶 − 1))(𝐴𝑘) ≤ ∏𝑘 ∈ (0...(𝐶 − 1))(𝐵𝑘))
864nn0cnd 12579 . . . . . . . . . . 11 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℂ)
87 fallfacval 16005 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → (𝐴 FallFac 𝐶) = ∏𝑘 ∈ (0...(𝐶 − 1))(𝐴𝑘))
8886, 27, 87syl2anc 582 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴 FallFac 𝐶) = ∏𝑘 ∈ (0...(𝐶 − 1))(𝐴𝑘))
8988eqcomd 2732 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → ∏𝑘 ∈ (0...(𝐶 − 1))(𝐴𝑘) = (𝐴 FallFac 𝐶))
9038nn0cnd 12579 . . . . . . . . . . 11 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℂ)
91 fallfacval 16005 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → (𝐵 FallFac 𝐶) = ∏𝑘 ∈ (0...(𝐶 − 1))(𝐵𝑘))
9290, 27, 91syl2anc 582 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐵 FallFac 𝐶) = ∏𝑘 ∈ (0...(𝐶 − 1))(𝐵𝑘))
9392eqcomd 2732 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → ∏𝑘 ∈ (0...(𝐶 − 1))(𝐵𝑘) = (𝐵 FallFac 𝐶))
9485, 89, 933brtr3d 5176 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴 FallFac 𝐶) ≤ (𝐵 FallFac 𝐶))
95 fallfacval4 16039 . . . . . . . . 9 (𝐶 ∈ (0...𝐴) → (𝐴 FallFac 𝐶) = ((!‘𝐴) / (!‘(𝐴𝐶))))
9695adantl 480 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴 FallFac 𝐶) = ((!‘𝐴) / (!‘(𝐴𝐶))))
97 0zd 12615 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → 0 ∈ ℤ)
9827nn0ge0d 12580 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → 0 ≤ 𝐶)
9968, 12, 43, 15, 45letrd 11411 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶𝐵)
10097, 41, 9, 98, 99elfzd 13539 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ∈ (0...𝐵))
101 fallfacval4 16039 . . . . . . . . 9 (𝐶 ∈ (0...𝐵) → (𝐵 FallFac 𝐶) = ((!‘𝐵) / (!‘(𝐵𝐶))))
102100, 101syl 17 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐵 FallFac 𝐶) = ((!‘𝐵) / (!‘(𝐵𝐶))))
10394, 96, 1023brtr3d 5176 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐴) / (!‘(𝐴𝐶))) ≤ ((!‘𝐵) / (!‘(𝐵𝐶))))
10436, 58, 59, 103lediv1dd 13121 . . . . . 6 ((𝜑𝐶 ∈ (0...𝐴)) → (((!‘𝐴) / (!‘(𝐴𝐶))) / (!‘𝐶)) ≤ (((!‘𝐵) / (!‘(𝐵𝐶))) / (!‘𝐶)))
10539nncnd 12273 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐵) ∈ ℂ)
10655nncnd 12273 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐵𝐶)) ∈ ℂ)
107105, 106, 29, 57, 31divdiv1d 12065 . . . . . 6 ((𝜑𝐶 ∈ (0...𝐴)) → (((!‘𝐵) / (!‘(𝐵𝐶))) / (!‘𝐶)) = ((!‘𝐵) / ((!‘(𝐵𝐶)) · (!‘𝐶))))
108104, 107breqtrd 5171 . . . . 5 ((𝜑𝐶 ∈ (0...𝐴)) → (((!‘𝐴) / (!‘(𝐴𝐶))) / (!‘𝐶)) ≤ ((!‘𝐵) / ((!‘(𝐵𝐶)) · (!‘𝐶))))
10933, 108eqbrtrd 5167 . . . 4 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐴) / ((!‘(𝐴𝐶)) · (!‘𝐶))) ≤ ((!‘𝐵) / ((!‘(𝐵𝐶)) · (!‘𝐶))))
11037nn0zd 12629 . . . . . . . 8 (𝜑𝐵 ∈ ℤ)
111110adantr 479 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℤ)
112 elfzle1 13551 . . . . . . . 8 (𝐶 ∈ (0...𝐴) → 0 ≤ 𝐶)
113112adantl 480 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → 0 ≤ 𝐶)
1143nn0red 12578 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
115114adantr 479 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℝ)
116111zred 12711 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℝ)
11711, 115, 116, 15, 45letrd 11411 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶𝐵)
11897, 111, 9, 113, 117elfzd 13539 . . . . . 6 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ∈ (0...𝐵))
119 bcval2 14316 . . . . . 6 (𝐶 ∈ (0...𝐵) → (𝐵C𝐶) = ((!‘𝐵) / ((!‘(𝐵𝐶)) · (!‘𝐶))))
120118, 119syl 17 . . . . 5 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐵C𝐶) = ((!‘𝐵) / ((!‘(𝐵𝐶)) · (!‘𝐶))))
121120eqcomd 2732 . . . 4 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐵) / ((!‘(𝐵𝐶)) · (!‘𝐶))) = (𝐵C𝐶))
122109, 121breqtrd 5171 . . 3 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐴) / ((!‘(𝐴𝐶)) · (!‘𝐶))) ≤ (𝐵C𝐶))
1232, 122eqbrtrd 5167 . 2 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴C𝐶) ≤ (𝐵C𝐶))
1243adantr 479 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℕ0)
1258adantr 479 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℤ)
126 simpr 483 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → ¬ 𝐶 ∈ (0...𝐴))
127 bcval3 14317 . . . 4 ((𝐴 ∈ ℕ0𝐶 ∈ ℤ ∧ ¬ 𝐶 ∈ (0...𝐴)) → (𝐴C𝐶) = 0)
128124, 125, 126, 127syl3anc 1368 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → (𝐴C𝐶) = 0)
129 bccl2 14334 . . . . . . 7 (𝐶 ∈ (0...𝐵) → (𝐵C𝐶) ∈ ℕ)
130129adantl 480 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ 𝐶 ∈ (0...𝐵)) → (𝐵C𝐶) ∈ ℕ)
131130nnnn0d 12577 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ 𝐶 ∈ (0...𝐵)) → (𝐵C𝐶) ∈ ℕ0)
132131nn0ge0d 12580 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ 𝐶 ∈ (0...𝐵)) → 0 ≤ (𝐵C𝐶))
133 0le0 12358 . . . . . 6 0 ≤ 0
134133a1i 11 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → 0 ≤ 0)
13537ad2antrr 724 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → 𝐵 ∈ ℕ0)
136125adantr 479 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → 𝐶 ∈ ℤ)
137 simpr 483 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → ¬ 𝐶 ∈ (0...𝐵))
138 bcval3 14317 . . . . . . 7 ((𝐵 ∈ ℕ0𝐶 ∈ ℤ ∧ ¬ 𝐶 ∈ (0...𝐵)) → (𝐵C𝐶) = 0)
139135, 136, 137, 138syl3anc 1368 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → (𝐵C𝐶) = 0)
140139eqcomd 2732 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → 0 = (𝐵C𝐶))
141134, 140breqtrd 5171 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → 0 ≤ (𝐵C𝐶))
142132, 141pm2.61dan 811 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → 0 ≤ (𝐵C𝐶))
143128, 142eqbrtrd 5167 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → (𝐴C𝐶) ≤ (𝐵C𝐶))
144123, 143pm2.61dan 811 1 (𝜑 → (𝐴C𝐶) ≤ (𝐵C𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1534  wcel 2099   class class class wbr 5145  cfv 6545  (class class class)co 7415  cc 11146  cr 11147  0cc0 11148  1c1 11149   · cmul 11153  cle 11289  cmin 11484   / cdiv 11911  cn 12257  0cn0 12517  cz 12603  ...cfz 13531  !cfa 14284  Ccbc 14313  cprod 15901   FallFac cfallfac 16000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7737  ax-inf2 9676  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225  ax-pre-sup 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3466  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3968  df-nul 4325  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4908  df-int 4949  df-iun 4997  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6370  df-on 6371  df-lim 6372  df-suc 6373  df-iota 6497  df-fun 6547  df-fn 6548  df-f 6549  df-f1 6550  df-fo 6551  df-f1o 6552  df-fv 6553  df-isom 6554  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8966  df-dom 8967  df-sdom 8968  df-fin 8969  df-sup 9477  df-oi 9545  df-card 9974  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-div 11912  df-nn 12258  df-2 12320  df-3 12321  df-n0 12518  df-z 12604  df-uz 12868  df-rp 13022  df-ico 13377  df-fz 13532  df-fzo 13675  df-seq 14015  df-exp 14075  df-fac 14285  df-bc 14314  df-hash 14342  df-cj 15098  df-re 15099  df-im 15100  df-sqrt 15234  df-abs 15235  df-clim 15484  df-prod 15902  df-fallfac 16003
This theorem is referenced by:  aks6d1c7lem1  41891
  Copyright terms: Public domain W3C validator