Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bcled Structured version   Visualization version   GIF version

Theorem bcled 42344
Description: Inequality for binomial coefficients. (Contributed by metakunt, 12-May-2025.)
Hypotheses
Ref Expression
bcled.1 (𝜑𝐴 ∈ ℕ0)
bcled.2 (𝜑𝐵 ∈ ℕ0)
bcled.3 (𝜑𝐶 ∈ ℤ)
bcled.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
bcled (𝜑 → (𝐴C𝐶) ≤ (𝐵C𝐶))

Proof of Theorem bcled
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 bcval2 14219 . . . 4 (𝐶 ∈ (0...𝐴) → (𝐴C𝐶) = ((!‘𝐴) / ((!‘(𝐴𝐶)) · (!‘𝐶))))
21adantl 481 . . 3 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴C𝐶) = ((!‘𝐴) / ((!‘(𝐴𝐶)) · (!‘𝐶))))
3 bcled.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℕ0)
43adantr 480 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℕ0)
54faccld 14198 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐴) ∈ ℕ)
65nncnd 12152 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐴) ∈ ℂ)
74nn0zd 12504 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℤ)
8 bcled.3 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℤ)
98adantr 480 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℤ)
107, 9zsubcld 12592 . . . . . . . . . . 11 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴𝐶) ∈ ℤ)
119zred 12587 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℝ)
124nn0red 12454 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℝ)
13 0red 11126 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 0 ∈ ℝ)
14 elfzle2 13435 . . . . . . . . . . . . . 14 (𝐶 ∈ (0...𝐴) → 𝐶𝐴)
1514adantl 481 . . . . . . . . . . . . 13 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶𝐴)
1612recnd 11151 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℂ)
1716subid1d 11472 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴 − 0) = 𝐴)
1817eqcomd 2739 . . . . . . . . . . . . 13 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 = (𝐴 − 0))
1915, 18breqtrd 5121 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ≤ (𝐴 − 0))
2011, 12, 13, 19lesubd 11732 . . . . . . . . . . 11 ((𝜑𝐶 ∈ (0...𝐴)) → 0 ≤ (𝐴𝐶))
2110, 20jca 511 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → ((𝐴𝐶) ∈ ℤ ∧ 0 ≤ (𝐴𝐶)))
22 elnn0z 12492 . . . . . . . . . 10 ((𝐴𝐶) ∈ ℕ0 ↔ ((𝐴𝐶) ∈ ℤ ∧ 0 ≤ (𝐴𝐶)))
2321, 22sylibr 234 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴𝐶) ∈ ℕ0)
2423faccld 14198 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐴𝐶)) ∈ ℕ)
2524nncnd 12152 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐴𝐶)) ∈ ℂ)
26 elfznn0 13527 . . . . . . . . . 10 (𝐶 ∈ (0...𝐴) → 𝐶 ∈ ℕ0)
2726adantl 481 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℕ0)
2827faccld 14198 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐶) ∈ ℕ)
2928nncnd 12152 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐶) ∈ ℂ)
3024nnne0d 12186 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐴𝐶)) ≠ 0)
3128nnne0d 12186 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐶) ≠ 0)
326, 25, 29, 30, 31divdiv1d 11939 . . . . . 6 ((𝜑𝐶 ∈ (0...𝐴)) → (((!‘𝐴) / (!‘(𝐴𝐶))) / (!‘𝐶)) = ((!‘𝐴) / ((!‘(𝐴𝐶)) · (!‘𝐶))))
3332eqcomd 2739 . . . . 5 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐴) / ((!‘(𝐴𝐶)) · (!‘𝐶))) = (((!‘𝐴) / (!‘(𝐴𝐶))) / (!‘𝐶)))
345nnred 12151 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐴) ∈ ℝ)
3524nnred 12151 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐴𝐶)) ∈ ℝ)
3634, 35, 30redivcld 11960 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐴) / (!‘(𝐴𝐶))) ∈ ℝ)
37 bcled.2 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℕ0)
3837adantr 480 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℕ0)
3938faccld 14198 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐵) ∈ ℕ)
4039nnred 12151 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐵) ∈ ℝ)
4138nn0zd 12504 . . . . . . . . . . . . 13 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℤ)
4241, 9zsubcld 12592 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐵𝐶) ∈ ℤ)
4338nn0red 12454 . . . . . . . . . . . . 13 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℝ)
44 bcled.4 . . . . . . . . . . . . . . . 16 (𝜑𝐴𝐵)
4544adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴𝐵)
4611, 12, 43, 15, 45letrd 11281 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶𝐵)
4743recnd 11151 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℂ)
4847subid1d 11472 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐵 − 0) = 𝐵)
4948eqcomd 2739 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 = (𝐵 − 0))
5046, 49breqtrd 5121 . . . . . . . . . . . . 13 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ≤ (𝐵 − 0))
5111, 43, 13, 50lesubd 11732 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 0 ≤ (𝐵𝐶))
5242, 51jca 511 . . . . . . . . . . 11 ((𝜑𝐶 ∈ (0...𝐴)) → ((𝐵𝐶) ∈ ℤ ∧ 0 ≤ (𝐵𝐶)))
53 elnn0z 12492 . . . . . . . . . . 11 ((𝐵𝐶) ∈ ℕ0 ↔ ((𝐵𝐶) ∈ ℤ ∧ 0 ≤ (𝐵𝐶)))
5452, 53sylibr 234 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐵𝐶) ∈ ℕ0)
5554faccld 14198 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐵𝐶)) ∈ ℕ)
5655nnred 12151 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐵𝐶)) ∈ ℝ)
5755nnne0d 12186 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐵𝐶)) ≠ 0)
5840, 56, 57redivcld 11960 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐵) / (!‘(𝐵𝐶))) ∈ ℝ)
5928nnrpd 12938 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐶) ∈ ℝ+)
60 nfv 1915 . . . . . . . . . 10 𝑘(𝜑𝐶 ∈ (0...𝐴))
61 fzfid 13887 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → (0...(𝐶 − 1)) ∈ Fin)
6212adantr 480 . . . . . . . . . . 11 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝐴 ∈ ℝ)
63 elfzelz 13431 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(𝐶 − 1)) → 𝑘 ∈ ℤ)
6463adantl 481 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝑘 ∈ ℤ)
6564zred 12587 . . . . . . . . . . 11 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝑘 ∈ ℝ)
6662, 65resubcld 11556 . . . . . . . . . 10 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐴𝑘) ∈ ℝ)
67 0red 11126 . . . . . . . . . . 11 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 0 ∈ ℝ)
6827nn0red 12454 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℝ)
6968adantr 480 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝐶 ∈ ℝ)
70 1red 11124 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 1 ∈ ℝ)
7169, 70resubcld 11556 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐶 − 1) ∈ ℝ)
7262, 67resubcld 11556 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐴 − 0) ∈ ℝ)
73 elfzle2 13435 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(𝐶 − 1)) → 𝑘 ≤ (𝐶 − 1))
7473adantl 481 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝑘 ≤ (𝐶 − 1))
7515adantr 480 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝐶𝐴)
76 0le1 11651 . . . . . . . . . . . . . 14 0 ≤ 1
7776a1i 11 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 0 ≤ 1)
7869, 67, 62, 70, 75, 77le2subd 11748 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐶 − 1) ≤ (𝐴 − 0))
7965, 71, 72, 74, 78letrd 11281 . . . . . . . . . . 11 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝑘 ≤ (𝐴 − 0))
8065, 62, 67, 79lesubd 11732 . . . . . . . . . 10 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 0 ≤ (𝐴𝑘))
8143adantr 480 . . . . . . . . . . 11 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝐵 ∈ ℝ)
8281, 65resubcld 11556 . . . . . . . . . 10 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐵𝑘) ∈ ℝ)
8344ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝐴𝐵)
8462, 81, 65, 83lesub1dd 11744 . . . . . . . . . 10 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐴𝑘) ≤ (𝐵𝑘))
8560, 61, 66, 80, 82, 84fprodle 15910 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → ∏𝑘 ∈ (0...(𝐶 − 1))(𝐴𝑘) ≤ ∏𝑘 ∈ (0...(𝐶 − 1))(𝐵𝑘))
864nn0cnd 12455 . . . . . . . . . . 11 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℂ)
87 fallfacval 15923 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → (𝐴 FallFac 𝐶) = ∏𝑘 ∈ (0...(𝐶 − 1))(𝐴𝑘))
8886, 27, 87syl2anc 584 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴 FallFac 𝐶) = ∏𝑘 ∈ (0...(𝐶 − 1))(𝐴𝑘))
8988eqcomd 2739 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → ∏𝑘 ∈ (0...(𝐶 − 1))(𝐴𝑘) = (𝐴 FallFac 𝐶))
9038nn0cnd 12455 . . . . . . . . . . 11 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℂ)
91 fallfacval 15923 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → (𝐵 FallFac 𝐶) = ∏𝑘 ∈ (0...(𝐶 − 1))(𝐵𝑘))
9290, 27, 91syl2anc 584 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐵 FallFac 𝐶) = ∏𝑘 ∈ (0...(𝐶 − 1))(𝐵𝑘))
9392eqcomd 2739 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → ∏𝑘 ∈ (0...(𝐶 − 1))(𝐵𝑘) = (𝐵 FallFac 𝐶))
9485, 89, 933brtr3d 5126 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴 FallFac 𝐶) ≤ (𝐵 FallFac 𝐶))
95 fallfacval4 15957 . . . . . . . . 9 (𝐶 ∈ (0...𝐴) → (𝐴 FallFac 𝐶) = ((!‘𝐴) / (!‘(𝐴𝐶))))
9695adantl 481 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴 FallFac 𝐶) = ((!‘𝐴) / (!‘(𝐴𝐶))))
97 0zd 12491 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → 0 ∈ ℤ)
9827nn0ge0d 12456 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → 0 ≤ 𝐶)
9968, 12, 43, 15, 45letrd 11281 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶𝐵)
10097, 41, 9, 98, 99elfzd 13422 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ∈ (0...𝐵))
101 fallfacval4 15957 . . . . . . . . 9 (𝐶 ∈ (0...𝐵) → (𝐵 FallFac 𝐶) = ((!‘𝐵) / (!‘(𝐵𝐶))))
102100, 101syl 17 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐵 FallFac 𝐶) = ((!‘𝐵) / (!‘(𝐵𝐶))))
10394, 96, 1023brtr3d 5126 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐴) / (!‘(𝐴𝐶))) ≤ ((!‘𝐵) / (!‘(𝐵𝐶))))
10436, 58, 59, 103lediv1dd 12998 . . . . . 6 ((𝜑𝐶 ∈ (0...𝐴)) → (((!‘𝐴) / (!‘(𝐴𝐶))) / (!‘𝐶)) ≤ (((!‘𝐵) / (!‘(𝐵𝐶))) / (!‘𝐶)))
10539nncnd 12152 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐵) ∈ ℂ)
10655nncnd 12152 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐵𝐶)) ∈ ℂ)
107105, 106, 29, 57, 31divdiv1d 11939 . . . . . 6 ((𝜑𝐶 ∈ (0...𝐴)) → (((!‘𝐵) / (!‘(𝐵𝐶))) / (!‘𝐶)) = ((!‘𝐵) / ((!‘(𝐵𝐶)) · (!‘𝐶))))
108104, 107breqtrd 5121 . . . . 5 ((𝜑𝐶 ∈ (0...𝐴)) → (((!‘𝐴) / (!‘(𝐴𝐶))) / (!‘𝐶)) ≤ ((!‘𝐵) / ((!‘(𝐵𝐶)) · (!‘𝐶))))
10933, 108eqbrtrd 5117 . . . 4 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐴) / ((!‘(𝐴𝐶)) · (!‘𝐶))) ≤ ((!‘𝐵) / ((!‘(𝐵𝐶)) · (!‘𝐶))))
11037nn0zd 12504 . . . . . . . 8 (𝜑𝐵 ∈ ℤ)
111110adantr 480 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℤ)
112 elfzle1 13434 . . . . . . . 8 (𝐶 ∈ (0...𝐴) → 0 ≤ 𝐶)
113112adantl 481 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → 0 ≤ 𝐶)
1143nn0red 12454 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
115114adantr 480 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℝ)
116111zred 12587 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℝ)
11711, 115, 116, 15, 45letrd 11281 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶𝐵)
11897, 111, 9, 113, 117elfzd 13422 . . . . . 6 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ∈ (0...𝐵))
119 bcval2 14219 . . . . . 6 (𝐶 ∈ (0...𝐵) → (𝐵C𝐶) = ((!‘𝐵) / ((!‘(𝐵𝐶)) · (!‘𝐶))))
120118, 119syl 17 . . . . 5 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐵C𝐶) = ((!‘𝐵) / ((!‘(𝐵𝐶)) · (!‘𝐶))))
121120eqcomd 2739 . . . 4 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐵) / ((!‘(𝐵𝐶)) · (!‘𝐶))) = (𝐵C𝐶))
122109, 121breqtrd 5121 . . 3 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐴) / ((!‘(𝐴𝐶)) · (!‘𝐶))) ≤ (𝐵C𝐶))
1232, 122eqbrtrd 5117 . 2 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴C𝐶) ≤ (𝐵C𝐶))
1243adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℕ0)
1258adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℤ)
126 simpr 484 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → ¬ 𝐶 ∈ (0...𝐴))
127 bcval3 14220 . . . 4 ((𝐴 ∈ ℕ0𝐶 ∈ ℤ ∧ ¬ 𝐶 ∈ (0...𝐴)) → (𝐴C𝐶) = 0)
128124, 125, 126, 127syl3anc 1373 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → (𝐴C𝐶) = 0)
129 bccl2 14237 . . . . . . 7 (𝐶 ∈ (0...𝐵) → (𝐵C𝐶) ∈ ℕ)
130129adantl 481 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ 𝐶 ∈ (0...𝐵)) → (𝐵C𝐶) ∈ ℕ)
131130nnnn0d 12453 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ 𝐶 ∈ (0...𝐵)) → (𝐵C𝐶) ∈ ℕ0)
132131nn0ge0d 12456 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ 𝐶 ∈ (0...𝐵)) → 0 ≤ (𝐵C𝐶))
133 0le0 12237 . . . . . 6 0 ≤ 0
134133a1i 11 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → 0 ≤ 0)
13537ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → 𝐵 ∈ ℕ0)
136125adantr 480 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → 𝐶 ∈ ℤ)
137 simpr 484 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → ¬ 𝐶 ∈ (0...𝐵))
138 bcval3 14220 . . . . . . 7 ((𝐵 ∈ ℕ0𝐶 ∈ ℤ ∧ ¬ 𝐶 ∈ (0...𝐵)) → (𝐵C𝐶) = 0)
139135, 136, 137, 138syl3anc 1373 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → (𝐵C𝐶) = 0)
140139eqcomd 2739 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → 0 = (𝐵C𝐶))
141134, 140breqtrd 5121 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → 0 ≤ (𝐵C𝐶))
142132, 141pm2.61dan 812 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → 0 ≤ (𝐵C𝐶))
143128, 142eqbrtrd 5117 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → (𝐴C𝐶) ≤ (𝐵C𝐶))
144123, 143pm2.61dan 812 1 (𝜑 → (𝐴C𝐶) ≤ (𝐵C𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113   class class class wbr 5095  cfv 6489  (class class class)co 7355  cc 11015  cr 11016  0cc0 11017  1c1 11018   · cmul 11022  cle 11158  cmin 11355   / cdiv 11785  cn 12136  0cn0 12392  cz 12479  ...cfz 13414  !cfa 14187  Ccbc 14216  cprod 15817   FallFac cfallfac 15918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-ico 13258  df-fz 13415  df-fzo 13562  df-seq 13916  df-exp 13976  df-fac 14188  df-bc 14217  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-prod 15818  df-fallfac 15921
This theorem is referenced by:  aks6d1c7lem1  42346
  Copyright terms: Public domain W3C validator