Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bcled Structured version   Visualization version   GIF version

Theorem bcled 42139
Description: Inequality for binomial coefficients. (Contributed by metakunt, 12-May-2025.)
Hypotheses
Ref Expression
bcled.1 (𝜑𝐴 ∈ ℕ0)
bcled.2 (𝜑𝐵 ∈ ℕ0)
bcled.3 (𝜑𝐶 ∈ ℤ)
bcled.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
bcled (𝜑 → (𝐴C𝐶) ≤ (𝐵C𝐶))

Proof of Theorem bcled
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 bcval2 14246 . . . 4 (𝐶 ∈ (0...𝐴) → (𝐴C𝐶) = ((!‘𝐴) / ((!‘(𝐴𝐶)) · (!‘𝐶))))
21adantl 481 . . 3 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴C𝐶) = ((!‘𝐴) / ((!‘(𝐴𝐶)) · (!‘𝐶))))
3 bcled.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℕ0)
43adantr 480 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℕ0)
54faccld 14225 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐴) ∈ ℕ)
65nncnd 12178 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐴) ∈ ℂ)
74nn0zd 12531 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℤ)
8 bcled.3 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℤ)
98adantr 480 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℤ)
107, 9zsubcld 12619 . . . . . . . . . . 11 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴𝐶) ∈ ℤ)
119zred 12614 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℝ)
124nn0red 12480 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℝ)
13 0red 11153 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 0 ∈ ℝ)
14 elfzle2 13465 . . . . . . . . . . . . . 14 (𝐶 ∈ (0...𝐴) → 𝐶𝐴)
1514adantl 481 . . . . . . . . . . . . 13 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶𝐴)
1612recnd 11178 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℂ)
1716subid1d 11498 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴 − 0) = 𝐴)
1817eqcomd 2735 . . . . . . . . . . . . 13 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 = (𝐴 − 0))
1915, 18breqtrd 5128 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ≤ (𝐴 − 0))
2011, 12, 13, 19lesubd 11758 . . . . . . . . . . 11 ((𝜑𝐶 ∈ (0...𝐴)) → 0 ≤ (𝐴𝐶))
2110, 20jca 511 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → ((𝐴𝐶) ∈ ℤ ∧ 0 ≤ (𝐴𝐶)))
22 elnn0z 12518 . . . . . . . . . 10 ((𝐴𝐶) ∈ ℕ0 ↔ ((𝐴𝐶) ∈ ℤ ∧ 0 ≤ (𝐴𝐶)))
2321, 22sylibr 234 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴𝐶) ∈ ℕ0)
2423faccld 14225 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐴𝐶)) ∈ ℕ)
2524nncnd 12178 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐴𝐶)) ∈ ℂ)
26 elfznn0 13557 . . . . . . . . . 10 (𝐶 ∈ (0...𝐴) → 𝐶 ∈ ℕ0)
2726adantl 481 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℕ0)
2827faccld 14225 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐶) ∈ ℕ)
2928nncnd 12178 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐶) ∈ ℂ)
3024nnne0d 12212 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐴𝐶)) ≠ 0)
3128nnne0d 12212 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐶) ≠ 0)
326, 25, 29, 30, 31divdiv1d 11965 . . . . . 6 ((𝜑𝐶 ∈ (0...𝐴)) → (((!‘𝐴) / (!‘(𝐴𝐶))) / (!‘𝐶)) = ((!‘𝐴) / ((!‘(𝐴𝐶)) · (!‘𝐶))))
3332eqcomd 2735 . . . . 5 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐴) / ((!‘(𝐴𝐶)) · (!‘𝐶))) = (((!‘𝐴) / (!‘(𝐴𝐶))) / (!‘𝐶)))
345nnred 12177 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐴) ∈ ℝ)
3524nnred 12177 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐴𝐶)) ∈ ℝ)
3634, 35, 30redivcld 11986 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐴) / (!‘(𝐴𝐶))) ∈ ℝ)
37 bcled.2 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℕ0)
3837adantr 480 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℕ0)
3938faccld 14225 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐵) ∈ ℕ)
4039nnred 12177 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐵) ∈ ℝ)
4138nn0zd 12531 . . . . . . . . . . . . 13 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℤ)
4241, 9zsubcld 12619 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐵𝐶) ∈ ℤ)
4338nn0red 12480 . . . . . . . . . . . . 13 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℝ)
44 bcled.4 . . . . . . . . . . . . . . . 16 (𝜑𝐴𝐵)
4544adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴𝐵)
4611, 12, 43, 15, 45letrd 11307 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶𝐵)
4743recnd 11178 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℂ)
4847subid1d 11498 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐵 − 0) = 𝐵)
4948eqcomd 2735 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 = (𝐵 − 0))
5046, 49breqtrd 5128 . . . . . . . . . . . . 13 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ≤ (𝐵 − 0))
5111, 43, 13, 50lesubd 11758 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 0 ≤ (𝐵𝐶))
5242, 51jca 511 . . . . . . . . . . 11 ((𝜑𝐶 ∈ (0...𝐴)) → ((𝐵𝐶) ∈ ℤ ∧ 0 ≤ (𝐵𝐶)))
53 elnn0z 12518 . . . . . . . . . . 11 ((𝐵𝐶) ∈ ℕ0 ↔ ((𝐵𝐶) ∈ ℤ ∧ 0 ≤ (𝐵𝐶)))
5452, 53sylibr 234 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐵𝐶) ∈ ℕ0)
5554faccld 14225 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐵𝐶)) ∈ ℕ)
5655nnred 12177 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐵𝐶)) ∈ ℝ)
5755nnne0d 12212 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐵𝐶)) ≠ 0)
5840, 56, 57redivcld 11986 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐵) / (!‘(𝐵𝐶))) ∈ ℝ)
5928nnrpd 12969 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐶) ∈ ℝ+)
60 nfv 1914 . . . . . . . . . 10 𝑘(𝜑𝐶 ∈ (0...𝐴))
61 fzfid 13914 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → (0...(𝐶 − 1)) ∈ Fin)
6212adantr 480 . . . . . . . . . . 11 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝐴 ∈ ℝ)
63 elfzelz 13461 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(𝐶 − 1)) → 𝑘 ∈ ℤ)
6463adantl 481 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝑘 ∈ ℤ)
6564zred 12614 . . . . . . . . . . 11 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝑘 ∈ ℝ)
6662, 65resubcld 11582 . . . . . . . . . 10 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐴𝑘) ∈ ℝ)
67 0red 11153 . . . . . . . . . . 11 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 0 ∈ ℝ)
6827nn0red 12480 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℝ)
6968adantr 480 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝐶 ∈ ℝ)
70 1red 11151 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 1 ∈ ℝ)
7169, 70resubcld 11582 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐶 − 1) ∈ ℝ)
7262, 67resubcld 11582 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐴 − 0) ∈ ℝ)
73 elfzle2 13465 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(𝐶 − 1)) → 𝑘 ≤ (𝐶 − 1))
7473adantl 481 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝑘 ≤ (𝐶 − 1))
7515adantr 480 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝐶𝐴)
76 0le1 11677 . . . . . . . . . . . . . 14 0 ≤ 1
7776a1i 11 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 0 ≤ 1)
7869, 67, 62, 70, 75, 77le2subd 11774 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐶 − 1) ≤ (𝐴 − 0))
7965, 71, 72, 74, 78letrd 11307 . . . . . . . . . . 11 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝑘 ≤ (𝐴 − 0))
8065, 62, 67, 79lesubd 11758 . . . . . . . . . 10 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 0 ≤ (𝐴𝑘))
8143adantr 480 . . . . . . . . . . 11 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝐵 ∈ ℝ)
8281, 65resubcld 11582 . . . . . . . . . 10 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐵𝑘) ∈ ℝ)
8344ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝐴𝐵)
8462, 81, 65, 83lesub1dd 11770 . . . . . . . . . 10 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐴𝑘) ≤ (𝐵𝑘))
8560, 61, 66, 80, 82, 84fprodle 15938 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → ∏𝑘 ∈ (0...(𝐶 − 1))(𝐴𝑘) ≤ ∏𝑘 ∈ (0...(𝐶 − 1))(𝐵𝑘))
864nn0cnd 12481 . . . . . . . . . . 11 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℂ)
87 fallfacval 15951 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → (𝐴 FallFac 𝐶) = ∏𝑘 ∈ (0...(𝐶 − 1))(𝐴𝑘))
8886, 27, 87syl2anc 584 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴 FallFac 𝐶) = ∏𝑘 ∈ (0...(𝐶 − 1))(𝐴𝑘))
8988eqcomd 2735 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → ∏𝑘 ∈ (0...(𝐶 − 1))(𝐴𝑘) = (𝐴 FallFac 𝐶))
9038nn0cnd 12481 . . . . . . . . . . 11 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℂ)
91 fallfacval 15951 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → (𝐵 FallFac 𝐶) = ∏𝑘 ∈ (0...(𝐶 − 1))(𝐵𝑘))
9290, 27, 91syl2anc 584 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐵 FallFac 𝐶) = ∏𝑘 ∈ (0...(𝐶 − 1))(𝐵𝑘))
9392eqcomd 2735 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → ∏𝑘 ∈ (0...(𝐶 − 1))(𝐵𝑘) = (𝐵 FallFac 𝐶))
9485, 89, 933brtr3d 5133 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴 FallFac 𝐶) ≤ (𝐵 FallFac 𝐶))
95 fallfacval4 15985 . . . . . . . . 9 (𝐶 ∈ (0...𝐴) → (𝐴 FallFac 𝐶) = ((!‘𝐴) / (!‘(𝐴𝐶))))
9695adantl 481 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴 FallFac 𝐶) = ((!‘𝐴) / (!‘(𝐴𝐶))))
97 0zd 12517 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → 0 ∈ ℤ)
9827nn0ge0d 12482 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → 0 ≤ 𝐶)
9968, 12, 43, 15, 45letrd 11307 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶𝐵)
10097, 41, 9, 98, 99elfzd 13452 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ∈ (0...𝐵))
101 fallfacval4 15985 . . . . . . . . 9 (𝐶 ∈ (0...𝐵) → (𝐵 FallFac 𝐶) = ((!‘𝐵) / (!‘(𝐵𝐶))))
102100, 101syl 17 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐵 FallFac 𝐶) = ((!‘𝐵) / (!‘(𝐵𝐶))))
10394, 96, 1023brtr3d 5133 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐴) / (!‘(𝐴𝐶))) ≤ ((!‘𝐵) / (!‘(𝐵𝐶))))
10436, 58, 59, 103lediv1dd 13029 . . . . . 6 ((𝜑𝐶 ∈ (0...𝐴)) → (((!‘𝐴) / (!‘(𝐴𝐶))) / (!‘𝐶)) ≤ (((!‘𝐵) / (!‘(𝐵𝐶))) / (!‘𝐶)))
10539nncnd 12178 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐵) ∈ ℂ)
10655nncnd 12178 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐵𝐶)) ∈ ℂ)
107105, 106, 29, 57, 31divdiv1d 11965 . . . . . 6 ((𝜑𝐶 ∈ (0...𝐴)) → (((!‘𝐵) / (!‘(𝐵𝐶))) / (!‘𝐶)) = ((!‘𝐵) / ((!‘(𝐵𝐶)) · (!‘𝐶))))
108104, 107breqtrd 5128 . . . . 5 ((𝜑𝐶 ∈ (0...𝐴)) → (((!‘𝐴) / (!‘(𝐴𝐶))) / (!‘𝐶)) ≤ ((!‘𝐵) / ((!‘(𝐵𝐶)) · (!‘𝐶))))
10933, 108eqbrtrd 5124 . . . 4 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐴) / ((!‘(𝐴𝐶)) · (!‘𝐶))) ≤ ((!‘𝐵) / ((!‘(𝐵𝐶)) · (!‘𝐶))))
11037nn0zd 12531 . . . . . . . 8 (𝜑𝐵 ∈ ℤ)
111110adantr 480 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℤ)
112 elfzle1 13464 . . . . . . . 8 (𝐶 ∈ (0...𝐴) → 0 ≤ 𝐶)
113112adantl 481 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → 0 ≤ 𝐶)
1143nn0red 12480 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
115114adantr 480 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℝ)
116111zred 12614 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℝ)
11711, 115, 116, 15, 45letrd 11307 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶𝐵)
11897, 111, 9, 113, 117elfzd 13452 . . . . . 6 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ∈ (0...𝐵))
119 bcval2 14246 . . . . . 6 (𝐶 ∈ (0...𝐵) → (𝐵C𝐶) = ((!‘𝐵) / ((!‘(𝐵𝐶)) · (!‘𝐶))))
120118, 119syl 17 . . . . 5 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐵C𝐶) = ((!‘𝐵) / ((!‘(𝐵𝐶)) · (!‘𝐶))))
121120eqcomd 2735 . . . 4 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐵) / ((!‘(𝐵𝐶)) · (!‘𝐶))) = (𝐵C𝐶))
122109, 121breqtrd 5128 . . 3 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐴) / ((!‘(𝐴𝐶)) · (!‘𝐶))) ≤ (𝐵C𝐶))
1232, 122eqbrtrd 5124 . 2 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴C𝐶) ≤ (𝐵C𝐶))
1243adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℕ0)
1258adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℤ)
126 simpr 484 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → ¬ 𝐶 ∈ (0...𝐴))
127 bcval3 14247 . . . 4 ((𝐴 ∈ ℕ0𝐶 ∈ ℤ ∧ ¬ 𝐶 ∈ (0...𝐴)) → (𝐴C𝐶) = 0)
128124, 125, 126, 127syl3anc 1373 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → (𝐴C𝐶) = 0)
129 bccl2 14264 . . . . . . 7 (𝐶 ∈ (0...𝐵) → (𝐵C𝐶) ∈ ℕ)
130129adantl 481 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ 𝐶 ∈ (0...𝐵)) → (𝐵C𝐶) ∈ ℕ)
131130nnnn0d 12479 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ 𝐶 ∈ (0...𝐵)) → (𝐵C𝐶) ∈ ℕ0)
132131nn0ge0d 12482 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ 𝐶 ∈ (0...𝐵)) → 0 ≤ (𝐵C𝐶))
133 0le0 12263 . . . . . 6 0 ≤ 0
134133a1i 11 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → 0 ≤ 0)
13537ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → 𝐵 ∈ ℕ0)
136125adantr 480 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → 𝐶 ∈ ℤ)
137 simpr 484 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → ¬ 𝐶 ∈ (0...𝐵))
138 bcval3 14247 . . . . . . 7 ((𝐵 ∈ ℕ0𝐶 ∈ ℤ ∧ ¬ 𝐶 ∈ (0...𝐵)) → (𝐵C𝐶) = 0)
139135, 136, 137, 138syl3anc 1373 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → (𝐵C𝐶) = 0)
140139eqcomd 2735 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → 0 = (𝐵C𝐶))
141134, 140breqtrd 5128 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → 0 ≤ (𝐵C𝐶))
142132, 141pm2.61dan 812 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → 0 ≤ (𝐵C𝐶))
143128, 142eqbrtrd 5124 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → (𝐴C𝐶) ≤ (𝐵C𝐶))
144123, 143pm2.61dan 812 1 (𝜑 → (𝐴C𝐶) ≤ (𝐵C𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   · cmul 11049  cle 11185  cmin 11381   / cdiv 11811  cn 12162  0cn0 12418  cz 12505  ...cfz 13444  !cfa 14214  Ccbc 14243  cprod 15845   FallFac cfallfac 15946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ico 13288  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-prod 15846  df-fallfac 15949
This theorem is referenced by:  aks6d1c7lem1  42141
  Copyright terms: Public domain W3C validator