Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bcled Structured version   Visualization version   GIF version

Theorem bcled 42173
Description: Inequality for binomial coefficients. (Contributed by metakunt, 12-May-2025.)
Hypotheses
Ref Expression
bcled.1 (𝜑𝐴 ∈ ℕ0)
bcled.2 (𝜑𝐵 ∈ ℕ0)
bcled.3 (𝜑𝐶 ∈ ℤ)
bcled.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
bcled (𝜑 → (𝐴C𝐶) ≤ (𝐵C𝐶))

Proof of Theorem bcled
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 bcval2 14277 . . . 4 (𝐶 ∈ (0...𝐴) → (𝐴C𝐶) = ((!‘𝐴) / ((!‘(𝐴𝐶)) · (!‘𝐶))))
21adantl 481 . . 3 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴C𝐶) = ((!‘𝐴) / ((!‘(𝐴𝐶)) · (!‘𝐶))))
3 bcled.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℕ0)
43adantr 480 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℕ0)
54faccld 14256 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐴) ∈ ℕ)
65nncnd 12209 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐴) ∈ ℂ)
74nn0zd 12562 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℤ)
8 bcled.3 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ ℤ)
98adantr 480 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℤ)
107, 9zsubcld 12650 . . . . . . . . . . 11 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴𝐶) ∈ ℤ)
119zred 12645 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℝ)
124nn0red 12511 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℝ)
13 0red 11184 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 0 ∈ ℝ)
14 elfzle2 13496 . . . . . . . . . . . . . 14 (𝐶 ∈ (0...𝐴) → 𝐶𝐴)
1514adantl 481 . . . . . . . . . . . . 13 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶𝐴)
1612recnd 11209 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℂ)
1716subid1d 11529 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴 − 0) = 𝐴)
1817eqcomd 2736 . . . . . . . . . . . . 13 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 = (𝐴 − 0))
1915, 18breqtrd 5136 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ≤ (𝐴 − 0))
2011, 12, 13, 19lesubd 11789 . . . . . . . . . . 11 ((𝜑𝐶 ∈ (0...𝐴)) → 0 ≤ (𝐴𝐶))
2110, 20jca 511 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → ((𝐴𝐶) ∈ ℤ ∧ 0 ≤ (𝐴𝐶)))
22 elnn0z 12549 . . . . . . . . . 10 ((𝐴𝐶) ∈ ℕ0 ↔ ((𝐴𝐶) ∈ ℤ ∧ 0 ≤ (𝐴𝐶)))
2321, 22sylibr 234 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴𝐶) ∈ ℕ0)
2423faccld 14256 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐴𝐶)) ∈ ℕ)
2524nncnd 12209 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐴𝐶)) ∈ ℂ)
26 elfznn0 13588 . . . . . . . . . 10 (𝐶 ∈ (0...𝐴) → 𝐶 ∈ ℕ0)
2726adantl 481 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℕ0)
2827faccld 14256 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐶) ∈ ℕ)
2928nncnd 12209 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐶) ∈ ℂ)
3024nnne0d 12243 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐴𝐶)) ≠ 0)
3128nnne0d 12243 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐶) ≠ 0)
326, 25, 29, 30, 31divdiv1d 11996 . . . . . 6 ((𝜑𝐶 ∈ (0...𝐴)) → (((!‘𝐴) / (!‘(𝐴𝐶))) / (!‘𝐶)) = ((!‘𝐴) / ((!‘(𝐴𝐶)) · (!‘𝐶))))
3332eqcomd 2736 . . . . 5 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐴) / ((!‘(𝐴𝐶)) · (!‘𝐶))) = (((!‘𝐴) / (!‘(𝐴𝐶))) / (!‘𝐶)))
345nnred 12208 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐴) ∈ ℝ)
3524nnred 12208 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐴𝐶)) ∈ ℝ)
3634, 35, 30redivcld 12017 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐴) / (!‘(𝐴𝐶))) ∈ ℝ)
37 bcled.2 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℕ0)
3837adantr 480 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℕ0)
3938faccld 14256 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐵) ∈ ℕ)
4039nnred 12208 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐵) ∈ ℝ)
4138nn0zd 12562 . . . . . . . . . . . . 13 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℤ)
4241, 9zsubcld 12650 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐵𝐶) ∈ ℤ)
4338nn0red 12511 . . . . . . . . . . . . 13 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℝ)
44 bcled.4 . . . . . . . . . . . . . . . 16 (𝜑𝐴𝐵)
4544adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴𝐵)
4611, 12, 43, 15, 45letrd 11338 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶𝐵)
4743recnd 11209 . . . . . . . . . . . . . . . 16 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℂ)
4847subid1d 11529 . . . . . . . . . . . . . . 15 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐵 − 0) = 𝐵)
4948eqcomd 2736 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 = (𝐵 − 0))
5046, 49breqtrd 5136 . . . . . . . . . . . . 13 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ≤ (𝐵 − 0))
5111, 43, 13, 50lesubd 11789 . . . . . . . . . . . 12 ((𝜑𝐶 ∈ (0...𝐴)) → 0 ≤ (𝐵𝐶))
5242, 51jca 511 . . . . . . . . . . 11 ((𝜑𝐶 ∈ (0...𝐴)) → ((𝐵𝐶) ∈ ℤ ∧ 0 ≤ (𝐵𝐶)))
53 elnn0z 12549 . . . . . . . . . . 11 ((𝐵𝐶) ∈ ℕ0 ↔ ((𝐵𝐶) ∈ ℤ ∧ 0 ≤ (𝐵𝐶)))
5452, 53sylibr 234 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐵𝐶) ∈ ℕ0)
5554faccld 14256 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐵𝐶)) ∈ ℕ)
5655nnred 12208 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐵𝐶)) ∈ ℝ)
5755nnne0d 12243 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐵𝐶)) ≠ 0)
5840, 56, 57redivcld 12017 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐵) / (!‘(𝐵𝐶))) ∈ ℝ)
5928nnrpd 13000 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐶) ∈ ℝ+)
60 nfv 1914 . . . . . . . . . 10 𝑘(𝜑𝐶 ∈ (0...𝐴))
61 fzfid 13945 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → (0...(𝐶 − 1)) ∈ Fin)
6212adantr 480 . . . . . . . . . . 11 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝐴 ∈ ℝ)
63 elfzelz 13492 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(𝐶 − 1)) → 𝑘 ∈ ℤ)
6463adantl 481 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝑘 ∈ ℤ)
6564zred 12645 . . . . . . . . . . 11 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝑘 ∈ ℝ)
6662, 65resubcld 11613 . . . . . . . . . 10 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐴𝑘) ∈ ℝ)
67 0red 11184 . . . . . . . . . . 11 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 0 ∈ ℝ)
6827nn0red 12511 . . . . . . . . . . . . . 14 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℝ)
6968adantr 480 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝐶 ∈ ℝ)
70 1red 11182 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 1 ∈ ℝ)
7169, 70resubcld 11613 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐶 − 1) ∈ ℝ)
7262, 67resubcld 11613 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐴 − 0) ∈ ℝ)
73 elfzle2 13496 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(𝐶 − 1)) → 𝑘 ≤ (𝐶 − 1))
7473adantl 481 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝑘 ≤ (𝐶 − 1))
7515adantr 480 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝐶𝐴)
76 0le1 11708 . . . . . . . . . . . . . 14 0 ≤ 1
7776a1i 11 . . . . . . . . . . . . 13 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 0 ≤ 1)
7869, 67, 62, 70, 75, 77le2subd 11805 . . . . . . . . . . . 12 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐶 − 1) ≤ (𝐴 − 0))
7965, 71, 72, 74, 78letrd 11338 . . . . . . . . . . 11 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝑘 ≤ (𝐴 − 0))
8065, 62, 67, 79lesubd 11789 . . . . . . . . . 10 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 0 ≤ (𝐴𝑘))
8143adantr 480 . . . . . . . . . . 11 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝐵 ∈ ℝ)
8281, 65resubcld 11613 . . . . . . . . . 10 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐵𝑘) ∈ ℝ)
8344ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝐴𝐵)
8462, 81, 65, 83lesub1dd 11801 . . . . . . . . . 10 (((𝜑𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐴𝑘) ≤ (𝐵𝑘))
8560, 61, 66, 80, 82, 84fprodle 15969 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → ∏𝑘 ∈ (0...(𝐶 − 1))(𝐴𝑘) ≤ ∏𝑘 ∈ (0...(𝐶 − 1))(𝐵𝑘))
864nn0cnd 12512 . . . . . . . . . . 11 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℂ)
87 fallfacval 15982 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → (𝐴 FallFac 𝐶) = ∏𝑘 ∈ (0...(𝐶 − 1))(𝐴𝑘))
8886, 27, 87syl2anc 584 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴 FallFac 𝐶) = ∏𝑘 ∈ (0...(𝐶 − 1))(𝐴𝑘))
8988eqcomd 2736 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → ∏𝑘 ∈ (0...(𝐶 − 1))(𝐴𝑘) = (𝐴 FallFac 𝐶))
9038nn0cnd 12512 . . . . . . . . . . 11 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℂ)
91 fallfacval 15982 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0) → (𝐵 FallFac 𝐶) = ∏𝑘 ∈ (0...(𝐶 − 1))(𝐵𝑘))
9290, 27, 91syl2anc 584 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐵 FallFac 𝐶) = ∏𝑘 ∈ (0...(𝐶 − 1))(𝐵𝑘))
9392eqcomd 2736 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → ∏𝑘 ∈ (0...(𝐶 − 1))(𝐵𝑘) = (𝐵 FallFac 𝐶))
9485, 89, 933brtr3d 5141 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴 FallFac 𝐶) ≤ (𝐵 FallFac 𝐶))
95 fallfacval4 16016 . . . . . . . . 9 (𝐶 ∈ (0...𝐴) → (𝐴 FallFac 𝐶) = ((!‘𝐴) / (!‘(𝐴𝐶))))
9695adantl 481 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴 FallFac 𝐶) = ((!‘𝐴) / (!‘(𝐴𝐶))))
97 0zd 12548 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → 0 ∈ ℤ)
9827nn0ge0d 12513 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → 0 ≤ 𝐶)
9968, 12, 43, 15, 45letrd 11338 . . . . . . . . . 10 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶𝐵)
10097, 41, 9, 98, 99elfzd 13483 . . . . . . . . 9 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ∈ (0...𝐵))
101 fallfacval4 16016 . . . . . . . . 9 (𝐶 ∈ (0...𝐵) → (𝐵 FallFac 𝐶) = ((!‘𝐵) / (!‘(𝐵𝐶))))
102100, 101syl 17 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐵 FallFac 𝐶) = ((!‘𝐵) / (!‘(𝐵𝐶))))
10394, 96, 1023brtr3d 5141 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐴) / (!‘(𝐴𝐶))) ≤ ((!‘𝐵) / (!‘(𝐵𝐶))))
10436, 58, 59, 103lediv1dd 13060 . . . . . 6 ((𝜑𝐶 ∈ (0...𝐴)) → (((!‘𝐴) / (!‘(𝐴𝐶))) / (!‘𝐶)) ≤ (((!‘𝐵) / (!‘(𝐵𝐶))) / (!‘𝐶)))
10539nncnd 12209 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘𝐵) ∈ ℂ)
10655nncnd 12209 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → (!‘(𝐵𝐶)) ∈ ℂ)
107105, 106, 29, 57, 31divdiv1d 11996 . . . . . 6 ((𝜑𝐶 ∈ (0...𝐴)) → (((!‘𝐵) / (!‘(𝐵𝐶))) / (!‘𝐶)) = ((!‘𝐵) / ((!‘(𝐵𝐶)) · (!‘𝐶))))
108104, 107breqtrd 5136 . . . . 5 ((𝜑𝐶 ∈ (0...𝐴)) → (((!‘𝐴) / (!‘(𝐴𝐶))) / (!‘𝐶)) ≤ ((!‘𝐵) / ((!‘(𝐵𝐶)) · (!‘𝐶))))
10933, 108eqbrtrd 5132 . . . 4 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐴) / ((!‘(𝐴𝐶)) · (!‘𝐶))) ≤ ((!‘𝐵) / ((!‘(𝐵𝐶)) · (!‘𝐶))))
11037nn0zd 12562 . . . . . . . 8 (𝜑𝐵 ∈ ℤ)
111110adantr 480 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℤ)
112 elfzle1 13495 . . . . . . . 8 (𝐶 ∈ (0...𝐴) → 0 ≤ 𝐶)
113112adantl 481 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → 0 ≤ 𝐶)
1143nn0red 12511 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
115114adantr 480 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℝ)
116111zred 12645 . . . . . . . 8 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℝ)
11711, 115, 116, 15, 45letrd 11338 . . . . . . 7 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶𝐵)
11897, 111, 9, 113, 117elfzd 13483 . . . . . 6 ((𝜑𝐶 ∈ (0...𝐴)) → 𝐶 ∈ (0...𝐵))
119 bcval2 14277 . . . . . 6 (𝐶 ∈ (0...𝐵) → (𝐵C𝐶) = ((!‘𝐵) / ((!‘(𝐵𝐶)) · (!‘𝐶))))
120118, 119syl 17 . . . . 5 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐵C𝐶) = ((!‘𝐵) / ((!‘(𝐵𝐶)) · (!‘𝐶))))
121120eqcomd 2736 . . . 4 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐵) / ((!‘(𝐵𝐶)) · (!‘𝐶))) = (𝐵C𝐶))
122109, 121breqtrd 5136 . . 3 ((𝜑𝐶 ∈ (0...𝐴)) → ((!‘𝐴) / ((!‘(𝐴𝐶)) · (!‘𝐶))) ≤ (𝐵C𝐶))
1232, 122eqbrtrd 5132 . 2 ((𝜑𝐶 ∈ (0...𝐴)) → (𝐴C𝐶) ≤ (𝐵C𝐶))
1243adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℕ0)
1258adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℤ)
126 simpr 484 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → ¬ 𝐶 ∈ (0...𝐴))
127 bcval3 14278 . . . 4 ((𝐴 ∈ ℕ0𝐶 ∈ ℤ ∧ ¬ 𝐶 ∈ (0...𝐴)) → (𝐴C𝐶) = 0)
128124, 125, 126, 127syl3anc 1373 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → (𝐴C𝐶) = 0)
129 bccl2 14295 . . . . . . 7 (𝐶 ∈ (0...𝐵) → (𝐵C𝐶) ∈ ℕ)
130129adantl 481 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ 𝐶 ∈ (0...𝐵)) → (𝐵C𝐶) ∈ ℕ)
131130nnnn0d 12510 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ 𝐶 ∈ (0...𝐵)) → (𝐵C𝐶) ∈ ℕ0)
132131nn0ge0d 12513 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ 𝐶 ∈ (0...𝐵)) → 0 ≤ (𝐵C𝐶))
133 0le0 12294 . . . . . 6 0 ≤ 0
134133a1i 11 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → 0 ≤ 0)
13537ad2antrr 726 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → 𝐵 ∈ ℕ0)
136125adantr 480 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → 𝐶 ∈ ℤ)
137 simpr 484 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → ¬ 𝐶 ∈ (0...𝐵))
138 bcval3 14278 . . . . . . 7 ((𝐵 ∈ ℕ0𝐶 ∈ ℤ ∧ ¬ 𝐶 ∈ (0...𝐵)) → (𝐵C𝐶) = 0)
139135, 136, 137, 138syl3anc 1373 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → (𝐵C𝐶) = 0)
140139eqcomd 2736 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → 0 = (𝐵C𝐶))
141134, 140breqtrd 5136 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → 0 ≤ (𝐵C𝐶))
142132, 141pm2.61dan 812 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → 0 ≤ (𝐵C𝐶))
143128, 142eqbrtrd 5132 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → (𝐴C𝐶) ≤ (𝐵C𝐶))
144123, 143pm2.61dan 812 1 (𝜑 → (𝐴C𝐶) ≤ (𝐵C𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   · cmul 11080  cle 11216  cmin 11412   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  ...cfz 13475  !cfa 14245  Ccbc 14274  cprod 15876   FallFac cfallfac 15977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-prod 15877  df-fallfac 15980
This theorem is referenced by:  aks6d1c7lem1  42175
  Copyright terms: Public domain W3C validator