Step | Hyp | Ref
| Expression |
1 | | bcval2 14316 |
. . . 4
⊢ (𝐶 ∈ (0...𝐴) → (𝐴C𝐶) = ((!‘𝐴) / ((!‘(𝐴 − 𝐶)) · (!‘𝐶)))) |
2 | 1 | adantl 480 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (𝐴C𝐶) = ((!‘𝐴) / ((!‘(𝐴 − 𝐶)) · (!‘𝐶)))) |
3 | | bcled.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈
ℕ0) |
4 | 3 | adantr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈
ℕ0) |
5 | 4 | faccld 14295 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (!‘𝐴) ∈ ℕ) |
6 | 5 | nncnd 12273 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (!‘𝐴) ∈ ℂ) |
7 | 4 | nn0zd 12629 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℤ) |
8 | | bcled.3 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ∈ ℤ) |
9 | 8 | adantr 479 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℤ) |
10 | 7, 9 | zsubcld 12716 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − 𝐶) ∈ ℤ) |
11 | 9 | zred 12711 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℝ) |
12 | 4 | nn0red 12578 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℝ) |
13 | | 0red 11257 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 0 ∈ ℝ) |
14 | | elfzle2 13552 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ (0...𝐴) → 𝐶 ≤ 𝐴) |
15 | 14 | adantl 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐶 ≤ 𝐴) |
16 | 12 | recnd 11282 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℂ) |
17 | 16 | subid1d 11600 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − 0) = 𝐴) |
18 | 17 | eqcomd 2732 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 = (𝐴 − 0)) |
19 | 15, 18 | breqtrd 5171 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐶 ≤ (𝐴 − 0)) |
20 | 11, 12, 13, 19 | lesubd 11858 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 0 ≤ (𝐴 − 𝐶)) |
21 | 10, 20 | jca 510 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → ((𝐴 − 𝐶) ∈ ℤ ∧ 0 ≤ (𝐴 − 𝐶))) |
22 | | elnn0z 12616 |
. . . . . . . . . 10
⊢ ((𝐴 − 𝐶) ∈ ℕ0 ↔ ((𝐴 − 𝐶) ∈ ℤ ∧ 0 ≤ (𝐴 − 𝐶))) |
23 | 21, 22 | sylibr 233 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 − 𝐶) ∈
ℕ0) |
24 | 23 | faccld 14295 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (!‘(𝐴 − 𝐶)) ∈ ℕ) |
25 | 24 | nncnd 12273 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (!‘(𝐴 − 𝐶)) ∈ ℂ) |
26 | | elfznn0 13641 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (0...𝐴) → 𝐶 ∈
ℕ0) |
27 | 26 | adantl 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐶 ∈
ℕ0) |
28 | 27 | faccld 14295 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (!‘𝐶) ∈ ℕ) |
29 | 28 | nncnd 12273 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (!‘𝐶) ∈ ℂ) |
30 | 24 | nnne0d 12307 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (!‘(𝐴 − 𝐶)) ≠ 0) |
31 | 28 | nnne0d 12307 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (!‘𝐶) ≠ 0) |
32 | 6, 25, 29, 30, 31 | divdiv1d 12065 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (((!‘𝐴) / (!‘(𝐴 − 𝐶))) / (!‘𝐶)) = ((!‘𝐴) / ((!‘(𝐴 − 𝐶)) · (!‘𝐶)))) |
33 | 32 | eqcomd 2732 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → ((!‘𝐴) / ((!‘(𝐴 − 𝐶)) · (!‘𝐶))) = (((!‘𝐴) / (!‘(𝐴 − 𝐶))) / (!‘𝐶))) |
34 | 5 | nnred 12272 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (!‘𝐴) ∈ ℝ) |
35 | 24 | nnred 12272 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (!‘(𝐴 − 𝐶)) ∈ ℝ) |
36 | 34, 35, 30 | redivcld 12086 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → ((!‘𝐴) / (!‘(𝐴 − 𝐶))) ∈ ℝ) |
37 | | bcled.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈
ℕ0) |
38 | 37 | adantr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐵 ∈
ℕ0) |
39 | 38 | faccld 14295 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (!‘𝐵) ∈ ℕ) |
40 | 39 | nnred 12272 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (!‘𝐵) ∈ ℝ) |
41 | 38 | nn0zd 12629 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℤ) |
42 | 41, 9 | zsubcld 12716 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 − 𝐶) ∈ ℤ) |
43 | 38 | nn0red 12578 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℝ) |
44 | | bcled.4 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
45 | 44 | adantr 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ≤ 𝐵) |
46 | 11, 12, 43, 15, 45 | letrd 11411 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐶 ≤ 𝐵) |
47 | 43 | recnd 11282 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℂ) |
48 | 47 | subid1d 11600 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 − 0) = 𝐵) |
49 | 48 | eqcomd 2732 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐵 = (𝐵 − 0)) |
50 | 46, 49 | breqtrd 5171 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐶 ≤ (𝐵 − 0)) |
51 | 11, 43, 13, 50 | lesubd 11858 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 0 ≤ (𝐵 − 𝐶)) |
52 | 42, 51 | jca 510 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → ((𝐵 − 𝐶) ∈ ℤ ∧ 0 ≤ (𝐵 − 𝐶))) |
53 | | elnn0z 12616 |
. . . . . . . . . . 11
⊢ ((𝐵 − 𝐶) ∈ ℕ0 ↔ ((𝐵 − 𝐶) ∈ ℤ ∧ 0 ≤ (𝐵 − 𝐶))) |
54 | 52, 53 | sylibr 233 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 − 𝐶) ∈
ℕ0) |
55 | 54 | faccld 14295 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (!‘(𝐵 − 𝐶)) ∈ ℕ) |
56 | 55 | nnred 12272 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (!‘(𝐵 − 𝐶)) ∈ ℝ) |
57 | 55 | nnne0d 12307 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (!‘(𝐵 − 𝐶)) ≠ 0) |
58 | 40, 56, 57 | redivcld 12086 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → ((!‘𝐵) / (!‘(𝐵 − 𝐶))) ∈ ℝ) |
59 | 28 | nnrpd 13061 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (!‘𝐶) ∈
ℝ+) |
60 | | nfv 1910 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝜑 ∧ 𝐶 ∈ (0...𝐴)) |
61 | | fzfid 13986 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (0...(𝐶 − 1)) ∈ Fin) |
62 | 12 | adantr 479 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝐴 ∈ ℝ) |
63 | | elfzelz 13548 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0...(𝐶 − 1)) → 𝑘 ∈ ℤ) |
64 | 63 | adantl 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝑘 ∈ ℤ) |
65 | 64 | zred 12711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝑘 ∈ ℝ) |
66 | 62, 65 | resubcld 11682 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐴 − 𝑘) ∈ ℝ) |
67 | | 0red 11257 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 0 ∈
ℝ) |
68 | 27 | nn0red 12578 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℝ) |
69 | 68 | adantr 479 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝐶 ∈ ℝ) |
70 | | 1red 11255 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 1 ∈
ℝ) |
71 | 69, 70 | resubcld 11682 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐶 − 1) ∈ ℝ) |
72 | 62, 67 | resubcld 11682 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐴 − 0) ∈ ℝ) |
73 | | elfzle2 13552 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0...(𝐶 − 1)) → 𝑘 ≤ (𝐶 − 1)) |
74 | 73 | adantl 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝑘 ≤ (𝐶 − 1)) |
75 | 15 | adantr 479 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝐶 ≤ 𝐴) |
76 | | 0le1 11777 |
. . . . . . . . . . . . . 14
⊢ 0 ≤
1 |
77 | 76 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 0 ≤
1) |
78 | 69, 67, 62, 70, 75, 77 | le2subd 11874 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐶 − 1) ≤ (𝐴 − 0)) |
79 | 65, 71, 72, 74, 78 | letrd 11411 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝑘 ≤ (𝐴 − 0)) |
80 | 65, 62, 67, 79 | lesubd 11858 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 0 ≤ (𝐴 − 𝑘)) |
81 | 43 | adantr 479 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝐵 ∈ ℝ) |
82 | 81, 65 | resubcld 11682 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐵 − 𝑘) ∈ ℝ) |
83 | 44 | ad2antrr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → 𝐴 ≤ 𝐵) |
84 | 62, 81, 65, 83 | lesub1dd 11870 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐶 ∈ (0...𝐴)) ∧ 𝑘 ∈ (0...(𝐶 − 1))) → (𝐴 − 𝑘) ≤ (𝐵 − 𝑘)) |
85 | 60, 61, 66, 80, 82, 84 | fprodle 15992 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → ∏𝑘 ∈ (0...(𝐶 − 1))(𝐴 − 𝑘) ≤ ∏𝑘 ∈ (0...(𝐶 − 1))(𝐵 − 𝑘)) |
86 | 4 | nn0cnd 12579 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℂ) |
87 | | fallfacval 16005 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℕ0)
→ (𝐴 FallFac 𝐶) = ∏𝑘 ∈ (0...(𝐶 − 1))(𝐴 − 𝑘)) |
88 | 86, 27, 87 | syl2anc 582 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 FallFac 𝐶) = ∏𝑘 ∈ (0...(𝐶 − 1))(𝐴 − 𝑘)) |
89 | 88 | eqcomd 2732 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → ∏𝑘 ∈ (0...(𝐶 − 1))(𝐴 − 𝑘) = (𝐴 FallFac 𝐶)) |
90 | 38 | nn0cnd 12579 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℂ) |
91 | | fallfacval 16005 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0)
→ (𝐵 FallFac 𝐶) = ∏𝑘 ∈ (0...(𝐶 − 1))(𝐵 − 𝑘)) |
92 | 90, 27, 91 | syl2anc 582 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 FallFac 𝐶) = ∏𝑘 ∈ (0...(𝐶 − 1))(𝐵 − 𝑘)) |
93 | 92 | eqcomd 2732 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → ∏𝑘 ∈ (0...(𝐶 − 1))(𝐵 − 𝑘) = (𝐵 FallFac 𝐶)) |
94 | 85, 89, 93 | 3brtr3d 5176 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 FallFac 𝐶) ≤ (𝐵 FallFac 𝐶)) |
95 | | fallfacval4 16039 |
. . . . . . . . 9
⊢ (𝐶 ∈ (0...𝐴) → (𝐴 FallFac 𝐶) = ((!‘𝐴) / (!‘(𝐴 − 𝐶)))) |
96 | 95 | adantl 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (𝐴 FallFac 𝐶) = ((!‘𝐴) / (!‘(𝐴 − 𝐶)))) |
97 | | 0zd 12615 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 0 ∈ ℤ) |
98 | 27 | nn0ge0d 12580 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 0 ≤ 𝐶) |
99 | 68, 12, 43, 15, 45 | letrd 11411 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐶 ≤ 𝐵) |
100 | 97, 41, 9, 98, 99 | elfzd 13539 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐶 ∈ (0...𝐵)) |
101 | | fallfacval4 16039 |
. . . . . . . . 9
⊢ (𝐶 ∈ (0...𝐵) → (𝐵 FallFac 𝐶) = ((!‘𝐵) / (!‘(𝐵 − 𝐶)))) |
102 | 100, 101 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (𝐵 FallFac 𝐶) = ((!‘𝐵) / (!‘(𝐵 − 𝐶)))) |
103 | 94, 96, 102 | 3brtr3d 5176 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → ((!‘𝐴) / (!‘(𝐴 − 𝐶))) ≤ ((!‘𝐵) / (!‘(𝐵 − 𝐶)))) |
104 | 36, 58, 59, 103 | lediv1dd 13121 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (((!‘𝐴) / (!‘(𝐴 − 𝐶))) / (!‘𝐶)) ≤ (((!‘𝐵) / (!‘(𝐵 − 𝐶))) / (!‘𝐶))) |
105 | 39 | nncnd 12273 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (!‘𝐵) ∈ ℂ) |
106 | 55 | nncnd 12273 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (!‘(𝐵 − 𝐶)) ∈ ℂ) |
107 | 105, 106,
29, 57, 31 | divdiv1d 12065 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (((!‘𝐵) / (!‘(𝐵 − 𝐶))) / (!‘𝐶)) = ((!‘𝐵) / ((!‘(𝐵 − 𝐶)) · (!‘𝐶)))) |
108 | 104, 107 | breqtrd 5171 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (((!‘𝐴) / (!‘(𝐴 − 𝐶))) / (!‘𝐶)) ≤ ((!‘𝐵) / ((!‘(𝐵 − 𝐶)) · (!‘𝐶)))) |
109 | 33, 108 | eqbrtrd 5167 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → ((!‘𝐴) / ((!‘(𝐴 − 𝐶)) · (!‘𝐶))) ≤ ((!‘𝐵) / ((!‘(𝐵 − 𝐶)) · (!‘𝐶)))) |
110 | 37 | nn0zd 12629 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ ℤ) |
111 | 110 | adantr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℤ) |
112 | | elfzle1 13551 |
. . . . . . . 8
⊢ (𝐶 ∈ (0...𝐴) → 0 ≤ 𝐶) |
113 | 112 | adantl 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 0 ≤ 𝐶) |
114 | 3 | nn0red 12578 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℝ) |
115 | 114 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈ ℝ) |
116 | 111 | zred 12711 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐵 ∈ ℝ) |
117 | 11, 115, 116, 15, 45 | letrd 11411 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐶 ≤ 𝐵) |
118 | 97, 111, 9, 113, 117 | elfzd 13539 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → 𝐶 ∈ (0...𝐵)) |
119 | | bcval2 14316 |
. . . . . 6
⊢ (𝐶 ∈ (0...𝐵) → (𝐵C𝐶) = ((!‘𝐵) / ((!‘(𝐵 − 𝐶)) · (!‘𝐶)))) |
120 | 118, 119 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (𝐵C𝐶) = ((!‘𝐵) / ((!‘(𝐵 − 𝐶)) · (!‘𝐶)))) |
121 | 120 | eqcomd 2732 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → ((!‘𝐵) / ((!‘(𝐵 − 𝐶)) · (!‘𝐶))) = (𝐵C𝐶)) |
122 | 109, 121 | breqtrd 5171 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → ((!‘𝐴) / ((!‘(𝐴 − 𝐶)) · (!‘𝐶))) ≤ (𝐵C𝐶)) |
123 | 2, 122 | eqbrtrd 5167 |
. 2
⊢ ((𝜑 ∧ 𝐶 ∈ (0...𝐴)) → (𝐴C𝐶) ≤ (𝐵C𝐶)) |
124 | 3 | adantr 479 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → 𝐴 ∈
ℕ0) |
125 | 8 | adantr 479 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → 𝐶 ∈ ℤ) |
126 | | simpr 483 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → ¬ 𝐶 ∈ (0...𝐴)) |
127 | | bcval3 14317 |
. . . 4
⊢ ((𝐴 ∈ ℕ0
∧ 𝐶 ∈ ℤ
∧ ¬ 𝐶 ∈
(0...𝐴)) → (𝐴C𝐶) = 0) |
128 | 124, 125,
126, 127 | syl3anc 1368 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → (𝐴C𝐶) = 0) |
129 | | bccl2 14334 |
. . . . . . 7
⊢ (𝐶 ∈ (0...𝐵) → (𝐵C𝐶) ∈ ℕ) |
130 | 129 | adantl 480 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ 𝐶 ∈ (0...𝐵)) → (𝐵C𝐶) ∈ ℕ) |
131 | 130 | nnnn0d 12577 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ 𝐶 ∈ (0...𝐵)) → (𝐵C𝐶) ∈
ℕ0) |
132 | 131 | nn0ge0d 12580 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ 𝐶 ∈ (0...𝐵)) → 0 ≤ (𝐵C𝐶)) |
133 | | 0le0 12358 |
. . . . . 6
⊢ 0 ≤
0 |
134 | 133 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → 0 ≤ 0) |
135 | 37 | ad2antrr 724 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → 𝐵 ∈
ℕ0) |
136 | 125 | adantr 479 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → 𝐶 ∈ ℤ) |
137 | | simpr 483 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → ¬ 𝐶 ∈ (0...𝐵)) |
138 | | bcval3 14317 |
. . . . . . 7
⊢ ((𝐵 ∈ ℕ0
∧ 𝐶 ∈ ℤ
∧ ¬ 𝐶 ∈
(0...𝐵)) → (𝐵C𝐶) = 0) |
139 | 135, 136,
137, 138 | syl3anc 1368 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → (𝐵C𝐶) = 0) |
140 | 139 | eqcomd 2732 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → 0 = (𝐵C𝐶)) |
141 | 134, 140 | breqtrd 5171 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) ∧ ¬ 𝐶 ∈ (0...𝐵)) → 0 ≤ (𝐵C𝐶)) |
142 | 132, 141 | pm2.61dan 811 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → 0 ≤ (𝐵C𝐶)) |
143 | 128, 142 | eqbrtrd 5167 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ (0...𝐴)) → (𝐴C𝐶) ≤ (𝐵C𝐶)) |
144 | 123, 143 | pm2.61dan 811 |
1
⊢ (𝜑 → (𝐴C𝐶) ≤ (𝐵C𝐶)) |