MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bccmpl Structured version   Visualization version   GIF version

Theorem bccmpl 14226
Description: "Complementing" its second argument doesn't change a binary coefficient. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 5-Mar-2014.)
Assertion
Ref Expression
bccmpl ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) = (𝑁C(𝑁𝐾)))

Proof of Theorem bccmpl
StepHypRef Expression
1 bcval2 14222 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
2 fznn0sub2 13545 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ (0...𝑁))
3 bcval2 14222 . . . . . 6 ((𝑁𝐾) ∈ (0...𝑁) → (𝑁C(𝑁𝐾)) = ((!‘𝑁) / ((!‘(𝑁 − (𝑁𝐾))) · (!‘(𝑁𝐾)))))
42, 3syl 17 . . . . 5 (𝐾 ∈ (0...𝑁) → (𝑁C(𝑁𝐾)) = ((!‘𝑁) / ((!‘(𝑁 − (𝑁𝐾))) · (!‘(𝑁𝐾)))))
5 elfznn0 13530 . . . . . . . . . . 11 ((𝑁𝐾) ∈ (0...𝑁) → (𝑁𝐾) ∈ ℕ0)
65faccld 14201 . . . . . . . . . 10 ((𝑁𝐾) ∈ (0...𝑁) → (!‘(𝑁𝐾)) ∈ ℕ)
76nncnd 12151 . . . . . . . . 9 ((𝑁𝐾) ∈ (0...𝑁) → (!‘(𝑁𝐾)) ∈ ℂ)
82, 7syl 17 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (!‘(𝑁𝐾)) ∈ ℂ)
9 elfznn0 13530 . . . . . . . . . 10 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
109faccld 14201 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → (!‘𝐾) ∈ ℕ)
1110nncnd 12151 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (!‘𝐾) ∈ ℂ)
128, 11mulcomd 11143 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) = ((!‘𝐾) · (!‘(𝑁𝐾))))
13 elfz3nn0 13531 . . . . . . . . . 10 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
14 elfzelz 13434 . . . . . . . . . 10 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
15 nn0cn 12401 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
16 zcn 12483 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
17 nncan 11400 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑁 − (𝑁𝐾)) = 𝐾)
1815, 16, 17syl2an 596 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁 − (𝑁𝐾)) = 𝐾)
1913, 14, 18syl2anc 584 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → (𝑁 − (𝑁𝐾)) = 𝐾)
2019fveq2d 6835 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (!‘(𝑁 − (𝑁𝐾))) = (!‘𝐾))
2120oveq1d 7370 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁 − (𝑁𝐾))) · (!‘(𝑁𝐾))) = ((!‘𝐾) · (!‘(𝑁𝐾))))
2212, 21eqtr4d 2771 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) = ((!‘(𝑁 − (𝑁𝐾))) · (!‘(𝑁𝐾))))
2322oveq2d 7371 . . . . 5 (𝐾 ∈ (0...𝑁) → ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) = ((!‘𝑁) / ((!‘(𝑁 − (𝑁𝐾))) · (!‘(𝑁𝐾)))))
244, 23eqtr4d 2771 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁C(𝑁𝐾)) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
251, 24eqtr4d 2771 . . 3 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = (𝑁C(𝑁𝐾)))
2625adantl 481 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = (𝑁C(𝑁𝐾)))
27 bcval3 14223 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
28 simp1 1136 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
29 nn0z 12503 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
30 zsubcl 12524 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾) ∈ ℤ)
3129, 30sylan 580 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁𝐾) ∈ ℤ)
32313adant3 1132 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℤ)
33 fznn0sub2 13545 . . . . . . . 8 ((𝑁𝐾) ∈ (0...𝑁) → (𝑁 − (𝑁𝐾)) ∈ (0...𝑁))
3418eleq1d 2818 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝑁 − (𝑁𝐾)) ∈ (0...𝑁) ↔ 𝐾 ∈ (0...𝑁)))
3533, 34imbitrid 244 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝑁𝐾) ∈ (0...𝑁) → 𝐾 ∈ (0...𝑁)))
3635con3d 152 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (¬ 𝐾 ∈ (0...𝑁) → ¬ (𝑁𝐾) ∈ (0...𝑁)))
37363impia 1117 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → ¬ (𝑁𝐾) ∈ (0...𝑁))
38 bcval3 14223 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁𝐾) ∈ ℤ ∧ ¬ (𝑁𝐾) ∈ (0...𝑁)) → (𝑁C(𝑁𝐾)) = 0)
3928, 32, 37, 38syl3anc 1373 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C(𝑁𝐾)) = 0)
4027, 39eqtr4d 2771 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = (𝑁C(𝑁𝐾)))
41403expa 1118 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = (𝑁C(𝑁𝐾)))
4226, 41pm2.61dan 812 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) = (𝑁C(𝑁𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  cfv 6489  (class class class)co 7355  cc 11014  0cc0 11016   · cmul 11021  cmin 11354   / cdiv 11784  0cn0 12391  cz 12478  ...cfz 13417  !cfa 14190  Ccbc 14219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-n0 12392  df-z 12479  df-uz 12743  df-fz 13418  df-seq 13919  df-fac 14191  df-bc 14220
This theorem is referenced by:  bcnn  14229  bcnp1n  14231  bcp1m1  14237  bcnm1  14244  basellem3  27030  chtublem  27159  bcmax  27226  bcp1ctr  27227  aks6d1c6lem3  42275
  Copyright terms: Public domain W3C validator