MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bccmpl Structured version   Visualization version   GIF version

Theorem bccmpl 13653
Description: "Complementing" its second argument doesn't change a binary coefficient. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 5-Mar-2014.)
Assertion
Ref Expression
bccmpl ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) = (𝑁C(𝑁𝐾)))

Proof of Theorem bccmpl
StepHypRef Expression
1 bcval2 13649 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
2 fznn0sub2 12997 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ (0...𝑁))
3 bcval2 13649 . . . . . 6 ((𝑁𝐾) ∈ (0...𝑁) → (𝑁C(𝑁𝐾)) = ((!‘𝑁) / ((!‘(𝑁 − (𝑁𝐾))) · (!‘(𝑁𝐾)))))
42, 3syl 17 . . . . 5 (𝐾 ∈ (0...𝑁) → (𝑁C(𝑁𝐾)) = ((!‘𝑁) / ((!‘(𝑁 − (𝑁𝐾))) · (!‘(𝑁𝐾)))))
5 elfznn0 12983 . . . . . . . . . . 11 ((𝑁𝐾) ∈ (0...𝑁) → (𝑁𝐾) ∈ ℕ0)
65faccld 13628 . . . . . . . . . 10 ((𝑁𝐾) ∈ (0...𝑁) → (!‘(𝑁𝐾)) ∈ ℕ)
76nncnd 11631 . . . . . . . . 9 ((𝑁𝐾) ∈ (0...𝑁) → (!‘(𝑁𝐾)) ∈ ℂ)
82, 7syl 17 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (!‘(𝑁𝐾)) ∈ ℂ)
9 elfznn0 12983 . . . . . . . . . 10 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
109faccld 13628 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → (!‘𝐾) ∈ ℕ)
1110nncnd 11631 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (!‘𝐾) ∈ ℂ)
128, 11mulcomd 10639 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) = ((!‘𝐾) · (!‘(𝑁𝐾))))
13 elfz3nn0 12984 . . . . . . . . . 10 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
14 elfzelz 12891 . . . . . . . . . 10 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
15 nn0cn 11885 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
16 zcn 11964 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
17 nncan 10892 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑁 − (𝑁𝐾)) = 𝐾)
1815, 16, 17syl2an 598 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁 − (𝑁𝐾)) = 𝐾)
1913, 14, 18syl2anc 587 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → (𝑁 − (𝑁𝐾)) = 𝐾)
2019fveq2d 6647 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (!‘(𝑁 − (𝑁𝐾))) = (!‘𝐾))
2120oveq1d 7145 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁 − (𝑁𝐾))) · (!‘(𝑁𝐾))) = ((!‘𝐾) · (!‘(𝑁𝐾))))
2212, 21eqtr4d 2859 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) = ((!‘(𝑁 − (𝑁𝐾))) · (!‘(𝑁𝐾))))
2322oveq2d 7146 . . . . 5 (𝐾 ∈ (0...𝑁) → ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) = ((!‘𝑁) / ((!‘(𝑁 − (𝑁𝐾))) · (!‘(𝑁𝐾)))))
244, 23eqtr4d 2859 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁C(𝑁𝐾)) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
251, 24eqtr4d 2859 . . 3 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = (𝑁C(𝑁𝐾)))
2625adantl 485 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = (𝑁C(𝑁𝐾)))
27 bcval3 13650 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
28 simp1 1133 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
29 nn0z 11983 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
30 zsubcl 12002 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾) ∈ ℤ)
3129, 30sylan 583 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁𝐾) ∈ ℤ)
32313adant3 1129 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℤ)
33 fznn0sub2 12997 . . . . . . . 8 ((𝑁𝐾) ∈ (0...𝑁) → (𝑁 − (𝑁𝐾)) ∈ (0...𝑁))
3418eleq1d 2896 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝑁 − (𝑁𝐾)) ∈ (0...𝑁) ↔ 𝐾 ∈ (0...𝑁)))
3533, 34syl5ib 247 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝑁𝐾) ∈ (0...𝑁) → 𝐾 ∈ (0...𝑁)))
3635con3d 155 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (¬ 𝐾 ∈ (0...𝑁) → ¬ (𝑁𝐾) ∈ (0...𝑁)))
37363impia 1114 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → ¬ (𝑁𝐾) ∈ (0...𝑁))
38 bcval3 13650 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁𝐾) ∈ ℤ ∧ ¬ (𝑁𝐾) ∈ (0...𝑁)) → (𝑁C(𝑁𝐾)) = 0)
3928, 32, 37, 38syl3anc 1368 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C(𝑁𝐾)) = 0)
4027, 39eqtr4d 2859 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = (𝑁C(𝑁𝐾)))
41403expa 1115 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = (𝑁C(𝑁𝐾)))
4226, 41pm2.61dan 812 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁C𝐾) = (𝑁C(𝑁𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  cfv 6328  (class class class)co 7130  cc 10512  0cc0 10514   · cmul 10519  cmin 10847   / cdiv 11274  0cn0 11875  cz 11959  ...cfz 12875  !cfa 13617  Ccbc 13646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-n0 11876  df-z 11960  df-uz 12222  df-fz 12876  df-seq 13353  df-fac 13618  df-bc 13647
This theorem is referenced by:  bcnn  13656  bcnp1n  13658  bcp1m1  13664  bcnm1  13671  basellem3  25647  chtublem  25774  bcmax  25841  bcp1ctr  25842
  Copyright terms: Public domain W3C validator