MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcval5 Structured version   Visualization version   GIF version

Theorem bcval5 14041
Description: Write out the top and bottom parts of the binomial coefficient (𝑁C𝐾) = (𝑁 · (𝑁 − 1) · ... · ((𝑁𝐾) + 1)) / 𝐾! explicitly. In this form, it is valid even for 𝑁 < 𝐾, although it is no longer valid for nonpositive 𝐾. (Contributed by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bcval5 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → (𝑁C𝐾) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))

Proof of Theorem bcval5
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcval2 14028 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
21adantl 482 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
3 mulcl 10964 . . . . . . . . 9 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
43adantl 482 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
5 mulass 10968 . . . . . . . . 9 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑘 · 𝑥) · 𝑦) = (𝑘 · (𝑥 · 𝑦)))
65adantl 482 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑘 · 𝑥) · 𝑦) = (𝑘 · (𝑥 · 𝑦)))
7 simplr 766 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℕ)
8 elfzuz3 13262 . . . . . . . . . . . . . 14 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ (ℤ𝐾))
98adantl 482 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ𝐾))
10 eluznn 12667 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ ℕ)
117, 9, 10syl2anc 584 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℕ)
1211adantrr 714 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → 𝑁 ∈ ℕ)
13 simplr 766 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → 𝐾 ∈ ℕ)
14 nnre 11989 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
15 nnrp 12750 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ+)
16 ltsubrp 12775 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ+) → (𝑁𝐾) < 𝑁)
1714, 15, 16syl2an 596 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑁𝐾) < 𝑁)
1812, 13, 17syl2anc 584 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (𝑁𝐾) < 𝑁)
1912nnzd 12434 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → 𝑁 ∈ ℤ)
20 nnz 12351 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
2120ad2antlr 724 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → 𝐾 ∈ ℤ)
2219, 21zsubcld 12440 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (𝑁𝐾) ∈ ℤ)
23 zltp1le 12379 . . . . . . . . . . 11 (((𝑁𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁𝐾) < 𝑁 ↔ ((𝑁𝐾) + 1) ≤ 𝑁))
2422, 19, 23syl2anc 584 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → ((𝑁𝐾) < 𝑁 ↔ ((𝑁𝐾) + 1) ≤ 𝑁))
2518, 24mpbid 231 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → ((𝑁𝐾) + 1) ≤ 𝑁)
2622peano2zd 12438 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → ((𝑁𝐾) + 1) ∈ ℤ)
27 eluz 12605 . . . . . . . . . 10 ((((𝑁𝐾) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ‘((𝑁𝐾) + 1)) ↔ ((𝑁𝐾) + 1) ≤ 𝑁))
2826, 19, 27syl2anc 584 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (𝑁 ∈ (ℤ‘((𝑁𝐾) + 1)) ↔ ((𝑁𝐾) + 1) ≤ 𝑁))
2925, 28mpbird 256 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → 𝑁 ∈ (ℤ‘((𝑁𝐾) + 1)))
30 simprr 770 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (𝑁𝐾) ∈ ℕ)
31 nnuz 12630 . . . . . . . . 9 ℕ = (ℤ‘1)
3230, 31eleqtrdi 2850 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (𝑁𝐾) ∈ (ℤ‘1))
33 fvi 6853 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → ( I ‘𝑘) = 𝑘)
34 elfzelz 13265 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ)
3534zcnd 12436 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ)
3633, 35eqeltrd 2840 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → ( I ‘𝑘) ∈ ℂ)
3736adantl 482 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) ∧ 𝑘 ∈ (1...𝑁)) → ( I ‘𝑘) ∈ ℂ)
384, 6, 29, 32, 37seqsplit 13765 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (seq1( · , I )‘𝑁) = ((seq1( · , I )‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)))
39 facnn 13998 . . . . . . . 8 (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))
4012, 39syl 17 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (!‘𝑁) = (seq1( · , I )‘𝑁))
41 facnn 13998 . . . . . . . . 9 ((𝑁𝐾) ∈ ℕ → (!‘(𝑁𝐾)) = (seq1( · , I )‘(𝑁𝐾)))
4230, 41syl 17 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (!‘(𝑁𝐾)) = (seq1( · , I )‘(𝑁𝐾)))
4342oveq1d 7299 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)) = ((seq1( · , I )‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)))
4438, 40, 433eqtr4d 2789 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (!‘𝑁) = ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)))
4544expr 457 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) ∈ ℕ → (!‘𝑁) = ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁))))
46 simpll 764 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
47 faccl 14006 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
48 nncn 11990 . . . . . . . . 9 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℂ)
4946, 47, 483syl 18 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) ∈ ℂ)
5049mulid2d 11002 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (1 · (!‘𝑁)) = (!‘𝑁))
5111, 39syl 17 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) = (seq1( · , I )‘𝑁))
5251oveq2d 7300 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (1 · (!‘𝑁)) = (1 · (seq1( · , I )‘𝑁)))
5350, 52eqtr3d 2781 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) = (1 · (seq1( · , I )‘𝑁)))
54 fveq2 6783 . . . . . . . . 9 ((𝑁𝐾) = 0 → (!‘(𝑁𝐾)) = (!‘0))
55 fac0 13999 . . . . . . . . 9 (!‘0) = 1
5654, 55eqtrdi 2795 . . . . . . . 8 ((𝑁𝐾) = 0 → (!‘(𝑁𝐾)) = 1)
57 oveq1 7291 . . . . . . . . . . 11 ((𝑁𝐾) = 0 → ((𝑁𝐾) + 1) = (0 + 1))
58 0p1e1 12104 . . . . . . . . . . 11 (0 + 1) = 1
5957, 58eqtrdi 2795 . . . . . . . . . 10 ((𝑁𝐾) = 0 → ((𝑁𝐾) + 1) = 1)
6059seqeq1d 13736 . . . . . . . . 9 ((𝑁𝐾) = 0 → seq((𝑁𝐾) + 1)( · , I ) = seq1( · , I ))
6160fveq1d 6785 . . . . . . . 8 ((𝑁𝐾) = 0 → (seq((𝑁𝐾) + 1)( · , I )‘𝑁) = (seq1( · , I )‘𝑁))
6256, 61oveq12d 7302 . . . . . . 7 ((𝑁𝐾) = 0 → ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)) = (1 · (seq1( · , I )‘𝑁)))
6362eqeq2d 2750 . . . . . 6 ((𝑁𝐾) = 0 → ((!‘𝑁) = ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)) ↔ (!‘𝑁) = (1 · (seq1( · , I )‘𝑁))))
6453, 63syl5ibrcom 246 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) = 0 → (!‘𝑁) = ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁))))
65 fznn0sub 13297 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ ℕ0)
6665adantl 482 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℕ0)
67 elnn0 12244 . . . . . 6 ((𝑁𝐾) ∈ ℕ0 ↔ ((𝑁𝐾) ∈ ℕ ∨ (𝑁𝐾) = 0))
6866, 67sylib 217 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) ∈ ℕ ∨ (𝑁𝐾) = 0))
6945, 64, 68mpjaod 857 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) = ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)))
7069oveq1d 7299 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) = (((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
71 eqid 2739 . . . . . 6 (ℤ‘((𝑁𝐾) + 1)) = (ℤ‘((𝑁𝐾) + 1))
72 nn0z 12352 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
73 zsubcl 12371 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾) ∈ ℤ)
7472, 20, 73syl2an 596 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → (𝑁𝐾) ∈ ℤ)
7574peano2zd 12438 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → ((𝑁𝐾) + 1) ∈ ℤ)
7675adantr 481 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ∈ ℤ)
77 fvi 6853 . . . . . . . 8 (𝑘 ∈ (ℤ‘((𝑁𝐾) + 1)) → ( I ‘𝑘) = 𝑘)
78 eluzelcn 12603 . . . . . . . 8 (𝑘 ∈ (ℤ‘((𝑁𝐾) + 1)) → 𝑘 ∈ ℂ)
7977, 78eqeltrd 2840 . . . . . . 7 (𝑘 ∈ (ℤ‘((𝑁𝐾) + 1)) → ( I ‘𝑘) ∈ ℂ)
8079adantl 482 . . . . . 6 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (ℤ‘((𝑁𝐾) + 1))) → ( I ‘𝑘) ∈ ℂ)
813adantl 482 . . . . . 6 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
8271, 76, 80, 81seqf 13753 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → seq((𝑁𝐾) + 1)( · , I ):(ℤ‘((𝑁𝐾) + 1))⟶ℂ)
8311, 7, 17syl2anc 584 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) < 𝑁)
8474adantr 481 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℤ)
8511nnzd 12434 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℤ)
8684, 85, 23syl2anc 584 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) < 𝑁 ↔ ((𝑁𝐾) + 1) ≤ 𝑁))
8783, 86mpbid 231 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ≤ 𝑁)
8876, 85, 27syl2anc 584 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 ∈ (ℤ‘((𝑁𝐾) + 1)) ↔ ((𝑁𝐾) + 1) ≤ 𝑁))
8987, 88mpbird 256 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ‘((𝑁𝐾) + 1)))
9082, 89ffvelrnd 6971 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (seq((𝑁𝐾) + 1)( · , I )‘𝑁) ∈ ℂ)
91 elfznn0 13358 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
9291adantl 482 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℕ0)
9392faccld 14007 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ∈ ℕ)
9493nncnd 11998 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ∈ ℂ)
9566faccld 14007 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) ∈ ℕ)
9695nncnd 11998 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) ∈ ℂ)
9793nnne0d 12032 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ≠ 0)
9895nnne0d 12032 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) ≠ 0)
9990, 94, 96, 97, 98divcan5d 11786 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)) / ((!‘(𝑁𝐾)) · (!‘𝐾))) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))
1002, 70, 993eqtrd 2783 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))
101 nnnn0 12249 . . . . 5 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
102101ad2antlr 724 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℕ0)
103 faccl 14006 . . . 4 (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℕ)
104 nncn 11990 . . . . 5 ((!‘𝐾) ∈ ℕ → (!‘𝐾) ∈ ℂ)
105 nnne0 12016 . . . . 5 ((!‘𝐾) ∈ ℕ → (!‘𝐾) ≠ 0)
106104, 105div0d 11759 . . . 4 ((!‘𝐾) ∈ ℕ → (0 / (!‘𝐾)) = 0)
107102, 103, 1063syl 18 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (0 / (!‘𝐾)) = 0)
1083adantl 482 . . . . 5 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
109 fvi 6853 . . . . . . 7 (𝑘 ∈ (((𝑁𝐾) + 1)...𝑁) → ( I ‘𝑘) = 𝑘)
110 elfzelz 13265 . . . . . . . 8 (𝑘 ∈ (((𝑁𝐾) + 1)...𝑁) → 𝑘 ∈ ℤ)
111110zcnd 12436 . . . . . . 7 (𝑘 ∈ (((𝑁𝐾) + 1)...𝑁) → 𝑘 ∈ ℂ)
112109, 111eqeltrd 2840 . . . . . 6 (𝑘 ∈ (((𝑁𝐾) + 1)...𝑁) → ( I ‘𝑘) ∈ ℂ)
113112adantl 482 . . . . 5 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (((𝑁𝐾) + 1)...𝑁)) → ( I ‘𝑘) ∈ ℂ)
114 mul02 11162 . . . . . 6 (𝑘 ∈ ℂ → (0 · 𝑘) = 0)
115114adantl 482 . . . . 5 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ ℂ) → (0 · 𝑘) = 0)
116 mul01 11163 . . . . . 6 (𝑘 ∈ ℂ → (𝑘 · 0) = 0)
117116adantl 482 . . . . 5 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ ℂ) → (𝑘 · 0) = 0)
11875adantr 481 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ∈ ℤ)
11972ad2antrr 723 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℤ)
120 0zd 12340 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 0 ∈ ℤ)
121 simpr 485 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ¬ 𝐾 ∈ (0...𝑁))
122 nn0uz 12629 . . . . . . . . . . . 12 0 = (ℤ‘0)
123102, 122eleqtrdi 2850 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ (ℤ‘0))
124 elfz5 13257 . . . . . . . . . . 11 ((𝐾 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
125123, 119, 124syl2anc 584 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
126 nn0re 12251 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
127126ad2antrr 723 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℝ)
128 nnre 11989 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
129128ad2antlr 724 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℝ)
130127, 129subge0d 11574 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (0 ≤ (𝑁𝐾) ↔ 𝐾𝑁))
131125, 130bitr4d 281 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝐾 ∈ (0...𝑁) ↔ 0 ≤ (𝑁𝐾)))
132121, 131mtbid 324 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ¬ 0 ≤ (𝑁𝐾))
13374adantr 481 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℤ)
134133zred 12435 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℝ)
135 0re 10986 . . . . . . . . 9 0 ∈ ℝ
136 ltnle 11063 . . . . . . . . 9 (((𝑁𝐾) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑁𝐾) < 0 ↔ ¬ 0 ≤ (𝑁𝐾)))
137134, 135, 136sylancl 586 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) < 0 ↔ ¬ 0 ≤ (𝑁𝐾)))
138132, 137mpbird 256 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) < 0)
139 0z 12339 . . . . . . . 8 0 ∈ ℤ
140 zltp1le 12379 . . . . . . . 8 (((𝑁𝐾) ∈ ℤ ∧ 0 ∈ ℤ) → ((𝑁𝐾) < 0 ↔ ((𝑁𝐾) + 1) ≤ 0))
141133, 139, 140sylancl 586 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) < 0 ↔ ((𝑁𝐾) + 1) ≤ 0))
142138, 141mpbid 231 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ≤ 0)
143 nn0ge0 12267 . . . . . . 7 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
144143ad2antrr 723 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 0 ≤ 𝑁)
145118, 119, 120, 142, 144elfzd 13256 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 0 ∈ (((𝑁𝐾) + 1)...𝑁))
146 simpll 764 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
147 0cn 10976 . . . . . 6 0 ∈ ℂ
148 fvi 6853 . . . . . 6 (0 ∈ ℂ → ( I ‘0) = 0)
149147, 148mp1i 13 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ( I ‘0) = 0)
150108, 113, 115, 117, 145, 146, 149seqz 13780 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (seq((𝑁𝐾) + 1)( · , I )‘𝑁) = 0)
151150oveq1d 7299 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)) = (0 / (!‘𝐾)))
152 bcval3 14029 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
15320, 152syl3an2 1163 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
1541533expa 1117 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
155107, 151, 1543eqtr4rd 2790 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))
156100, 155pm2.61dan 810 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → (𝑁C𝐾) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2107   class class class wbr 5075   I cid 5489  cfv 6437  (class class class)co 7284  cc 10878  cr 10879  0cc0 10880  1c1 10881   + caddc 10883   · cmul 10885   < clt 11018  cle 11019  cmin 11214   / cdiv 11641  cn 11982  0cn0 12242  cz 12328  cuz 12591  +crp 12739  ...cfz 13248  seqcseq 13730  !cfa 13996  Ccbc 14025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-n0 12243  df-z 12329  df-uz 12592  df-rp 12740  df-fz 13249  df-seq 13731  df-fac 13997  df-bc 14026
This theorem is referenced by:  bcn2  14042
  Copyright terms: Public domain W3C validator