MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcval5 Structured version   Visualization version   GIF version

Theorem bcval5 13496
Description: Write out the top and bottom parts of the binomial coefficient (𝑁C𝐾) = (𝑁 · (𝑁 − 1) · ... · ((𝑁𝐾) + 1)) / 𝐾! explicitly. In this form, it is valid even for 𝑁 < 𝐾, although it is no longer valid for nonpositive 𝐾. (Contributed by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bcval5 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → (𝑁C𝐾) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))

Proof of Theorem bcval5
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcval2 13483 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
21adantl 474 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
3 mulcl 10421 . . . . . . . . 9 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
43adantl 474 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
5 mulass 10425 . . . . . . . . 9 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑘 · 𝑥) · 𝑦) = (𝑘 · (𝑥 · 𝑦)))
65adantl 474 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑘 · 𝑥) · 𝑦) = (𝑘 · (𝑥 · 𝑦)))
7 simplr 756 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℕ)
8 elfzuz3 12724 . . . . . . . . . . . . . 14 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ (ℤ𝐾))
98adantl 474 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ𝐾))
10 eluznn 12135 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ ℕ)
117, 9, 10syl2anc 576 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℕ)
1211adantrr 704 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → 𝑁 ∈ ℕ)
13 simplr 756 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → 𝐾 ∈ ℕ)
14 nnre 11449 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
15 nnrp 12220 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ+)
16 ltsubrp 12245 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ+) → (𝑁𝐾) < 𝑁)
1714, 15, 16syl2an 586 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑁𝐾) < 𝑁)
1812, 13, 17syl2anc 576 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (𝑁𝐾) < 𝑁)
1912nnzd 11902 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → 𝑁 ∈ ℤ)
20 nnz 11820 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
2120ad2antlr 714 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → 𝐾 ∈ ℤ)
2219, 21zsubcld 11908 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (𝑁𝐾) ∈ ℤ)
23 zltp1le 11848 . . . . . . . . . . 11 (((𝑁𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁𝐾) < 𝑁 ↔ ((𝑁𝐾) + 1) ≤ 𝑁))
2422, 19, 23syl2anc 576 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → ((𝑁𝐾) < 𝑁 ↔ ((𝑁𝐾) + 1) ≤ 𝑁))
2518, 24mpbid 224 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → ((𝑁𝐾) + 1) ≤ 𝑁)
2622peano2zd 11906 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → ((𝑁𝐾) + 1) ∈ ℤ)
27 eluz 12075 . . . . . . . . . 10 ((((𝑁𝐾) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ‘((𝑁𝐾) + 1)) ↔ ((𝑁𝐾) + 1) ≤ 𝑁))
2826, 19, 27syl2anc 576 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (𝑁 ∈ (ℤ‘((𝑁𝐾) + 1)) ↔ ((𝑁𝐾) + 1) ≤ 𝑁))
2925, 28mpbird 249 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → 𝑁 ∈ (ℤ‘((𝑁𝐾) + 1)))
30 simprr 760 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (𝑁𝐾) ∈ ℕ)
31 nnuz 12098 . . . . . . . . 9 ℕ = (ℤ‘1)
3230, 31syl6eleq 2876 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (𝑁𝐾) ∈ (ℤ‘1))
33 fvi 6570 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → ( I ‘𝑘) = 𝑘)
34 elfzelz 12727 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ)
3534zcnd 11904 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ)
3633, 35eqeltrd 2866 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → ( I ‘𝑘) ∈ ℂ)
3736adantl 474 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) ∧ 𝑘 ∈ (1...𝑁)) → ( I ‘𝑘) ∈ ℂ)
384, 6, 29, 32, 37seqsplit 13221 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (seq1( · , I )‘𝑁) = ((seq1( · , I )‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)))
39 facnn 13453 . . . . . . . 8 (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))
4012, 39syl 17 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (!‘𝑁) = (seq1( · , I )‘𝑁))
41 facnn 13453 . . . . . . . . 9 ((𝑁𝐾) ∈ ℕ → (!‘(𝑁𝐾)) = (seq1( · , I )‘(𝑁𝐾)))
4230, 41syl 17 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (!‘(𝑁𝐾)) = (seq1( · , I )‘(𝑁𝐾)))
4342oveq1d 6993 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)) = ((seq1( · , I )‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)))
4438, 40, 433eqtr4d 2824 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (!‘𝑁) = ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)))
4544expr 449 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) ∈ ℕ → (!‘𝑁) = ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁))))
46 simpll 754 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
47 faccl 13461 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
48 nncn 11450 . . . . . . . . 9 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℂ)
4946, 47, 483syl 18 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) ∈ ℂ)
5049mulid2d 10460 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (1 · (!‘𝑁)) = (!‘𝑁))
5111, 39syl 17 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) = (seq1( · , I )‘𝑁))
5251oveq2d 6994 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (1 · (!‘𝑁)) = (1 · (seq1( · , I )‘𝑁)))
5350, 52eqtr3d 2816 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) = (1 · (seq1( · , I )‘𝑁)))
54 fveq2 6501 . . . . . . . . 9 ((𝑁𝐾) = 0 → (!‘(𝑁𝐾)) = (!‘0))
55 fac0 13454 . . . . . . . . 9 (!‘0) = 1
5654, 55syl6eq 2830 . . . . . . . 8 ((𝑁𝐾) = 0 → (!‘(𝑁𝐾)) = 1)
57 oveq1 6985 . . . . . . . . . . 11 ((𝑁𝐾) = 0 → ((𝑁𝐾) + 1) = (0 + 1))
58 0p1e1 11572 . . . . . . . . . . 11 (0 + 1) = 1
5957, 58syl6eq 2830 . . . . . . . . . 10 ((𝑁𝐾) = 0 → ((𝑁𝐾) + 1) = 1)
6059seqeq1d 13193 . . . . . . . . 9 ((𝑁𝐾) = 0 → seq((𝑁𝐾) + 1)( · , I ) = seq1( · , I ))
6160fveq1d 6503 . . . . . . . 8 ((𝑁𝐾) = 0 → (seq((𝑁𝐾) + 1)( · , I )‘𝑁) = (seq1( · , I )‘𝑁))
6256, 61oveq12d 6996 . . . . . . 7 ((𝑁𝐾) = 0 → ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)) = (1 · (seq1( · , I )‘𝑁)))
6362eqeq2d 2788 . . . . . 6 ((𝑁𝐾) = 0 → ((!‘𝑁) = ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)) ↔ (!‘𝑁) = (1 · (seq1( · , I )‘𝑁))))
6453, 63syl5ibrcom 239 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) = 0 → (!‘𝑁) = ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁))))
65 fznn0sub 12758 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ ℕ0)
6665adantl 474 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℕ0)
67 elnn0 11712 . . . . . 6 ((𝑁𝐾) ∈ ℕ0 ↔ ((𝑁𝐾) ∈ ℕ ∨ (𝑁𝐾) = 0))
6866, 67sylib 210 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) ∈ ℕ ∨ (𝑁𝐾) = 0))
6945, 64, 68mpjaod 846 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) = ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)))
7069oveq1d 6993 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) = (((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
71 eqid 2778 . . . . . 6 (ℤ‘((𝑁𝐾) + 1)) = (ℤ‘((𝑁𝐾) + 1))
72 nn0z 11821 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
73 zsubcl 11840 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾) ∈ ℤ)
7472, 20, 73syl2an 586 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → (𝑁𝐾) ∈ ℤ)
7574peano2zd 11906 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → ((𝑁𝐾) + 1) ∈ ℤ)
7675adantr 473 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ∈ ℤ)
77 fvi 6570 . . . . . . . 8 (𝑘 ∈ (ℤ‘((𝑁𝐾) + 1)) → ( I ‘𝑘) = 𝑘)
78 eluzelcn 12073 . . . . . . . 8 (𝑘 ∈ (ℤ‘((𝑁𝐾) + 1)) → 𝑘 ∈ ℂ)
7977, 78eqeltrd 2866 . . . . . . 7 (𝑘 ∈ (ℤ‘((𝑁𝐾) + 1)) → ( I ‘𝑘) ∈ ℂ)
8079adantl 474 . . . . . 6 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (ℤ‘((𝑁𝐾) + 1))) → ( I ‘𝑘) ∈ ℂ)
813adantl 474 . . . . . 6 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
8271, 76, 80, 81seqf 13209 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → seq((𝑁𝐾) + 1)( · , I ):(ℤ‘((𝑁𝐾) + 1))⟶ℂ)
8311, 7, 17syl2anc 576 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) < 𝑁)
8474adantr 473 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℤ)
8511nnzd 11902 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℤ)
8684, 85, 23syl2anc 576 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) < 𝑁 ↔ ((𝑁𝐾) + 1) ≤ 𝑁))
8783, 86mpbid 224 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ≤ 𝑁)
8876, 85, 27syl2anc 576 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 ∈ (ℤ‘((𝑁𝐾) + 1)) ↔ ((𝑁𝐾) + 1) ≤ 𝑁))
8987, 88mpbird 249 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ‘((𝑁𝐾) + 1)))
9082, 89ffvelrnd 6679 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (seq((𝑁𝐾) + 1)( · , I )‘𝑁) ∈ ℂ)
91 elfznn0 12819 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
9291adantl 474 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℕ0)
9392faccld 13462 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ∈ ℕ)
9493nncnd 11459 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ∈ ℂ)
9566faccld 13462 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) ∈ ℕ)
9695nncnd 11459 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) ∈ ℂ)
9793nnne0d 11493 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ≠ 0)
9895nnne0d 11493 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) ≠ 0)
9990, 94, 96, 97, 98divcan5d 11245 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)) / ((!‘(𝑁𝐾)) · (!‘𝐾))) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))
1002, 70, 993eqtrd 2818 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))
101 nnnn0 11718 . . . . 5 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
102101ad2antlr 714 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℕ0)
103 faccl 13461 . . . 4 (𝐾 ∈ ℕ0 → (!‘𝐾) ∈ ℕ)
104 nncn 11450 . . . . 5 ((!‘𝐾) ∈ ℕ → (!‘𝐾) ∈ ℂ)
105 nnne0 11477 . . . . 5 ((!‘𝐾) ∈ ℕ → (!‘𝐾) ≠ 0)
106104, 105div0d 11218 . . . 4 ((!‘𝐾) ∈ ℕ → (0 / (!‘𝐾)) = 0)
107102, 103, 1063syl 18 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (0 / (!‘𝐾)) = 0)
1083adantl 474 . . . . 5 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
109 fvi 6570 . . . . . . 7 (𝑘 ∈ (((𝑁𝐾) + 1)...𝑁) → ( I ‘𝑘) = 𝑘)
110 elfzelz 12727 . . . . . . . 8 (𝑘 ∈ (((𝑁𝐾) + 1)...𝑁) → 𝑘 ∈ ℤ)
111110zcnd 11904 . . . . . . 7 (𝑘 ∈ (((𝑁𝐾) + 1)...𝑁) → 𝑘 ∈ ℂ)
112109, 111eqeltrd 2866 . . . . . 6 (𝑘 ∈ (((𝑁𝐾) + 1)...𝑁) → ( I ‘𝑘) ∈ ℂ)
113112adantl 474 . . . . 5 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (((𝑁𝐾) + 1)...𝑁)) → ( I ‘𝑘) ∈ ℂ)
114 mul02 10620 . . . . . 6 (𝑘 ∈ ℂ → (0 · 𝑘) = 0)
115114adantl 474 . . . . 5 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ ℂ) → (0 · 𝑘) = 0)
116 mul01 10621 . . . . . 6 (𝑘 ∈ ℂ → (𝑘 · 0) = 0)
117116adantl 474 . . . . 5 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ ℂ) → (𝑘 · 0) = 0)
118 simpr 477 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ¬ 𝐾 ∈ (0...𝑁))
119 nn0uz 12097 . . . . . . . . . . . 12 0 = (ℤ‘0)
120102, 119syl6eleq 2876 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ (ℤ‘0))
12172ad2antrr 713 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℤ)
122 elfz5 12719 . . . . . . . . . . 11 ((𝐾 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
123120, 121, 122syl2anc 576 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
124 nn0re 11720 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
125124ad2antrr 713 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℝ)
126 nnre 11449 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
127126ad2antlr 714 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℝ)
128125, 127subge0d 11033 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (0 ≤ (𝑁𝐾) ↔ 𝐾𝑁))
129123, 128bitr4d 274 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝐾 ∈ (0...𝑁) ↔ 0 ≤ (𝑁𝐾)))
130118, 129mtbid 316 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ¬ 0 ≤ (𝑁𝐾))
13174adantr 473 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℤ)
132131zred 11903 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℝ)
133 0re 10443 . . . . . . . . 9 0 ∈ ℝ
134 ltnle 10522 . . . . . . . . 9 (((𝑁𝐾) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑁𝐾) < 0 ↔ ¬ 0 ≤ (𝑁𝐾)))
135132, 133, 134sylancl 577 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) < 0 ↔ ¬ 0 ≤ (𝑁𝐾)))
136130, 135mpbird 249 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) < 0)
137 0z 11807 . . . . . . . 8 0 ∈ ℤ
138 zltp1le 11848 . . . . . . . 8 (((𝑁𝐾) ∈ ℤ ∧ 0 ∈ ℤ) → ((𝑁𝐾) < 0 ↔ ((𝑁𝐾) + 1) ≤ 0))
139131, 137, 138sylancl 577 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) < 0 ↔ ((𝑁𝐾) + 1) ≤ 0))
140136, 139mpbid 224 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ≤ 0)
141 nn0ge0 11737 . . . . . . 7 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
142141ad2antrr 713 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 0 ≤ 𝑁)
143 0zd 11808 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 0 ∈ ℤ)
14475adantr 473 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ∈ ℤ)
145 elfz 12717 . . . . . . 7 ((0 ∈ ℤ ∧ ((𝑁𝐾) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∈ (((𝑁𝐾) + 1)...𝑁) ↔ (((𝑁𝐾) + 1) ≤ 0 ∧ 0 ≤ 𝑁)))
146143, 144, 121, 145syl3anc 1351 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (0 ∈ (((𝑁𝐾) + 1)...𝑁) ↔ (((𝑁𝐾) + 1) ≤ 0 ∧ 0 ≤ 𝑁)))
147140, 142, 146mpbir2and 700 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 0 ∈ (((𝑁𝐾) + 1)...𝑁))
148 simpll 754 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
149 0cn 10433 . . . . . 6 0 ∈ ℂ
150 fvi 6570 . . . . . 6 (0 ∈ ℂ → ( I ‘0) = 0)
151149, 150mp1i 13 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ( I ‘0) = 0)
152108, 113, 115, 117, 147, 148, 151seqz 13236 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (seq((𝑁𝐾) + 1)( · , I )‘𝑁) = 0)
153152oveq1d 6993 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)) = (0 / (!‘𝐾)))
154 bcval3 13484 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
15520, 154syl3an2 1144 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
1561553expa 1098 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
157107, 153, 1563eqtr4rd 2825 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))
158100, 157pm2.61dan 800 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → (𝑁C𝐾) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wo 833  w3a 1068   = wceq 1507  wcel 2050   class class class wbr 4930   I cid 5312  cfv 6190  (class class class)co 6978  cc 10335  cr 10336  0cc0 10337  1c1 10338   + caddc 10340   · cmul 10342   < clt 10476  cle 10477  cmin 10672   / cdiv 11100  cn 11441  0cn0 11710  cz 11796  cuz 12061  +crp 12207  ...cfz 12711  seqcseq 13187  !cfa 13451  Ccbc 13480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-1st 7503  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-er 8091  df-en 8309  df-dom 8310  df-sdom 8311  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-div 11101  df-nn 11442  df-n0 11711  df-z 11797  df-uz 12062  df-rp 12208  df-fz 12712  df-seq 13188  df-fac 13452  df-bc 13481
This theorem is referenced by:  bcn2  13497
  Copyright terms: Public domain W3C validator