| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rest10 | Structured version Visualization version GIF version | ||
| Description: An elementwise intersection on a nonempty family by the empty set is the singleton on the empty set. TODO: this generalizes rest0 23084 and could replace it. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| bj-rest10 | ⊢ (𝑋 ∈ 𝑉 → (𝑋 ≠ ∅ → (𝑋 ↾t ∅) = {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5243 | . . . . . 6 ⊢ ∅ ∈ V | |
| 2 | elrest 17331 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑥 ∈ (𝑋 ↾t ∅) ↔ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ ∅))) | |
| 3 | 1, 2 | mpan2 691 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑥 ∈ (𝑋 ↾t ∅) ↔ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ ∅))) |
| 4 | in0 4342 | . . . . . . . . 9 ⊢ (𝑦 ∩ ∅) = ∅ | |
| 5 | 4 | eqeq2i 2744 | . . . . . . . 8 ⊢ (𝑥 = (𝑦 ∩ ∅) ↔ 𝑥 = ∅) |
| 6 | 5 | rexbii 3079 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ ∅) ↔ ∃𝑦 ∈ 𝑋 𝑥 = ∅) |
| 7 | df-rex 3057 | . . . . . . . 8 ⊢ (∃𝑦 ∈ 𝑋 𝑥 = ∅ ↔ ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝑥 = ∅)) | |
| 8 | 19.41v 1950 | . . . . . . . . 9 ⊢ (∃𝑦(𝑦 ∈ 𝑋 ∧ 𝑥 = ∅) ↔ (∃𝑦 𝑦 ∈ 𝑋 ∧ 𝑥 = ∅)) | |
| 9 | n0 4300 | . . . . . . . . . . 11 ⊢ (𝑋 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝑋) | |
| 10 | 9 | bicomi 224 | . . . . . . . . . 10 ⊢ (∃𝑦 𝑦 ∈ 𝑋 ↔ 𝑋 ≠ ∅) |
| 11 | 10 | anbi1i 624 | . . . . . . . . 9 ⊢ ((∃𝑦 𝑦 ∈ 𝑋 ∧ 𝑥 = ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅)) |
| 12 | 8, 11 | bitri 275 | . . . . . . . 8 ⊢ (∃𝑦(𝑦 ∈ 𝑋 ∧ 𝑥 = ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅)) |
| 13 | 7, 12 | bitri 275 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝑋 𝑥 = ∅ ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅)) |
| 14 | 6, 13 | bitri 275 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅)) |
| 15 | 14 | baib 535 | . . . . 5 ⊢ (𝑋 ≠ ∅ → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ ∅) ↔ 𝑥 = ∅)) |
| 16 | 3, 15 | sylan9bb 509 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅) → (𝑥 ∈ (𝑋 ↾t ∅) ↔ 𝑥 = ∅)) |
| 17 | velsn 4589 | . . . 4 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
| 18 | 16, 17 | bitr4di 289 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅) → (𝑥 ∈ (𝑋 ↾t ∅) ↔ 𝑥 ∈ {∅})) |
| 19 | 18 | eqrdv 2729 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅) → (𝑋 ↾t ∅) = {∅}) |
| 20 | 19 | ex 412 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ≠ ∅ → (𝑋 ↾t ∅) = {∅})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 Vcvv 3436 ∩ cin 3896 ∅c0 4280 {csn 4573 (class class class)co 7346 ↾t crest 17324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-rest 17326 |
| This theorem is referenced by: bj-rest10b 37131 |
| Copyright terms: Public domain | W3C validator |