Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rest10 | Structured version Visualization version GIF version |
Description: An elementwise intersection on a nonempty family by the empty set is the singleton on the empty set. TODO: this generalizes rest0 22228 and could replace it. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-rest10 | ⊢ (𝑋 ∈ 𝑉 → (𝑋 ≠ ∅ → (𝑋 ↾t ∅) = {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5226 | . . . . . 6 ⊢ ∅ ∈ V | |
2 | elrest 17055 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑥 ∈ (𝑋 ↾t ∅) ↔ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ ∅))) | |
3 | 1, 2 | mpan2 687 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑥 ∈ (𝑋 ↾t ∅) ↔ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ ∅))) |
4 | in0 4322 | . . . . . . . . 9 ⊢ (𝑦 ∩ ∅) = ∅ | |
5 | 4 | eqeq2i 2751 | . . . . . . . 8 ⊢ (𝑥 = (𝑦 ∩ ∅) ↔ 𝑥 = ∅) |
6 | 5 | rexbii 3177 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ ∅) ↔ ∃𝑦 ∈ 𝑋 𝑥 = ∅) |
7 | df-rex 3069 | . . . . . . . 8 ⊢ (∃𝑦 ∈ 𝑋 𝑥 = ∅ ↔ ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝑥 = ∅)) | |
8 | 19.41v 1954 | . . . . . . . . 9 ⊢ (∃𝑦(𝑦 ∈ 𝑋 ∧ 𝑥 = ∅) ↔ (∃𝑦 𝑦 ∈ 𝑋 ∧ 𝑥 = ∅)) | |
9 | n0 4277 | . . . . . . . . . . 11 ⊢ (𝑋 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝑋) | |
10 | 9 | bicomi 223 | . . . . . . . . . 10 ⊢ (∃𝑦 𝑦 ∈ 𝑋 ↔ 𝑋 ≠ ∅) |
11 | 10 | anbi1i 623 | . . . . . . . . 9 ⊢ ((∃𝑦 𝑦 ∈ 𝑋 ∧ 𝑥 = ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅)) |
12 | 8, 11 | bitri 274 | . . . . . . . 8 ⊢ (∃𝑦(𝑦 ∈ 𝑋 ∧ 𝑥 = ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅)) |
13 | 7, 12 | bitri 274 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝑋 𝑥 = ∅ ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅)) |
14 | 6, 13 | bitri 274 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅)) |
15 | 14 | baib 535 | . . . . 5 ⊢ (𝑋 ≠ ∅ → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ ∅) ↔ 𝑥 = ∅)) |
16 | 3, 15 | sylan9bb 509 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅) → (𝑥 ∈ (𝑋 ↾t ∅) ↔ 𝑥 = ∅)) |
17 | velsn 4574 | . . . 4 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
18 | 16, 17 | bitr4di 288 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅) → (𝑥 ∈ (𝑋 ↾t ∅) ↔ 𝑥 ∈ {∅})) |
19 | 18 | eqrdv 2736 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅) → (𝑋 ↾t ∅) = {∅}) |
20 | 19 | ex 412 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ≠ ∅ → (𝑋 ↾t ∅) = {∅})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 Vcvv 3422 ∩ cin 3882 ∅c0 4253 {csn 4558 (class class class)co 7255 ↾t crest 17048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-rest 17050 |
This theorem is referenced by: bj-rest10b 35187 |
Copyright terms: Public domain | W3C validator |