Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rest10 Structured version   Visualization version   GIF version

Theorem bj-rest10 37106
Description: An elementwise intersection on a nonempty family by the empty set is the singleton on the empty set. TODO: this generalizes rest0 23107 and could replace it. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-rest10 (𝑋𝑉 → (𝑋 ≠ ∅ → (𝑋t ∅) = {∅}))

Proof of Theorem bj-rest10
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5277 . . . . . 6 ∅ ∈ V
2 elrest 17441 . . . . . 6 ((𝑋𝑉 ∧ ∅ ∈ V) → (𝑥 ∈ (𝑋t ∅) ↔ ∃𝑦𝑋 𝑥 = (𝑦 ∩ ∅)))
31, 2mpan2 691 . . . . 5 (𝑋𝑉 → (𝑥 ∈ (𝑋t ∅) ↔ ∃𝑦𝑋 𝑥 = (𝑦 ∩ ∅)))
4 in0 4370 . . . . . . . . 9 (𝑦 ∩ ∅) = ∅
54eqeq2i 2748 . . . . . . . 8 (𝑥 = (𝑦 ∩ ∅) ↔ 𝑥 = ∅)
65rexbii 3083 . . . . . . 7 (∃𝑦𝑋 𝑥 = (𝑦 ∩ ∅) ↔ ∃𝑦𝑋 𝑥 = ∅)
7 df-rex 3061 . . . . . . . 8 (∃𝑦𝑋 𝑥 = ∅ ↔ ∃𝑦(𝑦𝑋𝑥 = ∅))
8 19.41v 1949 . . . . . . . . 9 (∃𝑦(𝑦𝑋𝑥 = ∅) ↔ (∃𝑦 𝑦𝑋𝑥 = ∅))
9 n0 4328 . . . . . . . . . . 11 (𝑋 ≠ ∅ ↔ ∃𝑦 𝑦𝑋)
109bicomi 224 . . . . . . . . . 10 (∃𝑦 𝑦𝑋𝑋 ≠ ∅)
1110anbi1i 624 . . . . . . . . 9 ((∃𝑦 𝑦𝑋𝑥 = ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅))
128, 11bitri 275 . . . . . . . 8 (∃𝑦(𝑦𝑋𝑥 = ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅))
137, 12bitri 275 . . . . . . 7 (∃𝑦𝑋 𝑥 = ∅ ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅))
146, 13bitri 275 . . . . . 6 (∃𝑦𝑋 𝑥 = (𝑦 ∩ ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅))
1514baib 535 . . . . 5 (𝑋 ≠ ∅ → (∃𝑦𝑋 𝑥 = (𝑦 ∩ ∅) ↔ 𝑥 = ∅))
163, 15sylan9bb 509 . . . 4 ((𝑋𝑉𝑋 ≠ ∅) → (𝑥 ∈ (𝑋t ∅) ↔ 𝑥 = ∅))
17 velsn 4617 . . . 4 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
1816, 17bitr4di 289 . . 3 ((𝑋𝑉𝑋 ≠ ∅) → (𝑥 ∈ (𝑋t ∅) ↔ 𝑥 ∈ {∅}))
1918eqrdv 2733 . 2 ((𝑋𝑉𝑋 ≠ ∅) → (𝑋t ∅) = {∅})
2019ex 412 1 (𝑋𝑉 → (𝑋 ≠ ∅ → (𝑋t ∅) = {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2932  wrex 3060  Vcvv 3459  cin 3925  c0 4308  {csn 4601  (class class class)co 7405  t crest 17434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-rest 17436
This theorem is referenced by:  bj-rest10b  37107
  Copyright terms: Public domain W3C validator