Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rest10 Structured version   Visualization version   GIF version

Theorem bj-rest10 36600
Description: An elementwise intersection on a nonempty family by the empty set is the singleton on the empty set. TODO: this generalizes rest0 23093 and could replace it. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-rest10 (𝑋𝑉 → (𝑋 ≠ ∅ → (𝑋t ∅) = {∅}))

Proof of Theorem bj-rest10
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5311 . . . . . 6 ∅ ∈ V
2 elrest 17416 . . . . . 6 ((𝑋𝑉 ∧ ∅ ∈ V) → (𝑥 ∈ (𝑋t ∅) ↔ ∃𝑦𝑋 𝑥 = (𝑦 ∩ ∅)))
31, 2mpan2 689 . . . . 5 (𝑋𝑉 → (𝑥 ∈ (𝑋t ∅) ↔ ∃𝑦𝑋 𝑥 = (𝑦 ∩ ∅)))
4 in0 4395 . . . . . . . . 9 (𝑦 ∩ ∅) = ∅
54eqeq2i 2741 . . . . . . . 8 (𝑥 = (𝑦 ∩ ∅) ↔ 𝑥 = ∅)
65rexbii 3091 . . . . . . 7 (∃𝑦𝑋 𝑥 = (𝑦 ∩ ∅) ↔ ∃𝑦𝑋 𝑥 = ∅)
7 df-rex 3068 . . . . . . . 8 (∃𝑦𝑋 𝑥 = ∅ ↔ ∃𝑦(𝑦𝑋𝑥 = ∅))
8 19.41v 1945 . . . . . . . . 9 (∃𝑦(𝑦𝑋𝑥 = ∅) ↔ (∃𝑦 𝑦𝑋𝑥 = ∅))
9 n0 4350 . . . . . . . . . . 11 (𝑋 ≠ ∅ ↔ ∃𝑦 𝑦𝑋)
109bicomi 223 . . . . . . . . . 10 (∃𝑦 𝑦𝑋𝑋 ≠ ∅)
1110anbi1i 622 . . . . . . . . 9 ((∃𝑦 𝑦𝑋𝑥 = ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅))
128, 11bitri 274 . . . . . . . 8 (∃𝑦(𝑦𝑋𝑥 = ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅))
137, 12bitri 274 . . . . . . 7 (∃𝑦𝑋 𝑥 = ∅ ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅))
146, 13bitri 274 . . . . . 6 (∃𝑦𝑋 𝑥 = (𝑦 ∩ ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅))
1514baib 534 . . . . 5 (𝑋 ≠ ∅ → (∃𝑦𝑋 𝑥 = (𝑦 ∩ ∅) ↔ 𝑥 = ∅))
163, 15sylan9bb 508 . . . 4 ((𝑋𝑉𝑋 ≠ ∅) → (𝑥 ∈ (𝑋t ∅) ↔ 𝑥 = ∅))
17 velsn 4648 . . . 4 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
1816, 17bitr4di 288 . . 3 ((𝑋𝑉𝑋 ≠ ∅) → (𝑥 ∈ (𝑋t ∅) ↔ 𝑥 ∈ {∅}))
1918eqrdv 2726 . 2 ((𝑋𝑉𝑋 ≠ ∅) → (𝑋t ∅) = {∅})
2019ex 411 1 (𝑋𝑉 → (𝑋 ≠ ∅ → (𝑋t ∅) = {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  wne 2937  wrex 3067  Vcvv 3473  cin 3948  c0 4326  {csn 4632  (class class class)co 7426  t crest 17409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-rest 17411
This theorem is referenced by:  bj-rest10b  36601
  Copyright terms: Public domain W3C validator