Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rest10 Structured version   Visualization version   GIF version

Theorem bj-rest10 37062
Description: An elementwise intersection on a nonempty family by the empty set is the singleton on the empty set. TODO: this generalizes rest0 23054 and could replace it. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-rest10 (𝑋𝑉 → (𝑋 ≠ ∅ → (𝑋t ∅) = {∅}))

Proof of Theorem bj-rest10
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5246 . . . . . 6 ∅ ∈ V
2 elrest 17331 . . . . . 6 ((𝑋𝑉 ∧ ∅ ∈ V) → (𝑥 ∈ (𝑋t ∅) ↔ ∃𝑦𝑋 𝑥 = (𝑦 ∩ ∅)))
31, 2mpan2 691 . . . . 5 (𝑋𝑉 → (𝑥 ∈ (𝑋t ∅) ↔ ∃𝑦𝑋 𝑥 = (𝑦 ∩ ∅)))
4 in0 4346 . . . . . . . . 9 (𝑦 ∩ ∅) = ∅
54eqeq2i 2742 . . . . . . . 8 (𝑥 = (𝑦 ∩ ∅) ↔ 𝑥 = ∅)
65rexbii 3076 . . . . . . 7 (∃𝑦𝑋 𝑥 = (𝑦 ∩ ∅) ↔ ∃𝑦𝑋 𝑥 = ∅)
7 df-rex 3054 . . . . . . . 8 (∃𝑦𝑋 𝑥 = ∅ ↔ ∃𝑦(𝑦𝑋𝑥 = ∅))
8 19.41v 1949 . . . . . . . . 9 (∃𝑦(𝑦𝑋𝑥 = ∅) ↔ (∃𝑦 𝑦𝑋𝑥 = ∅))
9 n0 4304 . . . . . . . . . . 11 (𝑋 ≠ ∅ ↔ ∃𝑦 𝑦𝑋)
109bicomi 224 . . . . . . . . . 10 (∃𝑦 𝑦𝑋𝑋 ≠ ∅)
1110anbi1i 624 . . . . . . . . 9 ((∃𝑦 𝑦𝑋𝑥 = ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅))
128, 11bitri 275 . . . . . . . 8 (∃𝑦(𝑦𝑋𝑥 = ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅))
137, 12bitri 275 . . . . . . 7 (∃𝑦𝑋 𝑥 = ∅ ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅))
146, 13bitri 275 . . . . . 6 (∃𝑦𝑋 𝑥 = (𝑦 ∩ ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅))
1514baib 535 . . . . 5 (𝑋 ≠ ∅ → (∃𝑦𝑋 𝑥 = (𝑦 ∩ ∅) ↔ 𝑥 = ∅))
163, 15sylan9bb 509 . . . 4 ((𝑋𝑉𝑋 ≠ ∅) → (𝑥 ∈ (𝑋t ∅) ↔ 𝑥 = ∅))
17 velsn 4593 . . . 4 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
1816, 17bitr4di 289 . . 3 ((𝑋𝑉𝑋 ≠ ∅) → (𝑥 ∈ (𝑋t ∅) ↔ 𝑥 ∈ {∅}))
1918eqrdv 2727 . 2 ((𝑋𝑉𝑋 ≠ ∅) → (𝑋t ∅) = {∅})
2019ex 412 1 (𝑋𝑉 → (𝑋 ≠ ∅ → (𝑋t ∅) = {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  Vcvv 3436  cin 3902  c0 4284  {csn 4577  (class class class)co 7349  t crest 17324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-rest 17326
This theorem is referenced by:  bj-rest10b  37063
  Copyright terms: Public domain W3C validator