| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rest10 | Structured version Visualization version GIF version | ||
| Description: An elementwise intersection on a nonempty family by the empty set is the singleton on the empty set. TODO: this generalizes rest0 23054 and could replace it. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| bj-rest10 | ⊢ (𝑋 ∈ 𝑉 → (𝑋 ≠ ∅ → (𝑋 ↾t ∅) = {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5246 | . . . . . 6 ⊢ ∅ ∈ V | |
| 2 | elrest 17331 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑥 ∈ (𝑋 ↾t ∅) ↔ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ ∅))) | |
| 3 | 1, 2 | mpan2 691 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑥 ∈ (𝑋 ↾t ∅) ↔ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ ∅))) |
| 4 | in0 4346 | . . . . . . . . 9 ⊢ (𝑦 ∩ ∅) = ∅ | |
| 5 | 4 | eqeq2i 2742 | . . . . . . . 8 ⊢ (𝑥 = (𝑦 ∩ ∅) ↔ 𝑥 = ∅) |
| 6 | 5 | rexbii 3076 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ ∅) ↔ ∃𝑦 ∈ 𝑋 𝑥 = ∅) |
| 7 | df-rex 3054 | . . . . . . . 8 ⊢ (∃𝑦 ∈ 𝑋 𝑥 = ∅ ↔ ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝑥 = ∅)) | |
| 8 | 19.41v 1949 | . . . . . . . . 9 ⊢ (∃𝑦(𝑦 ∈ 𝑋 ∧ 𝑥 = ∅) ↔ (∃𝑦 𝑦 ∈ 𝑋 ∧ 𝑥 = ∅)) | |
| 9 | n0 4304 | . . . . . . . . . . 11 ⊢ (𝑋 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝑋) | |
| 10 | 9 | bicomi 224 | . . . . . . . . . 10 ⊢ (∃𝑦 𝑦 ∈ 𝑋 ↔ 𝑋 ≠ ∅) |
| 11 | 10 | anbi1i 624 | . . . . . . . . 9 ⊢ ((∃𝑦 𝑦 ∈ 𝑋 ∧ 𝑥 = ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅)) |
| 12 | 8, 11 | bitri 275 | . . . . . . . 8 ⊢ (∃𝑦(𝑦 ∈ 𝑋 ∧ 𝑥 = ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅)) |
| 13 | 7, 12 | bitri 275 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝑋 𝑥 = ∅ ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅)) |
| 14 | 6, 13 | bitri 275 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅)) |
| 15 | 14 | baib 535 | . . . . 5 ⊢ (𝑋 ≠ ∅ → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ ∅) ↔ 𝑥 = ∅)) |
| 16 | 3, 15 | sylan9bb 509 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅) → (𝑥 ∈ (𝑋 ↾t ∅) ↔ 𝑥 = ∅)) |
| 17 | velsn 4593 | . . . 4 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
| 18 | 16, 17 | bitr4di 289 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅) → (𝑥 ∈ (𝑋 ↾t ∅) ↔ 𝑥 ∈ {∅})) |
| 19 | 18 | eqrdv 2727 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅) → (𝑋 ↾t ∅) = {∅}) |
| 20 | 19 | ex 412 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ≠ ∅ → (𝑋 ↾t ∅) = {∅})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 Vcvv 3436 ∩ cin 3902 ∅c0 4284 {csn 4577 (class class class)co 7349 ↾t crest 17324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-rest 17326 |
| This theorem is referenced by: bj-rest10b 37063 |
| Copyright terms: Public domain | W3C validator |