Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rest10 Structured version   Visualization version   GIF version

Theorem bj-rest10 37054
Description: An elementwise intersection on a nonempty family by the empty set is the singleton on the empty set. TODO: this generalizes rest0 23198 and could replace it. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-rest10 (𝑋𝑉 → (𝑋 ≠ ∅ → (𝑋t ∅) = {∅}))

Proof of Theorem bj-rest10
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5325 . . . . . 6 ∅ ∈ V
2 elrest 17487 . . . . . 6 ((𝑋𝑉 ∧ ∅ ∈ V) → (𝑥 ∈ (𝑋t ∅) ↔ ∃𝑦𝑋 𝑥 = (𝑦 ∩ ∅)))
31, 2mpan2 690 . . . . 5 (𝑋𝑉 → (𝑥 ∈ (𝑋t ∅) ↔ ∃𝑦𝑋 𝑥 = (𝑦 ∩ ∅)))
4 in0 4418 . . . . . . . . 9 (𝑦 ∩ ∅) = ∅
54eqeq2i 2753 . . . . . . . 8 (𝑥 = (𝑦 ∩ ∅) ↔ 𝑥 = ∅)
65rexbii 3100 . . . . . . 7 (∃𝑦𝑋 𝑥 = (𝑦 ∩ ∅) ↔ ∃𝑦𝑋 𝑥 = ∅)
7 df-rex 3077 . . . . . . . 8 (∃𝑦𝑋 𝑥 = ∅ ↔ ∃𝑦(𝑦𝑋𝑥 = ∅))
8 19.41v 1949 . . . . . . . . 9 (∃𝑦(𝑦𝑋𝑥 = ∅) ↔ (∃𝑦 𝑦𝑋𝑥 = ∅))
9 n0 4376 . . . . . . . . . . 11 (𝑋 ≠ ∅ ↔ ∃𝑦 𝑦𝑋)
109bicomi 224 . . . . . . . . . 10 (∃𝑦 𝑦𝑋𝑋 ≠ ∅)
1110anbi1i 623 . . . . . . . . 9 ((∃𝑦 𝑦𝑋𝑥 = ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅))
128, 11bitri 275 . . . . . . . 8 (∃𝑦(𝑦𝑋𝑥 = ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅))
137, 12bitri 275 . . . . . . 7 (∃𝑦𝑋 𝑥 = ∅ ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅))
146, 13bitri 275 . . . . . 6 (∃𝑦𝑋 𝑥 = (𝑦 ∩ ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅))
1514baib 535 . . . . 5 (𝑋 ≠ ∅ → (∃𝑦𝑋 𝑥 = (𝑦 ∩ ∅) ↔ 𝑥 = ∅))
163, 15sylan9bb 509 . . . 4 ((𝑋𝑉𝑋 ≠ ∅) → (𝑥 ∈ (𝑋t ∅) ↔ 𝑥 = ∅))
17 velsn 4664 . . . 4 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
1816, 17bitr4di 289 . . 3 ((𝑋𝑉𝑋 ≠ ∅) → (𝑥 ∈ (𝑋t ∅) ↔ 𝑥 ∈ {∅}))
1918eqrdv 2738 . 2 ((𝑋𝑉𝑋 ≠ ∅) → (𝑋t ∅) = {∅})
2019ex 412 1 (𝑋𝑉 → (𝑋 ≠ ∅ → (𝑋t ∅) = {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wrex 3076  Vcvv 3488  cin 3975  c0 4352  {csn 4648  (class class class)co 7448  t crest 17480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-rest 17482
This theorem is referenced by:  bj-rest10b  37055
  Copyright terms: Public domain W3C validator