Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rest10 Structured version   Visualization version   GIF version

Theorem bj-rest10 33563
 Description: An elementwise intersection on a nonempty family by the empty set is the singleton on the empty set. TODO: this generalizes rest0 21351 and could replace it. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-rest10 (𝑋𝑉 → (𝑋 ≠ ∅ → (𝑋t ∅) = {∅}))

Proof of Theorem bj-rest10
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5016 . . . . . 6 ∅ ∈ V
2 elrest 16448 . . . . . 6 ((𝑋𝑉 ∧ ∅ ∈ V) → (𝑥 ∈ (𝑋t ∅) ↔ ∃𝑦𝑋 𝑥 = (𝑦 ∩ ∅)))
31, 2mpan2 682 . . . . 5 (𝑋𝑉 → (𝑥 ∈ (𝑋t ∅) ↔ ∃𝑦𝑋 𝑥 = (𝑦 ∩ ∅)))
4 in0 4195 . . . . . . . . 9 (𝑦 ∩ ∅) = ∅
54eqeq2i 2837 . . . . . . . 8 (𝑥 = (𝑦 ∩ ∅) ↔ 𝑥 = ∅)
65rexbii 3251 . . . . . . 7 (∃𝑦𝑋 𝑥 = (𝑦 ∩ ∅) ↔ ∃𝑦𝑋 𝑥 = ∅)
7 df-rex 3123 . . . . . . . 8 (∃𝑦𝑋 𝑥 = ∅ ↔ ∃𝑦(𝑦𝑋𝑥 = ∅))
8 19.41v 2048 . . . . . . . . 9 (∃𝑦(𝑦𝑋𝑥 = ∅) ↔ (∃𝑦 𝑦𝑋𝑥 = ∅))
9 n0 4162 . . . . . . . . . . 11 (𝑋 ≠ ∅ ↔ ∃𝑦 𝑦𝑋)
109bicomi 216 . . . . . . . . . 10 (∃𝑦 𝑦𝑋𝑋 ≠ ∅)
1110anbi1i 617 . . . . . . . . 9 ((∃𝑦 𝑦𝑋𝑥 = ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅))
128, 11bitri 267 . . . . . . . 8 (∃𝑦(𝑦𝑋𝑥 = ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅))
137, 12bitri 267 . . . . . . 7 (∃𝑦𝑋 𝑥 = ∅ ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅))
146, 13bitri 267 . . . . . 6 (∃𝑦𝑋 𝑥 = (𝑦 ∩ ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅))
1514baib 531 . . . . 5 (𝑋 ≠ ∅ → (∃𝑦𝑋 𝑥 = (𝑦 ∩ ∅) ↔ 𝑥 = ∅))
163, 15sylan9bb 505 . . . 4 ((𝑋𝑉𝑋 ≠ ∅) → (𝑥 ∈ (𝑋t ∅) ↔ 𝑥 = ∅))
17 velsn 4415 . . . 4 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
1816, 17syl6bbr 281 . . 3 ((𝑋𝑉𝑋 ≠ ∅) → (𝑥 ∈ (𝑋t ∅) ↔ 𝑥 ∈ {∅}))
1918eqrdv 2823 . 2 ((𝑋𝑉𝑋 ≠ ∅) → (𝑋t ∅) = {∅})
2019ex 403 1 (𝑋𝑉 → (𝑋 ≠ ∅ → (𝑋t ∅) = {∅}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1656  ∃wex 1878   ∈ wcel 2164   ≠ wne 2999  ∃wrex 3118  Vcvv 3414   ∩ cin 3797  ∅c0 4146  {csn 4399  (class class class)co 6910   ↾t crest 16441 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pr 5129  ax-un 7214 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-rest 16443 This theorem is referenced by:  bj-rest10b  33564
 Copyright terms: Public domain W3C validator