![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rest10 | Structured version Visualization version GIF version |
Description: An elementwise intersection on a nonempty family by the empty set is the singleton on the empty set. TODO: this generalizes rest0 21351 and could replace it. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-rest10 | ⊢ (𝑋 ∈ 𝑉 → (𝑋 ≠ ∅ → (𝑋 ↾t ∅) = {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5016 | . . . . . 6 ⊢ ∅ ∈ V | |
2 | elrest 16448 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑥 ∈ (𝑋 ↾t ∅) ↔ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ ∅))) | |
3 | 1, 2 | mpan2 682 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑥 ∈ (𝑋 ↾t ∅) ↔ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ ∅))) |
4 | in0 4195 | . . . . . . . . 9 ⊢ (𝑦 ∩ ∅) = ∅ | |
5 | 4 | eqeq2i 2837 | . . . . . . . 8 ⊢ (𝑥 = (𝑦 ∩ ∅) ↔ 𝑥 = ∅) |
6 | 5 | rexbii 3251 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ ∅) ↔ ∃𝑦 ∈ 𝑋 𝑥 = ∅) |
7 | df-rex 3123 | . . . . . . . 8 ⊢ (∃𝑦 ∈ 𝑋 𝑥 = ∅ ↔ ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝑥 = ∅)) | |
8 | 19.41v 2048 | . . . . . . . . 9 ⊢ (∃𝑦(𝑦 ∈ 𝑋 ∧ 𝑥 = ∅) ↔ (∃𝑦 𝑦 ∈ 𝑋 ∧ 𝑥 = ∅)) | |
9 | n0 4162 | . . . . . . . . . . 11 ⊢ (𝑋 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝑋) | |
10 | 9 | bicomi 216 | . . . . . . . . . 10 ⊢ (∃𝑦 𝑦 ∈ 𝑋 ↔ 𝑋 ≠ ∅) |
11 | 10 | anbi1i 617 | . . . . . . . . 9 ⊢ ((∃𝑦 𝑦 ∈ 𝑋 ∧ 𝑥 = ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅)) |
12 | 8, 11 | bitri 267 | . . . . . . . 8 ⊢ (∃𝑦(𝑦 ∈ 𝑋 ∧ 𝑥 = ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅)) |
13 | 7, 12 | bitri 267 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝑋 𝑥 = ∅ ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅)) |
14 | 6, 13 | bitri 267 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅)) |
15 | 14 | baib 531 | . . . . 5 ⊢ (𝑋 ≠ ∅ → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ ∅) ↔ 𝑥 = ∅)) |
16 | 3, 15 | sylan9bb 505 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅) → (𝑥 ∈ (𝑋 ↾t ∅) ↔ 𝑥 = ∅)) |
17 | velsn 4415 | . . . 4 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
18 | 16, 17 | syl6bbr 281 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅) → (𝑥 ∈ (𝑋 ↾t ∅) ↔ 𝑥 ∈ {∅})) |
19 | 18 | eqrdv 2823 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅) → (𝑋 ↾t ∅) = {∅}) |
20 | 19 | ex 403 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ≠ ∅ → (𝑋 ↾t ∅) = {∅})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∃wex 1878 ∈ wcel 2164 ≠ wne 2999 ∃wrex 3118 Vcvv 3414 ∩ cin 3797 ∅c0 4146 {csn 4399 (class class class)co 6910 ↾t crest 16441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-rest 16443 |
This theorem is referenced by: bj-rest10b 33564 |
Copyright terms: Public domain | W3C validator |