| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rest10 | Structured version Visualization version GIF version | ||
| Description: An elementwise intersection on a nonempty family by the empty set is the singleton on the empty set. TODO: this generalizes rest0 23177 and could replace it. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| bj-rest10 | ⊢ (𝑋 ∈ 𝑉 → (𝑋 ≠ ∅ → (𝑋 ↾t ∅) = {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5307 | . . . . . 6 ⊢ ∅ ∈ V | |
| 2 | elrest 17472 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑥 ∈ (𝑋 ↾t ∅) ↔ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ ∅))) | |
| 3 | 1, 2 | mpan2 691 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑥 ∈ (𝑋 ↾t ∅) ↔ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ ∅))) |
| 4 | in0 4395 | . . . . . . . . 9 ⊢ (𝑦 ∩ ∅) = ∅ | |
| 5 | 4 | eqeq2i 2750 | . . . . . . . 8 ⊢ (𝑥 = (𝑦 ∩ ∅) ↔ 𝑥 = ∅) |
| 6 | 5 | rexbii 3094 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ ∅) ↔ ∃𝑦 ∈ 𝑋 𝑥 = ∅) |
| 7 | df-rex 3071 | . . . . . . . 8 ⊢ (∃𝑦 ∈ 𝑋 𝑥 = ∅ ↔ ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝑥 = ∅)) | |
| 8 | 19.41v 1949 | . . . . . . . . 9 ⊢ (∃𝑦(𝑦 ∈ 𝑋 ∧ 𝑥 = ∅) ↔ (∃𝑦 𝑦 ∈ 𝑋 ∧ 𝑥 = ∅)) | |
| 9 | n0 4353 | . . . . . . . . . . 11 ⊢ (𝑋 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝑋) | |
| 10 | 9 | bicomi 224 | . . . . . . . . . 10 ⊢ (∃𝑦 𝑦 ∈ 𝑋 ↔ 𝑋 ≠ ∅) |
| 11 | 10 | anbi1i 624 | . . . . . . . . 9 ⊢ ((∃𝑦 𝑦 ∈ 𝑋 ∧ 𝑥 = ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅)) |
| 12 | 8, 11 | bitri 275 | . . . . . . . 8 ⊢ (∃𝑦(𝑦 ∈ 𝑋 ∧ 𝑥 = ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅)) |
| 13 | 7, 12 | bitri 275 | . . . . . . 7 ⊢ (∃𝑦 ∈ 𝑋 𝑥 = ∅ ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅)) |
| 14 | 6, 13 | bitri 275 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑥 = ∅)) |
| 15 | 14 | baib 535 | . . . . 5 ⊢ (𝑋 ≠ ∅ → (∃𝑦 ∈ 𝑋 𝑥 = (𝑦 ∩ ∅) ↔ 𝑥 = ∅)) |
| 16 | 3, 15 | sylan9bb 509 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅) → (𝑥 ∈ (𝑋 ↾t ∅) ↔ 𝑥 = ∅)) |
| 17 | velsn 4642 | . . . 4 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
| 18 | 16, 17 | bitr4di 289 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅) → (𝑥 ∈ (𝑋 ↾t ∅) ↔ 𝑥 ∈ {∅})) |
| 19 | 18 | eqrdv 2735 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅) → (𝑋 ↾t ∅) = {∅}) |
| 20 | 19 | ex 412 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ≠ ∅ → (𝑋 ↾t ∅) = {∅})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 Vcvv 3480 ∩ cin 3950 ∅c0 4333 {csn 4626 (class class class)co 7431 ↾t crest 17465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-rest 17467 |
| This theorem is referenced by: bj-rest10b 37090 |
| Copyright terms: Public domain | W3C validator |